/** * \file ctr_drbg.h * * \brief This file contains definitions and functions for the * CTR_DRBG pseudorandom generator. * * CTR_DRBG is a standardized way of building a PRNG from a block-cipher * in counter mode operation, as defined in NIST SP 800-90A: * Recommendation for Random Number Generation Using Deterministic Random * Bit Generators. * * The Mbed TLS implementation of CTR_DRBG uses AES-256 (default) or AES-128 * (if \c MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is enabled at compile time) * as the underlying block cipher, with a derivation function. * The initial seeding grabs #MBEDTLS_CTR_DRBG_ENTROPY_LEN bytes of entropy. * See the documentation of mbedtls_ctr_drbg_seed() for more details. * * Based on NIST SP 800-90A §10.2.1 table 3 and NIST SP 800-57 part 1 table 2, * here are the security strengths achieved in typical configuration: * - 256 bits under the default configuration of the library, with AES-256 * and with #MBEDTLS_CTR_DRBG_ENTROPY_LEN set to 48 or more. * - 256 bits if AES-256 is used, #MBEDTLS_CTR_DRBG_ENTROPY_LEN is set * to 32 or more, and the DRBG is initialized with an explicit * nonce in the \c custom parameter to mbedtls_ctr_drbg_seed(). * - 128 bits if AES-256 is used but #MBEDTLS_CTR_DRBG_ENTROPY_LEN is * between 24 and 47 and the DRBG is not initialized with an explicit * nonce (see mbedtls_ctr_drbg_seed()). * - 128 bits if AES-128 is used (\c MBEDTLS_CTR_DRBG_USE_128_BIT_KEY enabled) * and #MBEDTLS_CTR_DRBG_ENTROPY_LEN is set to 24 or more (which is * always the case unless it is explicitly set to a different value * in config.h). * * Note that the value of #MBEDTLS_CTR_DRBG_ENTROPY_LEN defaults to: * - \c 48 if the module \c MBEDTLS_SHA512_C is enabled and the symbol * \c MBEDTLS_ENTROPY_FORCE_SHA256 is disabled at compile time. * This is the default configuration of the library. * - \c 32 if the module \c MBEDTLS_SHA512_C is disabled at compile time. * - \c 32 if \c MBEDTLS_ENTROPY_FORCE_SHA256 is enabled at compile time. */ /* * Copyright (C) 2006-2019, Arm Limited (or its affiliates), All Rights Reserved * SPDX-License-Identifier: GPL-2.0 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * This file is part of Mbed TLS (https://tls.mbed.org) */ #ifndef MBEDTLS_CTR_DRBG_H #define MBEDTLS_CTR_DRBG_H #if !defined(MBEDTLS_CONFIG_FILE) #include "config.h" #else #include MBEDTLS_CONFIG_FILE #endif #include "aes.h" #if defined(MBEDTLS_THREADING_C) #include "threading.h" #endif #define MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED -0x0034 /**< The entropy source failed. */ #define MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG -0x0036 /**< The requested random buffer length is too big. */ #define MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG -0x0038 /**< The input (entropy + additional data) is too large. */ #define MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR -0x003A /**< Read or write error in file. */ #define MBEDTLS_CTR_DRBG_BLOCKSIZE 16 /**< The block size used by the cipher. */ #if defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY) #define MBEDTLS_CTR_DRBG_KEYSIZE 16 /**< The key size in bytes used by the cipher. * * Compile-time choice: 16 bytes (128 bits) * because #MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is enabled. */ #else #define MBEDTLS_CTR_DRBG_KEYSIZE 32 /**< The key size in bytes used by the cipher. * * Compile-time choice: 32 bytes (256 bits) * because \c MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is disabled. */ #endif #define MBEDTLS_CTR_DRBG_KEYBITS ( MBEDTLS_CTR_DRBG_KEYSIZE * 8 ) /**< The key size for the DRBG operation, in bits. */ #define MBEDTLS_CTR_DRBG_SEEDLEN ( MBEDTLS_CTR_DRBG_KEYSIZE + MBEDTLS_CTR_DRBG_BLOCKSIZE ) /**< The seed length, calculated as (counter + AES key). */ /** * \name SECTION: Module settings * * The configuration options you can set for this module are in this section. * Either change them in config.h or define them using the compiler command * line. * \{ */ /** \def MBEDTLS_CTR_DRBG_ENTROPY_LEN * * \brief The amount of entropy used per seed by default, in bytes. */ #if !defined(MBEDTLS_CTR_DRBG_ENTROPY_LEN) #if defined(MBEDTLS_SHA512_C) && !defined(MBEDTLS_ENTROPY_FORCE_SHA256) /** This is 48 bytes because the entropy module uses SHA-512 * (\c MBEDTLS_ENTROPY_FORCE_SHA256 is disabled). */ #define MBEDTLS_CTR_DRBG_ENTROPY_LEN 48 #else /* defined(MBEDTLS_SHA512_C) && !defined(MBEDTLS_ENTROPY_FORCE_SHA256) */ /** This is 32 bytes because the entropy module uses SHA-256 * (the SHA512 module is disabled or * \c MBEDTLS_ENTROPY_FORCE_SHA256 is enabled). */ #if !defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY) /** \warning To achieve a 256-bit security strength, you must pass a nonce * to mbedtls_ctr_drbg_seed(). */ #endif /* !defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY) */ #define MBEDTLS_CTR_DRBG_ENTROPY_LEN 32 #endif /* defined(MBEDTLS_SHA512_C) && !defined(MBEDTLS_ENTROPY_FORCE_SHA256) */ #endif /* !defined(MBEDTLS_CTR_DRBG_ENTROPY_LEN) */ #if !defined(MBEDTLS_CTR_DRBG_RESEED_INTERVAL) #define MBEDTLS_CTR_DRBG_RESEED_INTERVAL 10000 /**< The interval before reseed is performed by default. */ #endif #if !defined(MBEDTLS_CTR_DRBG_MAX_INPUT) #define MBEDTLS_CTR_DRBG_MAX_INPUT 256 /**< The maximum number of additional input Bytes. */ #endif #if !defined(MBEDTLS_CTR_DRBG_MAX_REQUEST) #define MBEDTLS_CTR_DRBG_MAX_REQUEST 1024 /**< The maximum number of requested Bytes per call. */ #endif #if !defined(MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) #define MBEDTLS_CTR_DRBG_MAX_SEED_INPUT 384 /**< The maximum size of seed or reseed buffer in bytes. */ #endif /* \} name SECTION: Module settings */ #define MBEDTLS_CTR_DRBG_PR_OFF 0 /**< Prediction resistance is disabled. */ #define MBEDTLS_CTR_DRBG_PR_ON 1 /**< Prediction resistance is enabled. */ #ifdef __cplusplus extern "C" { #endif /** * \brief The CTR_DRBG context structure. */ typedef struct mbedtls_ctr_drbg_context { unsigned char counter[16]; /*!< The counter (V). */ int reseed_counter; /*!< The reseed counter. */ int prediction_resistance; /*!< This determines whether prediction resistance is enabled, that is whether to systematically reseed before each random generation. */ size_t entropy_len; /*!< The amount of entropy grabbed on each seed or reseed operation. */ int reseed_interval; /*!< The reseed interval. */ mbedtls_aes_context aes_ctx; /*!< The AES context. */ /* * Callbacks (Entropy) */ int (*f_entropy)(void *, unsigned char *, size_t); /*!< The entropy callback function. */ void *p_entropy; /*!< The context for the entropy function. */ #if defined(MBEDTLS_THREADING_C) mbedtls_threading_mutex_t mutex; #endif } mbedtls_ctr_drbg_context; /** * \brief This function initializes the CTR_DRBG context, * and prepares it for mbedtls_ctr_drbg_seed() * or mbedtls_ctr_drbg_free(). * * \param ctx The CTR_DRBG context to initialize. */ void mbedtls_ctr_drbg_init( mbedtls_ctr_drbg_context *ctx ); /** * \brief This function seeds and sets up the CTR_DRBG * entropy source for future reseeds. * * A typical choice for the \p f_entropy and \p p_entropy parameters is * to use the entropy module: * - \p f_entropy is mbedtls_entropy_func(); * - \p p_entropy is an instance of ::mbedtls_entropy_context initialized * with mbedtls_entropy_init() (which registers the platform's default * entropy sources). * * The entropy length is #MBEDTLS_CTR_DRBG_ENTROPY_LEN by default. * You can override it by calling mbedtls_ctr_drbg_set_entropy_len(). * * You can provide a personalization string in addition to the * entropy source, to make this instantiation as unique as possible. * * \note The _seed_material_ value passed to the derivation * function in the CTR_DRBG Instantiate Process * described in NIST SP 800-90A §10.2.1.3.2 * is the concatenation of the string obtained from * calling \p f_entropy and the \p custom string. * The origin of the nonce depends on the value of * the entropy length relative to the security strength. * - If the entropy length is at least 1.5 times the * security strength then the nonce is taken from the * string obtained with \p f_entropy. * - If the entropy length is less than the security * strength, then the nonce is taken from \p custom. * In this case, for compliance with SP 800-90A, * you must pass a unique value of \p custom at * each invocation. See SP 800-90A §8.6.7 for more * details. */ #if MBEDTLS_CTR_DRBG_ENTROPY_LEN < MBEDTLS_CTR_DRBG_KEYSIZE * 3 / 2 /** \warning When #MBEDTLS_CTR_DRBG_ENTROPY_LEN is less than * #MBEDTLS_CTR_DRBG_KEYSIZE * 3 / 2, to achieve the * maximum security strength permitted by CTR_DRBG, * you must pass a value of \p custom that is a nonce: * this value must never be repeated in subsequent * runs of the same application or on a different * device. */ #endif /** * \param ctx The CTR_DRBG context to seed. * It must have been initialized with * mbedtls_ctr_drbg_init(). * After a successful call to mbedtls_ctr_drbg_seed(), * you may not call mbedtls_ctr_drbg_seed() again on * the same context unless you call * mbedtls_ctr_drbg_free() and mbedtls_ctr_drbg_init() * again first. * \param f_entropy The entropy callback, taking as arguments the * \p p_entropy context, the buffer to fill, and the * length of the buffer. * \p f_entropy is always called with a buffer size * equal to the entropy length. * \param p_entropy The entropy context to pass to \p f_entropy. * \param custom The personalization string. * This can be \c NULL, in which case the personalization * string is empty regardless of the value of \p len. * \param len The length of the personalization string. * This must be at most * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT * - #MBEDTLS_CTR_DRBG_ENTROPY_LEN. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED on failure. */ int mbedtls_ctr_drbg_seed( mbedtls_ctr_drbg_context *ctx, int (*f_entropy)(void *, unsigned char *, size_t), void *p_entropy, const unsigned char *custom, size_t len ); /** * \brief This function clears CTR_CRBG context data. * * \param ctx The CTR_DRBG context to clear. */ void mbedtls_ctr_drbg_free( mbedtls_ctr_drbg_context *ctx ); /** * \brief This function turns prediction resistance on or off. * The default value is off. * * \note If enabled, entropy is gathered at the beginning of * every call to mbedtls_ctr_drbg_random_with_add() * or mbedtls_ctr_drbg_random(). * Only use this if your entropy source has sufficient * throughput. * * \param ctx The CTR_DRBG context. * \param resistance #MBEDTLS_CTR_DRBG_PR_ON or #MBEDTLS_CTR_DRBG_PR_OFF. */ void mbedtls_ctr_drbg_set_prediction_resistance( mbedtls_ctr_drbg_context *ctx, int resistance ); /** * \brief This function sets the amount of entropy grabbed on each * seed or reseed. * * The default value is #MBEDTLS_CTR_DRBG_ENTROPY_LEN. * * \note The security strength of CTR_DRBG is bounded by the * entropy length. Thus: * - When using AES-256 * (\c MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is disabled, * which is the default), * \p len must be at least 32 (in bytes) * to achieve a 256-bit strength. * - When using AES-128 * (\c MBEDTLS_CTR_DRBG_USE_128_BIT_KEY is enabled) * \p len must be at least 16 (in bytes) * to achieve a 128-bit strength. * * \param ctx The CTR_DRBG context. * \param len The amount of entropy to grab, in bytes. * This must be at most #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT. */ void mbedtls_ctr_drbg_set_entropy_len( mbedtls_ctr_drbg_context *ctx, size_t len ); /** * \brief This function sets the reseed interval. * * The reseed interval is the number of calls to mbedtls_ctr_drbg_random() * or mbedtls_ctr_drbg_random_with_add() after which the entropy function * is called again. * * The default value is #MBEDTLS_CTR_DRBG_RESEED_INTERVAL. * * \param ctx The CTR_DRBG context. * \param interval The reseed interval. */ void mbedtls_ctr_drbg_set_reseed_interval( mbedtls_ctr_drbg_context *ctx, int interval ); /** * \brief This function reseeds the CTR_DRBG context, that is * extracts data from the entropy source. * * \param ctx The CTR_DRBG context. * \param additional Additional data to add to the state. Can be \c NULL. * \param len The length of the additional data. * This must be less than * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - \c entropy_len * where \c entropy_len is the entropy length * configured for the context. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED on failure. */ int mbedtls_ctr_drbg_reseed( mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t len ); /** * \brief This function updates the state of the CTR_DRBG context. * * \param ctx The CTR_DRBG context. * \param additional The data to update the state with. This must not be * \c NULL unless \p add_len is \c 0. * \param add_len Length of \p additional in bytes. This must be at * most #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG if * \p add_len is more than * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT. * \return An error from the underlying AES cipher on failure. */ int mbedtls_ctr_drbg_update_ret( mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t add_len ); /** * \brief This function updates a CTR_DRBG instance with additional * data and uses it to generate random data. * * This function automatically reseeds if the reseed counter is exceeded * or prediction resistance is enabled. * * \param p_rng The CTR_DRBG context. This must be a pointer to a * #mbedtls_ctr_drbg_context structure. * \param output The buffer to fill. * \param output_len The length of the buffer in bytes. * \param additional Additional data to update. Can be \c NULL, in which * case the additional data is empty regardless of * the value of \p add_len. * \param add_len The length of the additional data * if \p additional is not \c NULL. * This must be less than #MBEDTLS_CTR_DRBG_MAX_INPUT * and less than * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - \c entropy_len * where \c entropy_len is the entropy length * configured for the context. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED or * #MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG on failure. */ int mbedtls_ctr_drbg_random_with_add( void *p_rng, unsigned char *output, size_t output_len, const unsigned char *additional, size_t add_len ); /** * \brief This function uses CTR_DRBG to generate random data. * * This function automatically reseeds if the reseed counter is exceeded * or prediction resistance is enabled. * * * \param p_rng The CTR_DRBG context. This must be a pointer to a * #mbedtls_ctr_drbg_context structure. * \param output The buffer to fill. * \param output_len The length of the buffer in bytes. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED or * #MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG on failure. */ int mbedtls_ctr_drbg_random( void *p_rng, unsigned char *output, size_t output_len ); #if ! defined(MBEDTLS_DEPRECATED_REMOVED) #if defined(MBEDTLS_DEPRECATED_WARNING) #define MBEDTLS_DEPRECATED __attribute__((deprecated)) #else #define MBEDTLS_DEPRECATED #endif /** * \brief This function updates the state of the CTR_DRBG context. * * \deprecated Superseded by mbedtls_ctr_drbg_update_ret() * in 2.16.0. * * \note If \p add_len is greater than * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT, only the first * #MBEDTLS_CTR_DRBG_MAX_SEED_INPUT Bytes are used. * The remaining Bytes are silently discarded. * * \param ctx The CTR_DRBG context. * \param additional The data to update the state with. * \param add_len Length of \p additional data. */ MBEDTLS_DEPRECATED void mbedtls_ctr_drbg_update( mbedtls_ctr_drbg_context *ctx, const unsigned char *additional, size_t add_len ); #undef MBEDTLS_DEPRECATED #endif /* !MBEDTLS_DEPRECATED_REMOVED */ #if defined(MBEDTLS_FS_IO) /** * \brief This function writes a seed file. * * \param ctx The CTR_DRBG context. * \param path The name of the file. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR on file error. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED on reseed * failure. */ int mbedtls_ctr_drbg_write_seed_file( mbedtls_ctr_drbg_context *ctx, const char *path ); /** * \brief This function reads and updates a seed file. The seed * is added to this instance. * * \param ctx The CTR_DRBG context. * \param path The name of the file. * * \return \c 0 on success. * \return #MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR on file error. * \return #MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED on * reseed failure. * \return #MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG if the existing * seed file is too large. */ int mbedtls_ctr_drbg_update_seed_file( mbedtls_ctr_drbg_context *ctx, const char *path ); #endif /* MBEDTLS_FS_IO */ #if defined(MBEDTLS_SELF_TEST) /** * \brief The CTR_DRBG checkup routine. * * \return \c 0 on success. * \return \c 1 on failure. */ int mbedtls_ctr_drbg_self_test( int verbose ); #endif /* MBEDTLS_SELF_TEST */ /* Internal functions (do not call directly) */ int mbedtls_ctr_drbg_seed_entropy_len( mbedtls_ctr_drbg_context *, int (*)(void *, unsigned char *, size_t), void *, const unsigned char *, size_t, size_t ); #ifdef __cplusplus } #endif #endif /* ctr_drbg.h */