/* * Copyright 2009 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Jerome Glisse * Thomas Hellstrom * Dave Airlie */ #include #include #include "radeon_drm.h" #include "radeon.h" #include int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, int pages, u32_t *pagelist); #define TTM_PL_SYSTEM 0 #define TTM_PL_TT 1 #define TTM_PL_VRAM 2 #define TTM_PL_PRIV0 3 #define TTM_PL_PRIV1 4 #define TTM_PL_PRIV2 5 #define TTM_PL_PRIV3 6 #define TTM_PL_PRIV4 7 #define TTM_PL_PRIV5 8 #define TTM_PL_SWAPPED 15 #define TTM_PL_FLAG_SYSTEM (1 << TTM_PL_SYSTEM) #define TTM_PL_FLAG_TT (1 << TTM_PL_TT) #define TTM_PL_FLAG_VRAM (1 << TTM_PL_VRAM) #define TTM_PL_FLAG_PRIV0 (1 << TTM_PL_PRIV0) #define TTM_PL_FLAG_PRIV1 (1 << TTM_PL_PRIV1) #define TTM_PL_FLAG_PRIV2 (1 << TTM_PL_PRIV2) #define TTM_PL_FLAG_PRIV3 (1 << TTM_PL_PRIV3) #define TTM_PL_FLAG_PRIV4 (1 << TTM_PL_PRIV4) #define TTM_PL_FLAG_PRIV5 (1 << TTM_PL_PRIV5) #define TTM_PL_FLAG_SWAPPED (1 << TTM_PL_SWAPPED) #define TTM_PL_MASK_MEM 0x0000FFFF struct ttm_mem_type_manager { /* * No protection. Constant from start. */ bool has_type; bool use_type; uint32_t flags; unsigned long gpu_offset; unsigned long io_offset; unsigned long io_size; void *io_addr; uint64_t size; uint32_t available_caching; uint32_t default_caching; /* * Protected by the bdev->lru_lock. * TODO: Consider one lru_lock per ttm_mem_type_manager. * Plays ill with list removal, though. */ struct drm_mm manager; struct list_head lru; }; struct ttm_bo_driver { const uint32_t *mem_type_prio; const uint32_t *mem_busy_prio; uint32_t num_mem_type_prio; uint32_t num_mem_busy_prio; /** * struct ttm_bo_driver member create_ttm_backend_entry * * @bdev: The buffer object device. * * Create a driver specific struct ttm_backend. */ // struct ttm_backend *(*create_ttm_backend_entry)(struct ttm_bo_device *bdev); /** * struct ttm_bo_driver member invalidate_caches * * @bdev: the buffer object device. * @flags: new placement of the rebound buffer object. * * A previosly evicted buffer has been rebound in a * potentially new location. Tell the driver that it might * consider invalidating read (texture) caches on the next command * submission as a consequence. */ // int (*invalidate_caches) (struct ttm_bo_device *bdev, uint32_t flags); // int (*init_mem_type) (struct ttm_bo_device *bdev, uint32_t type, // struct ttm_mem_type_manager *man); /** * struct ttm_bo_driver member evict_flags: * * @bo: the buffer object to be evicted * * Return the bo flags for a buffer which is not mapped to the hardware. * These will be placed in proposed_flags so that when the move is * finished, they'll end up in bo->mem.flags */ // uint32_t(*evict_flags) (struct ttm_buffer_object *bo); /** * struct ttm_bo_driver member move: * * @bo: the buffer to move * @evict: whether this motion is evicting the buffer from * the graphics address space * @interruptible: Use interruptible sleeps if possible when sleeping. * @no_wait: whether this should give up and return -EBUSY * if this move would require sleeping * @new_mem: the new memory region receiving the buffer * * Move a buffer between two memory regions. */ // int (*move) (struct ttm_buffer_object *bo, // bool evict, bool interruptible, // bool no_wait, struct ttm_mem_reg *new_mem); /** * struct ttm_bo_driver_member verify_access * * @bo: Pointer to a buffer object. * @filp: Pointer to a struct file trying to access the object. * * Called from the map / write / read methods to verify that the * caller is permitted to access the buffer object. * This member may be set to NULL, which will refuse this kind of * access for all buffer objects. * This function should return 0 if access is granted, -EPERM otherwise. */ // int (*verify_access) (struct ttm_buffer_object *bo, // struct file *filp); /** * In case a driver writer dislikes the TTM fence objects, * the driver writer can replace those with sync objects of * his / her own. If it turns out that no driver writer is * using these. I suggest we remove these hooks and plug in * fences directly. The bo driver needs the following functionality: * See the corresponding functions in the fence object API * documentation. */ // bool (*sync_obj_signaled) (void *sync_obj, void *sync_arg); // int (*sync_obj_wait) (void *sync_obj, void *sync_arg, // bool lazy, bool interruptible); // int (*sync_obj_flush) (void *sync_obj, void *sync_arg); // void (*sync_obj_unref) (void **sync_obj); // void *(*sync_obj_ref) (void *sync_obj); }; #define TTM_NUM_MEM_TYPES 8 struct ttm_bo_device { /* * Constant after bo device init / atomic. */ // struct ttm_mem_global *mem_glob; struct ttm_bo_driver *driver; // struct page *dummy_read_page; // struct ttm_mem_shrink shrink; size_t ttm_bo_extra_size; size_t ttm_bo_size; // rwlock_t vm_lock; /* * Protected by the vm lock. */ struct ttm_mem_type_manager man[TTM_NUM_MEM_TYPES]; // struct rb_root addr_space_rb; struct drm_mm addr_space_mm; /* * Might want to change this to one lock per manager. */ // spinlock_t lru_lock; /* * Protected by the lru lock. */ struct list_head ddestroy; struct list_head swap_lru; /* * Protected by load / firstopen / lastclose /unload sync. */ bool nice_mode; // struct address_space *dev_mapping; /* * Internal protection. */ // struct delayed_work wq; }; struct ttm_mem_reg { struct drm_mm_node *mm_node; unsigned long size; unsigned long num_pages; uint32_t page_alignment; uint32_t mem_type; uint32_t placement; }; enum ttm_bo_type { ttm_bo_type_device, ttm_bo_type_user, ttm_bo_type_kernel }; struct ttm_buffer_object { /** * Members constant at init. */ struct ttm_bo_device *bdev; unsigned long buffer_start; enum ttm_bo_type type; void (*destroy) (struct ttm_buffer_object *); unsigned long num_pages; uint64_t addr_space_offset; size_t acc_size; /** * Members not needing protection. */ // struct kref kref; // struct kref list_kref; // wait_queue_head_t event_queue; // spinlock_t lock; /** * Members protected by the bo::reserved lock. */ uint32_t proposed_placement; struct ttm_mem_reg mem; // struct file *persistant_swap_storage; // struct ttm_tt *ttm; bool evicted; /** * Members protected by the bo::reserved lock only when written to. */ // atomic_t cpu_writers; /** * Members protected by the bdev::lru_lock. */ struct list_head lru; struct list_head ddestroy; struct list_head swap; uint32_t val_seq; bool seq_valid; /** * Members protected by the bdev::lru_lock * only when written to. */ // atomic_t reserved; /** * Members protected by the bo::lock */ void *sync_obj_arg; void *sync_obj; unsigned long priv_flags; /** * Members protected by the bdev::vm_lock */ // struct rb_node vm_rb; struct drm_mm_node *vm_node; /** * Special members that are protected by the reserve lock * and the bo::lock when written to. Can be read with * either of these locks held. */ unsigned long offset; uint32_t cur_placement; }; struct radeon_object { struct ttm_buffer_object tobj; struct list_head list; struct radeon_device *rdev; // struct drm_gem_object *gobj; // struct ttm_bo_kmap_obj kmap; unsigned pin_count; uint64_t gpu_addr; void *kptr; bool is_iomem; struct drm_mm_node *mm_node; u32_t vm_addr; u32_t cpu_addr; u32_t flags; }; static struct drm_mm mm_gtt; static struct drm_mm mm_vram; int radeon_object_init(struct radeon_device *rdev) { int r = 0; dbgprintf("%s\n",__FUNCTION__); r = drm_mm_init(&mm_vram, 0x800000 >> PAGE_SHIFT, ((rdev->mc.aper_size - 0x800000) >> PAGE_SHIFT)); if (r) { DRM_ERROR("Failed initializing VRAM heap.\n"); return r; }; r = drm_mm_init(&mm_gtt, 0, ((rdev->mc.gtt_size) >> PAGE_SHIFT)); if (r) { DRM_ERROR("Failed initializing GTT heap.\n"); return r; } return r; // return radeon_ttm_init(rdev); } static inline uint32_t radeon_object_flags_from_domain(uint32_t domain) { uint32_t flags = 0; if (domain & RADEON_GEM_DOMAIN_VRAM) { flags |= TTM_PL_FLAG_VRAM; } if (domain & RADEON_GEM_DOMAIN_GTT) { flags |= TTM_PL_FLAG_TT; } if (domain & RADEON_GEM_DOMAIN_CPU) { flags |= TTM_PL_FLAG_SYSTEM; } if (!flags) { flags |= TTM_PL_FLAG_SYSTEM; } return flags; } int radeon_object_create(struct radeon_device *rdev, struct drm_gem_object *gobj, unsigned long size, bool kernel, uint32_t domain, bool interruptible, struct radeon_object **robj_ptr) { struct radeon_object *robj; enum ttm_bo_type type; uint32_t flags; int r; dbgprintf("%s\n",__FUNCTION__); if (kernel) { type = ttm_bo_type_kernel; } else { type = ttm_bo_type_device; } *robj_ptr = NULL; robj = kzalloc(sizeof(struct radeon_object), GFP_KERNEL); if (robj == NULL) { return -ENOMEM; } robj->rdev = rdev; // robj->gobj = gobj; INIT_LIST_HEAD(&robj->list); flags = radeon_object_flags_from_domain(domain); robj->flags = flags; dbgprintf("robj flags %x\n", robj->flags); if( flags & TTM_PL_FLAG_VRAM) { size_t num_pages; struct drm_mm_node *vm_node; num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; if (num_pages == 0) { printk("Illegal buffer object size.\n"); return -EINVAL; } retry_pre_get: r = drm_mm_pre_get(&mm_vram); if (unlikely(r != 0)) return r; vm_node = drm_mm_search_free(&mm_vram, num_pages, 0, 0); if (unlikely(vm_node == NULL)) { r = -ENOMEM; return r; } robj->mm_node = drm_mm_get_block_atomic(vm_node, num_pages, 0); if (unlikely(robj->mm_node == NULL)) { goto retry_pre_get; } robj->vm_addr = ((uint32_t)robj->mm_node->start); dbgprintf("alloc vram: base %x size %x\n", robj->vm_addr << PAGE_SHIFT, num_pages << PAGE_SHIFT); }; if( flags & TTM_PL_FLAG_TT) { size_t num_pages; struct drm_mm_node *vm_node; num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; if (num_pages == 0) { printk("Illegal buffer object size.\n"); return -EINVAL; } retry_pre_get1: r = drm_mm_pre_get(&mm_gtt); if (unlikely(r != 0)) return r; vm_node = drm_mm_search_free(&mm_gtt, num_pages, 0, 0); if (unlikely(vm_node == NULL)) { r = -ENOMEM; return r; } robj->mm_node = drm_mm_get_block_atomic(vm_node, num_pages, 0); if (unlikely(robj->mm_node == NULL)) { goto retry_pre_get1; } robj->vm_addr = ((uint32_t)robj->mm_node->start) ; dbgprintf("alloc gtt: base %x size %x\n", robj->vm_addr << PAGE_SHIFT, num_pages << PAGE_SHIFT); }; // r = ttm_buffer_object_init(&rdev->mman.bdev, &robj->tobj, size, type, flags, // 0, 0, false, NULL, size, // &radeon_ttm_object_object_destroy); if (unlikely(r != 0)) { /* ttm call radeon_ttm_object_object_destroy if error happen */ DRM_ERROR("Failed to allocate TTM object (%ld, 0x%08X, %u)\n", size, flags, 0); return r; } *robj_ptr = robj; // if (gobj) { // list_add_tail(&robj->list, &rdev->gem.objects); // } return 0; } #define page_tabs 0xFDC00000 int radeon_object_pin(struct radeon_object *robj, uint32_t domain, uint64_t *gpu_addr) { uint32_t flags; uint32_t tmp; int r = 0; dbgprintf("%s\n",__FUNCTION__); // flags = radeon_object_flags_from_domain(domain); // spin_lock(&robj->tobj.lock); if (robj->pin_count) { robj->pin_count++; if (gpu_addr != NULL) { *gpu_addr = robj->gpu_addr; } // spin_unlock(&robj->tobj.lock); return 0; } // spin_unlock(&robj->tobj.lock); // r = radeon_object_reserve(robj, false); // if (unlikely(r != 0)) { // DRM_ERROR("radeon: failed to reserve object for pinning it.\n"); // return r; // } // tmp = robj->tobj.mem.placement; // ttm_flag_masked(&tmp, flags, TTM_PL_MASK_MEM); // robj->tobj.proposed_placement = tmp | TTM_PL_FLAG_NO_EVICT | TTM_PL_MASK_CACHING; // r = ttm_buffer_object_validate(&robj->tobj, // robj->tobj.proposed_placement, // false, false); robj->gpu_addr = ((u64)robj->vm_addr) << PAGE_SHIFT; if(robj->flags & TTM_PL_FLAG_VRAM) robj->gpu_addr += (u64)robj->rdev->mc.vram_location; else if (robj->flags & TTM_PL_FLAG_TT) { u32_t *pagelist; robj->kptr = KernelAlloc( robj->mm_node->size << PAGE_SHIFT ); dbgprintf("kernel alloc %x\n", robj->kptr ); pagelist = &((u32_t*)page_tabs)[(u32_t)robj->kptr >> 12]; dbgprintf("pagelist %x\n", pagelist); radeon_gart_bind(robj->rdev, robj->gpu_addr, robj->mm_node->size, pagelist); robj->gpu_addr += (u64)robj->rdev->mc.gtt_location; } else { DRM_ERROR("Unknown placement %d\n", robj->flags); robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL; r = -1; }; // flags & TTM_PL_FLAG_VRAM if (gpu_addr != NULL) { *gpu_addr = robj->gpu_addr; } robj->pin_count = 1; if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to pin object.\n"); } dbgprintf("done %s\n",__FUNCTION__); return r; } int radeon_object_kmap(struct radeon_object *robj, void **ptr) { int r = 0; dbgprintf("%s\n",__FUNCTION__); // spin_lock(&robj->tobj.lock); if (robj->kptr) { if (ptr) { *ptr = robj->kptr; } // spin_unlock(&robj->tobj.lock); return 0; } // spin_unlock(&robj->tobj.lock); if(robj->flags & TTM_PL_FLAG_VRAM) { robj->cpu_addr = robj->rdev->mc.aper_base + (robj->vm_addr << PAGE_SHIFT); robj->kptr = (void*)MapIoMem(robj->cpu_addr, robj->mm_node->size << 12, PG_SW); dbgprintf("map io mem %x at %x\n", robj->cpu_addr, robj->kptr); } else { return -1; } if (ptr) { *ptr = robj->kptr; } dbgprintf("done %s\n",__FUNCTION__); return 0; } #if 0 void radeon_object_unpin(struct radeon_object *robj) { uint32_t flags; int r; // spin_lock(&robj->tobj.lock); if (!robj->pin_count) { // spin_unlock(&robj->tobj.lock); printk(KERN_WARNING "Unpin not necessary for %p !\n", robj); return; } robj->pin_count--; if (robj->pin_count) { // spin_unlock(&robj->tobj.lock); return; } // spin_unlock(&robj->tobj.lock); r = radeon_object_reserve(robj, false); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to reserve object for unpinning it.\n"); return; } flags = robj->tobj.mem.placement; robj->tobj.proposed_placement = flags & ~TTM_PL_FLAG_NO_EVICT; r = ttm_buffer_object_validate(&robj->tobj, robj->tobj.proposed_placement, false, false); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to unpin buffer.\n"); } radeon_object_unreserve(robj); } /* * To exclude mutual BO access we rely on bo_reserve exclusion, as all * function are calling it. */ static int radeon_object_reserve(struct radeon_object *robj, bool interruptible) { return ttm_bo_reserve(&robj->tobj, interruptible, false, false, 0); } static void radeon_object_unreserve(struct radeon_object *robj) { ttm_bo_unreserve(&robj->tobj); } static void radeon_ttm_object_object_destroy(struct ttm_buffer_object *tobj) { struct radeon_object *robj; robj = container_of(tobj, struct radeon_object, tobj); // list_del_init(&robj->list); kfree(robj); } static inline void radeon_object_gpu_addr(struct radeon_object *robj) { /* Default gpu address */ robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL; if (robj->tobj.mem.mm_node == NULL) { return; } robj->gpu_addr = ((u64)robj->tobj.mem.mm_node->start) << PAGE_SHIFT; switch (robj->tobj.mem.mem_type) { case TTM_PL_VRAM: robj->gpu_addr += (u64)robj->rdev->mc.vram_location; break; case TTM_PL_TT: robj->gpu_addr += (u64)robj->rdev->mc.gtt_location; break; default: DRM_ERROR("Unknown placement %d\n", robj->tobj.mem.mem_type); robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL; return; } } int radeon_object_create(struct radeon_device *rdev, struct drm_gem_object *gobj, unsigned long size, bool kernel, uint32_t domain, bool interruptible, struct radeon_object **robj_ptr) { struct radeon_object *robj; enum ttm_bo_type type; uint32_t flags; int r; // if (unlikely(rdev->mman.bdev.dev_mapping == NULL)) { // rdev->mman.bdev.dev_mapping = rdev->ddev->dev_mapping; // } if (kernel) { type = ttm_bo_type_kernel; } else { type = ttm_bo_type_device; } *robj_ptr = NULL; robj = kzalloc(sizeof(struct radeon_object), GFP_KERNEL); if (robj == NULL) { return -ENOMEM; } robj->rdev = rdev; robj->gobj = gobj; // INIT_LIST_HEAD(&robj->list); flags = radeon_object_flags_from_domain(domain); // r = ttm_buffer_object_init(&rdev->mman.bdev, &robj->tobj, size, type, flags, // 0, 0, false, NULL, size, // &radeon_ttm_object_object_destroy); if (unlikely(r != 0)) { /* ttm call radeon_ttm_object_object_destroy if error happen */ DRM_ERROR("Failed to allocate TTM object (%ld, 0x%08X, %u)\n", size, flags, 0); return r; } *robj_ptr = robj; // if (gobj) { // list_add_tail(&robj->list, &rdev->gem.objects); // } return 0; } int radeon_object_kmap(struct radeon_object *robj, void **ptr) { int r; // spin_lock(&robj->tobj.lock); if (robj->kptr) { if (ptr) { *ptr = robj->kptr; } // spin_unlock(&robj->tobj.lock); return 0; } // spin_unlock(&robj->tobj.lock); r = ttm_bo_kmap(&robj->tobj, 0, robj->tobj.num_pages, &robj->kmap); if (r) { return r; } // spin_lock(&robj->tobj.lock); robj->kptr = ttm_kmap_obj_virtual(&robj->kmap, &robj->is_iomem); // spin_unlock(&robj->tobj.lock); if (ptr) { *ptr = robj->kptr; } return 0; } void radeon_object_kunmap(struct radeon_object *robj) { // spin_lock(&robj->tobj.lock); if (robj->kptr == NULL) { // spin_unlock(&robj->tobj.lock); return; } robj->kptr = NULL; // spin_unlock(&robj->tobj.lock); ttm_bo_kunmap(&robj->kmap); } void radeon_object_unref(struct radeon_object **robj) { struct ttm_buffer_object *tobj; if ((*robj) == NULL) { return; } tobj = &((*robj)->tobj); ttm_bo_unref(&tobj); if (tobj == NULL) { *robj = NULL; } } int radeon_object_mmap(struct radeon_object *robj, uint64_t *offset) { *offset = robj->tobj.addr_space_offset; return 0; } int radeon_object_pin(struct radeon_object *robj, uint32_t domain, uint64_t *gpu_addr) { uint32_t flags; uint32_t tmp; int r; flags = radeon_object_flags_from_domain(domain); // spin_lock(&robj->tobj.lock); if (robj->pin_count) { robj->pin_count++; if (gpu_addr != NULL) { *gpu_addr = robj->gpu_addr; } // spin_unlock(&robj->tobj.lock); return 0; } // spin_unlock(&robj->tobj.lock); r = radeon_object_reserve(robj, false); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to reserve object for pinning it.\n"); return r; } tmp = robj->tobj.mem.placement; ttm_flag_masked(&tmp, flags, TTM_PL_MASK_MEM); robj->tobj.proposed_placement = tmp | TTM_PL_FLAG_NO_EVICT | TTM_PL_MASK_CACHING; r = ttm_buffer_object_validate(&robj->tobj, robj->tobj.proposed_placement, false, false); radeon_object_gpu_addr(robj); if (gpu_addr != NULL) { *gpu_addr = robj->gpu_addr; } robj->pin_count = 1; if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to pin object.\n"); } radeon_object_unreserve(robj); return r; } void radeon_object_unpin(struct radeon_object *robj) { uint32_t flags; int r; // spin_lock(&robj->tobj.lock); if (!robj->pin_count) { // spin_unlock(&robj->tobj.lock); printk(KERN_WARNING "Unpin not necessary for %p !\n", robj); return; } robj->pin_count--; if (robj->pin_count) { // spin_unlock(&robj->tobj.lock); return; } // spin_unlock(&robj->tobj.lock); r = radeon_object_reserve(robj, false); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to reserve object for unpinning it.\n"); return; } flags = robj->tobj.mem.placement; robj->tobj.proposed_placement = flags & ~TTM_PL_FLAG_NO_EVICT; r = ttm_buffer_object_validate(&robj->tobj, robj->tobj.proposed_placement, false, false); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to unpin buffer.\n"); } radeon_object_unreserve(robj); } int radeon_object_wait(struct radeon_object *robj) { int r = 0; /* FIXME: should use block reservation instead */ r = radeon_object_reserve(robj, true); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to reserve object for waiting.\n"); return r; } // spin_lock(&robj->tobj.lock); if (robj->tobj.sync_obj) { r = ttm_bo_wait(&robj->tobj, true, false, false); } // spin_unlock(&robj->tobj.lock); radeon_object_unreserve(robj); return r; } int radeon_object_evict_vram(struct radeon_device *rdev) { if (rdev->flags & RADEON_IS_IGP) { /* Useless to evict on IGP chips */ return 0; } return ttm_bo_evict_mm(&rdev->mman.bdev, TTM_PL_VRAM); } void radeon_object_force_delete(struct radeon_device *rdev) { struct radeon_object *robj, *n; struct drm_gem_object *gobj; if (list_empty(&rdev->gem.objects)) { return; } DRM_ERROR("Userspace still has active objects !\n"); list_for_each_entry_safe(robj, n, &rdev->gem.objects, list) { mutex_lock(&rdev->ddev->struct_mutex); gobj = robj->gobj; DRM_ERROR("Force free for (%p,%p,%lu,%lu)\n", gobj, robj, (unsigned long)gobj->size, *((unsigned long *)&gobj->refcount)); list_del_init(&robj->list); radeon_object_unref(&robj); gobj->driver_private = NULL; drm_gem_object_unreference(gobj); mutex_unlock(&rdev->ddev->struct_mutex); } } void radeon_object_fini(struct radeon_device *rdev) { radeon_ttm_fini(rdev); } void radeon_object_list_add_object(struct radeon_object_list *lobj, struct list_head *head) { if (lobj->wdomain) { list_add(&lobj->list, head); } else { list_add_tail(&lobj->list, head); } } int radeon_object_list_reserve(struct list_head *head) { struct radeon_object_list *lobj; struct list_head *i; int r; list_for_each(i, head) { lobj = list_entry(i, struct radeon_object_list, list); if (!lobj->robj->pin_count) { r = radeon_object_reserve(lobj->robj, true); if (unlikely(r != 0)) { DRM_ERROR("radeon: failed to reserve object.\n"); return r; } } else { } } return 0; } void radeon_object_list_unreserve(struct list_head *head) { struct radeon_object_list *lobj; struct list_head *i; list_for_each(i, head) { lobj = list_entry(i, struct radeon_object_list, list); if (!lobj->robj->pin_count) { radeon_object_unreserve(lobj->robj); } else { } } } int radeon_object_list_validate(struct list_head *head, void *fence) { struct radeon_object_list *lobj; struct radeon_object *robj; struct radeon_fence *old_fence = NULL; struct list_head *i; uint32_t flags; int r; r = radeon_object_list_reserve(head); if (unlikely(r != 0)) { radeon_object_list_unreserve(head); return r; } list_for_each(i, head) { lobj = list_entry(i, struct radeon_object_list, list); robj = lobj->robj; if (lobj->wdomain) { flags = radeon_object_flags_from_domain(lobj->wdomain); flags |= TTM_PL_FLAG_TT; } else { flags = radeon_object_flags_from_domain(lobj->rdomain); flags |= TTM_PL_FLAG_TT; flags |= TTM_PL_FLAG_VRAM; } if (!robj->pin_count) { robj->tobj.proposed_placement = flags | TTM_PL_MASK_CACHING; r = ttm_buffer_object_validate(&robj->tobj, robj->tobj.proposed_placement, true, false); if (unlikely(r)) { radeon_object_list_unreserve(head); DRM_ERROR("radeon: failed to validate.\n"); return r; } radeon_object_gpu_addr(robj); } lobj->gpu_offset = robj->gpu_addr; if (fence) { old_fence = (struct radeon_fence *)robj->tobj.sync_obj; robj->tobj.sync_obj = radeon_fence_ref(fence); robj->tobj.sync_obj_arg = NULL; } if (old_fence) { radeon_fence_unref(&old_fence); } } return 0; } void radeon_object_list_unvalidate(struct list_head *head) { struct radeon_object_list *lobj; struct radeon_fence *old_fence = NULL; struct list_head *i; list_for_each(i, head) { lobj = list_entry(i, struct radeon_object_list, list); old_fence = (struct radeon_fence *)lobj->robj->tobj.sync_obj; lobj->robj->tobj.sync_obj = NULL; if (old_fence) { radeon_fence_unref(&old_fence); } } radeon_object_list_unreserve(head); } void radeon_object_list_clean(struct list_head *head) { radeon_object_list_unreserve(head); } int radeon_object_fbdev_mmap(struct radeon_object *robj, struct vm_area_struct *vma) { return ttm_fbdev_mmap(vma, &robj->tobj); } unsigned long radeon_object_size(struct radeon_object *robj) { return robj->tobj.num_pages << PAGE_SHIFT; } #endif