/* * Copyright © 2010-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_render.h" #include "sna_render_inline.h" #include "sna_reg.h" //#include "sna_video.h" #include "gen3_render.h" #define NO_COMPOSITE 0 #define NO_COMPOSITE_SPANS 0 #define NO_COPY 0 #define NO_COPY_BOXES 0 #define NO_FILL 0 #define NO_FILL_ONE 0 #define NO_FILL_BOXES 0 #define PREFER_BLT_FILL 1 enum { SHADER_NONE = 0, SHADER_ZERO, SHADER_BLACK, SHADER_WHITE, SHADER_CONSTANT, SHADER_LINEAR, SHADER_RADIAL, SHADER_TEXTURE, SHADER_OPACITY, }; #define MAX_3D_SIZE 2048 #define MAX_3D_PITCH 8192 #define OUT_BATCH(v) batch_emit(sna, v) #define OUT_BATCH_F(v) batch_emit_float(sna, v) #define OUT_VERTEX(v) vertex_emit(sna, v) enum gen3_radial_mode { RADIAL_ONE, RADIAL_TWO }; static const struct blendinfo { bool dst_alpha; bool src_alpha; uint32_t src_blend; uint32_t dst_blend; } gen3_blend_op[] = { /* Clear */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ZERO}, /* Src */ {0, 0, BLENDFACT_ONE, BLENDFACT_ZERO}, /* Dst */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ONE}, /* Over */ {0, 1, BLENDFACT_ONE, BLENDFACT_INV_SRC_ALPHA}, /* OverReverse */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ONE}, /* In */ {1, 0, BLENDFACT_DST_ALPHA, BLENDFACT_ZERO}, /* InReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_SRC_ALPHA}, /* Out */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ZERO}, /* OutReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_INV_SRC_ALPHA}, /* Atop */ {1, 1, BLENDFACT_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* AtopReverse */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_SRC_ALPHA}, /* Xor */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* Add */ {0, 0, BLENDFACT_ONE, BLENDFACT_ONE}, }; #define S6_COLOR_WRITE_ONLY \ (S6_COLOR_WRITE_ENABLE | \ BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | \ BLENDFACT_ONE << S6_CBUF_SRC_BLEND_FACT_SHIFT | \ BLENDFACT_ZERO << S6_CBUF_DST_BLEND_FACT_SHIFT) static const struct formatinfo { unsigned int fmt, xfmt; uint32_t card_fmt; bool rb_reversed; } gen3_tex_formats[] = { {PICT_a8, 0, MAPSURF_8BIT | MT_8BIT_A8, false}, {PICT_a8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_ARGB8888, false}, {PICT_x8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_XRGB8888, false}, {PICT_a8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_ABGR8888, false}, {PICT_x8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_XBGR8888, false}, {PICT_a2r10g10b10, PICT_x2r10g10b10, MAPSURF_32BIT | MT_32BIT_ARGB2101010, false}, {PICT_a2b10g10r10, PICT_x2b10g10r10, MAPSURF_32BIT | MT_32BIT_ABGR2101010, false}, {PICT_r5g6b5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, false}, {PICT_b5g6r5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, true}, {PICT_a1r5g5b5, PICT_x1r5g5b5, MAPSURF_16BIT | MT_16BIT_ARGB1555, false}, {PICT_a1b5g5r5, PICT_x1b5g5r5, MAPSURF_16BIT | MT_16BIT_ARGB1555, true}, {PICT_a4r4g4b4, PICT_x4r4g4b4, MAPSURF_16BIT | MT_16BIT_ARGB4444, false}, {PICT_a4b4g4r4, PICT_x4b4g4r4, MAPSURF_16BIT | MT_16BIT_ARGB4444, true}, }; #define xFixedToDouble(f) pixman_fixed_to_double(f) static inline bool too_large(int width, int height) { return width > MAX_3D_SIZE || height > MAX_3D_SIZE; } static inline uint32_t gen3_buf_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y; case I915_TILING_X: v |= BUF_3D_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static uint32_t gen3_get_blend_cntl(int op, bool has_component_alpha, uint32_t dst_format) { uint32_t sblend; uint32_t dblend; sblend = BLENDFACT_ONE; dblend = BLENDFACT_INV_SRC_ALPHA; #if 0 if (op <= PictOpSrc) /* for clear and src disable blending */ return S6_COLOR_WRITE_ONLY; /* If there's no dst alpha channel, adjust the blend op so that we'll * treat it as always 1. */ if (gen3_blend_op[op].dst_alpha) { if (PICT_FORMAT_A(dst_format) == 0) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_ONE; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_ZERO; } /* gen3 engine reads 8bit color buffer into green channel * in cases like color buffer blending etc., and also writes * back green channel. So with dst_alpha blend we should use * color factor. See spec on "8-bit rendering". */ if (dst_format == PICT_a8) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_DST_COLR; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_INV_DST_COLR; } } /* If the source alpha is being used, then we should only be in a case * where the source blend factor is 0, and the source blend value is the * mask channels multiplied by the source picture's alpha. */ if (has_component_alpha && gen3_blend_op[op].src_alpha) { if (dblend == BLENDFACT_SRC_ALPHA) dblend = BLENDFACT_SRC_COLR; else if (dblend == BLENDFACT_INV_SRC_ALPHA) dblend = BLENDFACT_INV_SRC_COLR; } #endif return (S6_CBUF_BLEND_ENABLE | S6_COLOR_WRITE_ENABLE | BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | sblend << S6_CBUF_SRC_BLEND_FACT_SHIFT | dblend << S6_CBUF_DST_BLEND_FACT_SHIFT); } static bool gen3_dst_rb_reversed(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_r5g6b5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: return false; default: return true; } } #define DSTORG_HORT_BIAS(x) ((x)<<20) #define DSTORG_VERT_BIAS(x) ((x)<<16) static uint32_t gen3_get_dst_format(uint32_t format) { #define BIAS (DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8)) switch (format) { default: case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: return BIAS | COLR_BUF_ARGB8888; case PICT_r5g6b5: case PICT_b5g6r5: return BIAS | COLR_BUF_RGB565; case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: return BIAS | COLR_BUF_ARGB1555; case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: return BIAS | COLR_BUF_ARGB2AAA; case PICT_a8: return BIAS | COLR_BUF_8BIT; case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return BIAS | COLR_BUF_ARGB4444; } #undef BIAS } #if 0 static bool gen3_check_repeat(PicturePtr p) { if (!p->repeat) return true; switch (p->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: return true; default: return false; } } static uint32_t gen3_filter(uint32_t filter) { switch (filter) { default: assert(0); case PictFilterNearest: return (FILTER_NEAREST << SS2_MAG_FILTER_SHIFT | FILTER_NEAREST << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); case PictFilterBilinear: return (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT | FILTER_LINEAR << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); } } static bool gen3_check_filter(PicturePtr p) { switch (p->filter) { case PictFilterNearest: case PictFilterBilinear: return true; default: return false; } } fastcall static void gen3_emit_composite_primitive_identity_gradient(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t dst_x, dst_y; int16_t src_x, src_y; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(src_x + r->width); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(src_x); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(src_x); OUT_VERTEX(src_y); } fastcall static void gen3_emit_composite_boxes_identity_gradient(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { do { v[0] = box->x2; v[1] = box->y2; v[2] = box->x2 + op->src.offset[0]; v[3] = box->y2 + op->src.offset[1]; v[4] = box->x1; v[5] = box->y2; v[6] = box->x1 + op->src.offset[0]; v[7] = box->y2 + op->src.offset[1]; v[8] = box->x1; v[9] = box->y1; v[10] = box->x1 + op->src.offset[0]; v[11] = box->y1 + op->src.offset[1]; v += 12; box++; } while (--nbox); } fastcall static void gen3_emit_composite_boxes_affine_gradient(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { const PictTransform *transform = op->src.transform; do { v[0] = box->x2; v[1] = box->y2; _sna_get_transformed_scaled(box->x2 + op->src.offset[0], box->y2 + op->src.offset[1], transform, op->src.scale, &v[2], &v[3]); v[4] = box->x1; v[5] = box->y2; _sna_get_transformed_scaled(box->x1 + op->src.offset[0], box->y2 + op->src.offset[1], transform, op->src.scale, &v[6], &v[7]); v[8] = box->x1; v[9] = box->y1; _sna_get_transformed_scaled(box->x1 + op->src.offset[0], box->y1 + op->src.offset[1], transform, op->src.scale, &v[10], &v[11]); box++; v += 12; } while (--nbox); } fastcall static void gen3_emit_composite_primitive_identity_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->src.x + op->src.offset[0]) * op->src.scale[0]; v[2] = v[6] + w * op->src.scale[0]; v[11] = (r->src.y + op->src.offset[1]) * op->src.scale[1]; v[7] = v[3] = v[11] + h * op->src.scale[1]; } fastcall static void gen3_emit_composite_boxes_identity_source(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { do { v[0] = box->x2 + op->dst.x; v[8] = v[4] = box->x1 + op->dst.x; v[5] = v[1] = box->y2 + op->dst.y; v[9] = box->y1 + op->dst.y; v[10] = v[6] = (box->x1 + op->src.offset[0]) * op->src.scale[0]; v[2] = (box->x2 + op->src.offset[0]) * op->src.scale[0]; v[11] = (box->y1 + op->src.offset[1]) * op->src.scale[1]; v[7] = v[3] = (box->y2 + op->src.offset[1]) * op->src.scale[1]; v += 12; box++; } while (--nbox); } fastcall static void gen3_emit_composite_primitive_identity_source_no_offset(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x; v[9] = r->dst.y; v[0] = v[4] + w; v[5] = v[1] = v[9] + h; v[10] = v[6] = r->src.x * op->src.scale[0]; v[11] = r->src.y * op->src.scale[1]; v[2] = v[6] + w * op->src.scale[0]; v[7] = v[3] = v[11] + h * op->src.scale[1]; } fastcall static void gen3_emit_composite_primitive_constant_identity_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->mask.x + op->mask.offset[0]) * op->mask.scale[0]; v[2] = v[6] + w * op->mask.scale[0]; v[11] = (r->mask.y + op->mask.offset[1]) * op->mask.scale[1]; v[7] = v[3] = v[11] + h * op->mask.scale[1]; } #endif fastcall static void gen3_emit_composite_primitive_identity_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float dst_x, dst_y; float src_x, src_y; float msk_x, msk_y; float w, h; float *v; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 18; v[0] = dst_x + w; v[1] = dst_y + h; v[2] = (src_x + w) * op->src.scale[0]; v[3] = (src_y + h) * op->src.scale[1]; v[4] = (msk_x + w) * op->mask.scale[0]; v[5] = (msk_y + h) * op->mask.scale[1]; v[6] = dst_x; v[7] = v[1]; v[8] = src_x * op->src.scale[0]; v[9] = v[3]; v[10] = msk_x * op->mask.scale[0]; v[11] =v[5]; v[12] = v[6]; v[13] = dst_y; v[14] = v[8]; v[15] = src_y * op->src.scale[1]; v[16] = v[10]; v[17] = msk_y * op->mask.scale[1]; } static inline void gen3_2d_perspective(struct sna *sna, int in, int out) { gen3_fs_rcp(out, 0, gen3_fs_operand(in, W, W, W, W)); gen3_fs_mul(out, gen3_fs_operand(in, X, Y, ZERO, ONE), gen3_fs_operand_reg(out)); } static inline void gen3_linear_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->u.gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } gen3_fs_mov(out, gen3_fs_operand_zero()); gen3_fs_dp3(out, MASK_X, gen3_fs_operand(in, X, Y, ONE, ZERO), gen3_fs_operand_reg(c)); } static void gen3_radial_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->u.gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } switch (channel->u.gen3.mode) { case RADIAL_ONE: /* pdx = (x - c1x) / dr, pdy = (y - c1y) / dr; r? = pdx*pdx + pdy*pdy t = r?/sqrt(r?) - r1/dr; */ gen3_fs_mad(FS_U0, MASK_X | MASK_Y, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, Z, Z, ZERO, ZERO), gen3_fs_operand(c, NEG_X, NEG_Y, ZERO, ZERO)); gen3_fs_dp2add(FS_U0, MASK_X, gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand_zero()); gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U0, X, X, X, X)); gen3_fs_mad(out, 0, gen3_fs_operand(FS_U0, X, ZERO, ZERO, ZERO), gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c, W, ZERO, ZERO, ZERO)); break; case RADIAL_TWO: /* pdx = x - c1x, pdy = y - c1y; A = dx? + dy? - dr? B = -2*(pdx*dx + pdy*dy + r1*dr); C = pdx? + pdy? - r1?; det = B*B - 4*A*C; t = (-B + sqrt (det)) / (2 * A) */ /* u0.x = pdx, u0.y = pdy, u[0].z = r1; */ gen3_fs_add(FS_U0, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, X, Y, Z, ZERO)); /* u0.x = pdx, u0.y = pdy, u[0].z = r1, u[0].w = B; */ gen3_fs_dp3(FS_U0, MASK_W, gen3_fs_operand(FS_U0, X, Y, ONE, ZERO), gen3_fs_operand(c+1, X, Y, Z, ZERO)); /* u1.x = pdx? + pdy? - r1?; [C] */ gen3_fs_dp3(FS_U1, MASK_X, gen3_fs_operand(FS_U0, X, Y, Z, ZERO), gen3_fs_operand(FS_U0, X, Y, NEG_Z, ZERO)); /* u1.x = C, u1.y = B, u1.z=-4*A; */ gen3_fs_mov_masked(FS_U1, MASK_Y, gen3_fs_operand(FS_U0, W, W, W, W)); gen3_fs_mov_masked(FS_U1, MASK_Z, gen3_fs_operand(c, W, W, W, W)); /* u1.x = B? - 4*A*C */ gen3_fs_dp2add(FS_U1, MASK_X, gen3_fs_operand(FS_U1, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U1, Z, Y, ZERO, ZERO), gen3_fs_operand_zero()); /* out.x = -B + sqrt (B? - 4*A*C), */ gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U1, X, X, X, X)); gen3_fs_mad(out, MASK_X, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U1, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U0, NEG_W, ZERO, ZERO, ZERO)); /* out.x = (-B + sqrt (B? - 4*A*C)) / (2 * A), */ gen3_fs_mul(out, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c+1, W, ZERO, ZERO, ZERO)); break; } } static void gen3_composite_emit_shader(struct sna *sna, const struct sna_composite_op *op, uint8_t blend) { bool dst_is_alpha = PIXMAN_FORMAT_RGB(op->dst.format) == 0; const struct sna_composite_channel *src, *mask; struct gen3_render_state *state = &sna->render_state.gen3; uint32_t shader_offset, id; int src_reg, mask_reg; int t, length; src = &op->src; mask = &op->mask; if (mask->u.gen3.type == SHADER_NONE) mask = NULL; id = (src->u.gen3.type | src->is_affine << 4 | src->alpha_fixup << 5 | src->rb_reversed << 6); if (mask) { id |= (mask->u.gen3.type << 8 | mask->is_affine << 12 | gen3_blend_op[blend].src_alpha << 13 | op->has_component_alpha << 14 | mask->alpha_fixup << 15 | mask->rb_reversed << 16); } id |= dst_is_alpha << 24; id |= op->rb_reversed << 25; if (id == state->last_shader) return; state->last_shader = id; shader_offset = sna->kgem.nbatch++; t = 0; switch (src->u.gen3.type) { case SHADER_NONE: case SHADER_OPACITY: assert(0); case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: gen3_fs_dcl(FS_T8); src_reg = FS_T8; break; case SHADER_TEXTURE: case SHADER_RADIAL: case SHADER_LINEAR: gen3_fs_dcl(FS_S0); gen3_fs_dcl(FS_T0); t++; break; } if (mask == NULL) { switch (src->u.gen3.type) { case SHADER_ZERO: gen3_fs_mov(FS_OC, gen3_fs_operand_zero()); goto done; case SHADER_BLACK: if (dst_is_alpha) gen3_fs_mov(FS_OC, gen3_fs_operand_one()); else gen3_fs_mov(FS_OC, gen3_fs_operand(FS_R0, ZERO, ZERO, ZERO, ONE)); goto done; case SHADER_WHITE: gen3_fs_mov(FS_OC, gen3_fs_operand_one()); goto done; } if (src->alpha_fixup && dst_is_alpha) { gen3_fs_mov(FS_OC, gen3_fs_operand_one()); goto done; } /* No mask, so load directly to output color */ if (src->u.gen3.type != SHADER_CONSTANT) { if (dst_is_alpha || src->rb_reversed ^ op->rb_reversed) src_reg = FS_R0; else src_reg = FS_OC; } switch (src->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(src_reg, FS_S0, FS_T0); else gen3_fs_texldp(src_reg, FS_S0, FS_T0); break; case SHADER_NONE: case SHADER_WHITE: case SHADER_BLACK: case SHADER_ZERO: assert(0); case SHADER_CONSTANT: break; } if (src_reg != FS_OC) { if (src->alpha_fixup) gen3_fs_mov(FS_OC, src->rb_reversed ^ op->rb_reversed ? gen3_fs_operand(src_reg, Z, Y, X, ONE) : gen3_fs_operand(src_reg, X, Y, Z, ONE)); else if (dst_is_alpha) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, W, W, W, W)); else if (src->rb_reversed ^ op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, Z, Y, X, W)); else gen3_fs_mov(FS_OC, gen3_fs_operand_reg(src_reg)); } else if (src->alpha_fixup) gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one()); } else { int out_reg = FS_OC; if (op->rb_reversed) out_reg = FS_U0; switch (mask->u.gen3.type) { case SHADER_CONSTANT: gen3_fs_dcl(FS_T9); mask_reg = FS_T9; break; case SHADER_TEXTURE: case SHADER_LINEAR: case SHADER_RADIAL: gen3_fs_dcl(FS_S0 + t); /* fall through */ case SHADER_OPACITY: gen3_fs_dcl(FS_T0 + t); break; case SHADER_ZERO: case SHADER_BLACK: assert(0); case SHADER_NONE: case SHADER_WHITE: break; } t = 0; switch (src->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(FS_R0, FS_S0, FS_T0); else gen3_fs_texldp(FS_R0, FS_S0, FS_T0); src_reg = FS_R0; t++; break; case SHADER_CONSTANT: case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; } if (src->alpha_fixup) gen3_fs_mov_masked(src_reg, MASK_W, gen3_fs_operand_one()); if (src->rb_reversed) gen3_fs_mov(src_reg, gen3_fs_operand(src_reg, Z, Y, X, W)); switch (mask->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_RADIAL: gen3_radial_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_TEXTURE: if (mask->is_affine) gen3_fs_texld(FS_R1, FS_S0 + t, FS_T0 + t); else gen3_fs_texldp(FS_R1, FS_S0 + t, FS_T0 + t); mask_reg = FS_R1; break; case SHADER_OPACITY: switch (src->u.gen3.type) { case SHADER_BLACK: case SHADER_WHITE: if (dst_is_alpha || src->u.gen3.type == SHADER_WHITE) { gen3_fs_mov(out_reg, gen3_fs_operand(FS_T0 + t, X, X, X, X)); } else { gen3_fs_mov(out_reg, gen3_fs_operand(FS_T0 + t, ZERO, ZERO, ZERO, X)); } break; default: if (dst_is_alpha) { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } else { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, X, Y, Z, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } } goto mask_done; case SHADER_CONSTANT: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_NONE: break; } if (mask->alpha_fixup) gen3_fs_mov_masked(mask_reg, MASK_W, gen3_fs_operand_one()); if (mask->rb_reversed) gen3_fs_mov(mask_reg, gen3_fs_operand(mask_reg, Z, Y, X, W)); if (dst_is_alpha) { switch (src->u.gen3.type) { case SHADER_BLACK: case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, W, W, W, W)); break; default: gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(mask_reg, W, W, W, W)); break; } } else { /* If component alpha is active in the mask and the blend * operation uses the source alpha, then we know we don't * need the source value (otherwise we would have hit a * fallback earlier), so we provide the source alpha (src.A * * mask.X) as output color. * Conversely, if CA is set and we don't need the source alpha, * then we produce the source value (src.X * mask.X) and the * source alpha is unused. Otherwise, we provide the non-CA * source value (src.X * mask.A). */ if (op->has_component_alpha) { switch (src->u.gen3.type) { case SHADER_BLACK: if (gen3_blend_op[blend].src_alpha) gen3_fs_mov(out_reg, gen3_fs_operand_reg(mask_reg)); else gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W)); break; case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand_reg(mask_reg)); break; default: if (gen3_blend_op[blend].src_alpha) gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand_reg(mask_reg)); else gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand_reg(mask_reg)); break; } } else { switch (src->u.gen3.type) { case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, W, W, W, W)); break; case SHADER_BLACK: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W)); break; default: gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand(mask_reg, W, W, W, W)); break; } } } mask_done: if (op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(FS_U0, Z, Y, X, W)); } done: length = sna->kgem.nbatch - shader_offset; sna->kgem.batch[shader_offset] = _3DSTATE_PIXEL_SHADER_PROGRAM | (length - 2); } static uint32_t gen3_ms_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= MS3_TILE_WALK; case I915_TILING_X: v |= MS3_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static void gen3_emit_invariant(struct sna *sna) { /* Disable independent alpha blend */ OUT_BATCH(_3DSTATE_INDEPENDENT_ALPHA_BLEND_CMD | IAB_MODIFY_ENABLE | IAB_MODIFY_FUNC | BLENDFUNC_ADD << IAB_FUNC_SHIFT | IAB_MODIFY_SRC_FACTOR | BLENDFACT_ONE << IAB_SRC_FACTOR_SHIFT | IAB_MODIFY_DST_FACTOR | BLENDFACT_ZERO << IAB_DST_FACTOR_SHIFT); OUT_BATCH(_3DSTATE_COORD_SET_BINDINGS | CSB_TCB(0, 0) | CSB_TCB(1, 1) | CSB_TCB(2, 2) | CSB_TCB(3, 3) | CSB_TCB(4, 4) | CSB_TCB(5, 5) | CSB_TCB(6, 6) | CSB_TCB(7, 7)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(3) | I1_LOAD_S(4) | I1_LOAD_S(5) | I1_LOAD_S(6) | 3); OUT_BATCH(0); /* Disable texture coordinate wrap-shortest */ OUT_BATCH((1 << S4_POINT_WIDTH_SHIFT) | S4_LINE_WIDTH_ONE | S4_CULLMODE_NONE | S4_VFMT_XY); OUT_BATCH(0); /* Disable fog/stencil. *Enable* write mask. */ OUT_BATCH(S6_COLOR_WRITE_ONLY); /* Disable blending, depth */ OUT_BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT); OUT_BATCH(_3DSTATE_DEPTH_SUBRECT_DISABLE); OUT_BATCH(_3DSTATE_LOAD_INDIRECT); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_STIPPLE); OUT_BATCH(0x00000000); sna->render_state.gen3.need_invariant = false; } #define MAX_OBJECTS 3 /* worst case: dst + src + mask */ static void gen3_get_batch(struct sna *sna, const struct sna_composite_op *op) { kgem_set_mode(&sna->kgem, KGEM_RENDER, op->dst.bo); if (!kgem_check_batch(&sna->kgem, 200)) { DBG(("%s: flushing batch: size %d > %d\n", __FUNCTION__, 200, sna->kgem.surface-sna->kgem.nbatch)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (!kgem_check_reloc(&sna->kgem, MAX_OBJECTS)) { DBG(("%s: flushing batch: reloc %d >= %d\n", __FUNCTION__, sna->kgem.nreloc, (int)KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (!kgem_check_exec(&sna->kgem, MAX_OBJECTS)) { DBG(("%s: flushing batch: exec %d >= %d\n", __FUNCTION__, sna->kgem.nexec, (int)KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->render_state.gen3.need_invariant) gen3_emit_invariant(sna); #undef MAX_OBJECTS } static void gen3_emit_target(struct sna *sna, struct kgem_bo *bo, int width, int height, int format) { struct gen3_render_state *state = &sna->render_state.gen3; assert(!too_large(width, height)); /* BUF_INFO is an implicit flush, so skip if the target is unchanged. */ assert(bo->unique_id != 0); if (bo->unique_id != state->current_dst) { uint32_t v; DBG(("%s: setting new target id=%d, handle=%d\n", __FUNCTION__, bo->unique_id, bo->handle)); OUT_BATCH(_3DSTATE_BUF_INFO_CMD); OUT_BATCH(BUF_3D_ID_COLOR_BACK | gen3_buf_tiling(bo->tiling) | bo->pitch); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, bo, I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER, 0)); OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD); OUT_BATCH(gen3_get_dst_format(format)); v = DRAW_YMAX(height - 1) | DRAW_XMAX(width - 1); if (v != state->last_drawrect_limit) { OUT_BATCH(_3DSTATE_DRAW_RECT_CMD); OUT_BATCH(0); /* XXX dither origin? */ OUT_BATCH(0); OUT_BATCH(v); OUT_BATCH(0); state->last_drawrect_limit = v; } state->current_dst = bo->unique_id; } assert(bo->exec); kgem_bo_mark_dirty(bo); } static void gen3_emit_composite_state(struct sna *sna, const struct sna_composite_op *op) { struct gen3_render_state *state = &sna->render_state.gen3; uint32_t map[4]; uint32_t sampler[4]; struct kgem_bo *bo[2]; unsigned int tex_count, n; uint32_t ss2; gen3_get_batch(sna, op); if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) { if (op->src.bo == op->dst.bo || op->mask.bo == op->dst.bo) OUT_BATCH(MI_FLUSH | MI_INVALIDATE_MAP_CACHE); else OUT_BATCH(_3DSTATE_MODES_5_CMD | PIPELINE_FLUSH_RENDER_CACHE | PIPELINE_FLUSH_TEXTURE_CACHE); kgem_clear_dirty(&sna->kgem); } gen3_emit_target(sna, op->dst.bo, op->dst.width, op->dst.height, op->dst.format); ss2 = ~0; tex_count = 0; switch (op->src.u.gen3.type) { case SHADER_OPACITY: case SHADER_NONE: assert(0); case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: if (op->src.u.gen3.mode != state->last_diffuse) { OUT_BATCH(_3DSTATE_DFLT_DIFFUSE_CMD); OUT_BATCH(op->src.u.gen3.mode); state->last_diffuse = op->src.u.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); assert(op->src.card_format); map[tex_count * 2 + 0] = op->src.card_format | gen3_ms_tiling(op->src.bo->tiling) | (op->src.height - 1) << MS3_HEIGHT_SHIFT | (op->src.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->src.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->src.filter; sampler[tex_count * 2 + 1] = op->src.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->src.bo; tex_count++; break; } switch (op->mask.u.gen3.type) { case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: if (op->mask.u.gen3.mode != state->last_specular) { OUT_BATCH(_3DSTATE_DFLT_SPEC_CMD); OUT_BATCH(op->mask.u.gen3.mode); state->last_specular = op->mask.u.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->mask.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); assert(op->mask.card_format); map[tex_count * 2 + 0] = op->mask.card_format | gen3_ms_tiling(op->mask.bo->tiling) | (op->mask.height - 1) << MS3_HEIGHT_SHIFT | (op->mask.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->mask.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->mask.filter; sampler[tex_count * 2 + 1] = op->mask.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->mask.bo; tex_count++; break; case SHADER_OPACITY: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_1D); break; } { uint32_t blend_offset = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(2) | I1_LOAD_S(6) | 1); OUT_BATCH(ss2); OUT_BATCH(gen3_get_blend_cntl(op->op, op->has_component_alpha, op->dst.format)); if (memcmp(sna->kgem.batch + state->last_blend + 1, sna->kgem.batch + blend_offset + 1, 2 * 4) == 0) sna->kgem.nbatch = blend_offset; else state->last_blend = blend_offset; } if (op->u.gen3.num_constants) { int count = op->u.gen3.num_constants; if (state->last_constants) { int last = sna->kgem.batch[state->last_constants+1]; if (last == (1 << (count >> 2)) - 1 && memcmp(&sna->kgem.batch[state->last_constants+2], op->u.gen3.constants, count * sizeof(uint32_t)) == 0) count = 0; } if (count) { state->last_constants = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | count); OUT_BATCH((1 << (count >> 2)) - 1); memcpy(sna->kgem.batch + sna->kgem.nbatch, op->u.gen3.constants, count * sizeof(uint32_t)); sna->kgem.nbatch += count; } } if (tex_count != 0) { uint32_t rewind; n = 0; if (tex_count == state->tex_count) { for (; n < tex_count; n++) { if (map[2*n+0] != state->tex_map[2*n+0] || map[2*n+1] != state->tex_map[2*n+1] || state->tex_handle[n] != bo[n]->handle || state->tex_delta[n] != bo[n]->delta) break; } } if (n < tex_count) { OUT_BATCH(_3DSTATE_MAP_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, bo[n], I915_GEM_DOMAIN_SAMPLER<< 16, 0)); OUT_BATCH(map[2*n + 0]); OUT_BATCH(map[2*n + 1]); state->tex_map[2*n+0] = map[2*n+0]; state->tex_map[2*n+1] = map[2*n+1]; state->tex_handle[n] = bo[n]->handle; state->tex_delta[n] = bo[n]->delta; } state->tex_count = n; } rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_SAMPLER_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(sampler[2*n + 0]); OUT_BATCH(sampler[2*n + 1]); OUT_BATCH(0); } if (state->last_sampler && memcmp(&sna->kgem.batch[state->last_sampler+1], &sna->kgem.batch[rewind + 1], (3*tex_count + 1)*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_sampler = rewind; } gen3_composite_emit_shader(sna, op, op->op); } static bool gen3_magic_ca_pass(struct sna *sna, const struct sna_composite_op *op) { if (!op->need_magic_ca_pass) return false; DBG(("%s(%d)\n", __FUNCTION__, sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0); OUT_BATCH(gen3_get_blend_cntl(PictOpAdd, true, op->dst.format)); gen3_composite_emit_shader(sna, op, PictOpAdd); OUT_BATCH(PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(sna->render.vertex_start); sna->render_state.gen3.last_blend = 0; return true; } static void gen3_vertex_flush(struct sna *sna) { assert(sna->render.vertex_offset); DBG(("%s[%x] = %d\n", __FUNCTION__, 4*sna->render.vertex_offset, sna->render.vertex_index - sna->render.vertex_start)); sna->kgem.batch[sna->render.vertex_offset] = PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start); sna->kgem.batch[sna->render.vertex_offset + 1] = sna->render.vertex_start; sna->render.vertex_offset = 0; } static int gen3_vertex_finish(struct sna *sna) { struct kgem_bo *bo; DBG(("%s: used=%d/%d, vbo active? %d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vertex_size, sna->render.vbo ? sna->render.vbo->handle : 0)); assert(sna->render.vertex_offset == 0); assert(sna->render.vertex_used); assert(sna->render.vertex_used <= sna->render.vertex_size); sna_vertex_wait__locked(&sna->render); bo = sna->render.vbo; if (bo) { DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0])); if (sna->render.vertex_reloc[0]) { sna->kgem.batch[sna->render.vertex_reloc[0]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0], bo, I915_GEM_DOMAIN_VERTEX << 16, 0); sna->render.vertex_reloc[0] = 0; } sna->render.vertex_used = 0; sna->render.vertex_index = 0; sna->render.vbo = NULL; kgem_bo_destroy(&sna->kgem, bo); } sna->render.vertices = NULL; sna->render.vbo = kgem_create_linear(&sna->kgem, 256*1024, CREATE_GTT_MAP); if (sna->render.vbo) sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo); if (sna->render.vertices == NULL) { if (sna->render.vbo) kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; return 0; } assert(sna->render.vbo->snoop == false); if (sna->render.vertex_used) { memcpy(sna->render.vertices, sna->render.vertex_data, sizeof(float)*sna->render.vertex_used); } sna->render.vertex_size = 64 * 1024 - 1; return sna->render.vertex_size - sna->render.vertex_used; } static void gen3_vertex_close(struct sna *sna) { struct kgem_bo *bo, *free_bo = NULL; unsigned int delta = 0; assert(sna->render.vertex_offset == 0); if (sna->render.vertex_reloc[0] == 0) return; DBG(("%s: used=%d/%d, vbo active? %d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vertex_size, sna->render.vbo ? sna->render.vbo->handle : 0)); bo = sna->render.vbo; if (bo) { if (sna->render.vertex_size - sna->render.vertex_used < 64) { DBG(("%s: discarding full vbo\n", __FUNCTION__)); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } else if (IS_CPU_MAP(bo->map)) { DBG(("%s: converting CPU map to GTT\n", __FUNCTION__)); sna->render.vertices = kgem_bo_map__gtt(&sna->kgem, bo); if (sna->render.vertices == NULL) { DBG(("%s: discarding non-mappable vertices\n",__FUNCTION__)); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } } } else { if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) { DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__, sna->render.vertex_used, sna->kgem.nbatch)); memcpy(sna->kgem.batch + sna->kgem.nbatch, sna->render.vertex_data, sna->render.vertex_used * 4); delta = sna->kgem.nbatch * 4; bo = NULL; sna->kgem.nbatch += sna->render.vertex_used; } else { DBG(("%s: new vbo: %d\n", __FUNCTION__, sna->render.vertex_used)); bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used, CREATE_NO_THROTTLE); if (bo) { assert(bo->snoop == false); kgem_bo_write(&sna->kgem, bo, sna->render.vertex_data, 4*sna->render.vertex_used); } free_bo = bo; } } DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0])); sna->kgem.batch[sna->render.vertex_reloc[0]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0], bo, I915_GEM_DOMAIN_VERTEX << 16, delta); sna->render.vertex_reloc[0] = 0; if (sna->render.vbo == NULL) { DBG(("%s: resetting vbo\n", __FUNCTION__)); sna->render.vertex_used = 0; sna->render.vertex_index = 0; assert(sna->render.vertices == sna->render.vertex_data); assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data)); } if (free_bo) kgem_bo_destroy(&sna->kgem, free_bo); } static bool gen3_rectangle_begin(struct sna *sna, const struct sna_composite_op *op) { struct gen3_render_state *state = &sna->render_state.gen3; int ndwords, i1_cmd = 0, i1_len = 0; if (sna_vertex_wait__locked(&sna->render) && sna->render.vertex_offset) return true; ndwords = 2; if (op->need_magic_ca_pass) ndwords += 100; if (sna->render.vertex_reloc[0] == 0) i1_len++, i1_cmd |= I1_LOAD_S(0), ndwords++; if (state->floats_per_vertex != op->floats_per_vertex) i1_len++, i1_cmd |= I1_LOAD_S(1), ndwords++; if (!kgem_check_batch(&sna->kgem, ndwords+1)) return false; if (i1_cmd) { OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | i1_cmd | (i1_len - 1)); if (sna->render.vertex_reloc[0] == 0) sna->render.vertex_reloc[0] = sna->kgem.nbatch++; if (state->floats_per_vertex != op->floats_per_vertex) { state->floats_per_vertex = op->floats_per_vertex; OUT_BATCH(state->floats_per_vertex << S1_VERTEX_WIDTH_SHIFT | state->floats_per_vertex << S1_VERTEX_PITCH_SHIFT); } } if (sna->kgem.nbatch == 2 + state->last_vertex_offset && !op->need_magic_ca_pass) { sna->render.vertex_offset = state->last_vertex_offset; } else { sna->render.vertex_offset = sna->kgem.nbatch; OUT_BATCH(MI_NOOP); /* to be filled later */ OUT_BATCH(MI_NOOP); sna->render.vertex_start = sna->render.vertex_index; state->last_vertex_offset = sna->render.vertex_offset; } return true; } static int gen3_get_rectangles__flush(struct sna *sna, const struct sna_composite_op *op) { /* Preventing discarding new vbo after lock contention */ if (sna_vertex_wait__locked(&sna->render)) { int rem = vertex_space(sna); if (rem > op->floats_per_rect) return rem; } if (!kgem_check_batch(&sna->kgem, op->need_magic_ca_pass ? 105: 5)) return 0; if (!kgem_check_reloc_and_exec(&sna->kgem, 1)) return 0; if (sna->render.vertex_offset) { gen3_vertex_flush(sna); if (gen3_magic_ca_pass(sna, op)) { OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0); OUT_BATCH(gen3_get_blend_cntl(op->op, op->has_component_alpha, op->dst.format)); gen3_composite_emit_shader(sna, op, op->op); } } return gen3_vertex_finish(sna); } inline static int gen3_get_rectangles(struct sna *sna, const struct sna_composite_op *op, int want) { int rem; DBG(("%s: want=%d, rem=%d\n", __FUNCTION__, want*op->floats_per_rect, vertex_space(sna))); assert(want); assert(sna->render.vertex_index * op->floats_per_vertex == sna->render.vertex_used); start: rem = vertex_space(sna); if (unlikely(op->floats_per_rect > rem)) { DBG(("flushing vbo for %s: %d < %d\n", __FUNCTION__, rem, op->floats_per_rect)); rem = gen3_get_rectangles__flush(sna, op); if (unlikely(rem == 0)) goto flush; } if (unlikely(sna->render.vertex_offset == 0)) { if (!gen3_rectangle_begin(sna, op)) goto flush; else goto start; } assert(rem <= vertex_space(sna)); assert(op->floats_per_rect <= rem); if (want > 1 && want * op->floats_per_rect > rem) want = rem / op->floats_per_rect; sna->render.vertex_index += 3*want; assert(want); assert(sna->render.vertex_index * op->floats_per_vertex <= sna->render.vertex_size); return want; flush: DBG(("%s: flushing batch\n", __FUNCTION__)); if (sna->render.vertex_offset) { gen3_vertex_flush(sna); gen3_magic_ca_pass(sna, op); } sna_vertex_wait__locked(&sna->render); _kgem_submit(&sna->kgem); gen3_emit_composite_state(sna, op); assert(sna->render.vertex_offset == 0); assert(sna->render.vertex_reloc[0] == 0); goto start; } fastcall static void gen3_render_composite_blt(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__, r->src.x, r->src.y, op->src.offset[0], op->src.offset[1], r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1], r->dst.x, r->dst.y, op->dst.x, op->dst.y, r->width, r->height)); gen3_get_rectangles(sna, op, 1); op->prim_emit(sna, op, r); } static void gen3_render_composite_done(struct sna *sna, const struct sna_composite_op *op) { DBG(("%s()\n", __FUNCTION__)); if (sna->render.vertex_offset) { gen3_vertex_flush(sna); gen3_magic_ca_pass(sna, op); } } static void discard_vbo(struct sna *sna) { kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); sna->render.vertex_used = 0; sna->render.vertex_index = 0; } static void gen3_render_reset(struct sna *sna) { struct gen3_render_state *state = &sna->render_state.gen3; state->need_invariant = true; state->current_dst = 0; state->tex_count = 0; state->last_drawrect_limit = ~0U; state->last_target = 0; state->last_blend = 0; state->last_constants = 0; state->last_sampler = 0; state->last_shader = 0x7fffffff; state->last_diffuse = 0xcc00ffee; state->last_specular = 0xcc00ffee; state->floats_per_vertex = 0; state->last_floats_per_vertex = 0; state->last_vertex_offset = 0; if (sna->render.vbo != NULL && !kgem_bo_is_mappable(&sna->kgem, sna->render.vbo)) { DBG(("%s: discarding vbo as next access will stall: %d\n", __FUNCTION__, sna->render.vbo->presumed_offset)); discard_vbo(sna); } sna->render.vertex_reloc[0] = 0; sna->render.vertex_offset = 0; } static void gen3_render_retire(struct kgem *kgem) { struct sna *sna; sna = container_of(kgem, struct sna, kgem); if (sna->render.vertex_reloc[0] == 0 && sna->render.vbo && !kgem_bo_is_busy(sna->render.vbo)) { DBG(("%s: resetting idle vbo\n", __FUNCTION__)); sna->render.vertex_used = 0; sna->render.vertex_index = 0; } } static void gen3_render_expire(struct kgem *kgem) { struct sna *sna; sna = container_of(kgem, struct sna, kgem); if (sna->render.vbo && !sna->render.vertex_used) { DBG(("%s: discarding vbo\n", __FUNCTION__)); discard_vbo(sna); } } static bool gen3_composite_channel_set_format(struct sna_composite_channel *channel, CARD32 format) { unsigned int i; for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) { if (gen3_tex_formats[i].fmt == format) { channel->card_format = gen3_tex_formats[i].card_fmt; channel->rb_reversed = gen3_tex_formats[i].rb_reversed; return true; } } return false; } #if 0 static int gen3_composite_picture(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int16_t x, int16_t y, int16_t w, int16_t h, int16_t dst_x, int16_t dst_y, bool precise) { PixmapPtr pixmap; uint32_t color; int16_t dx, dy; DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n", __FUNCTION__, x, y, w, h, dst_x, dst_y)); channel->card_format = 0; if (picture->pDrawable == NULL) { SourcePict *source = picture->pSourcePict; int ret = -1; switch (source->type) { case SourcePictTypeSolidFill: DBG(("%s: solid fill [%08x], format %08x\n", __FUNCTION__, (unsigned)source->solidFill.color, (unsigned)picture->format)); ret = gen3_init_solid(channel, source->solidFill.color); break; case SourcePictTypeLinear: ret = gen3_init_linear(sna, picture, op, channel, x - dst_x, y - dst_y); break; case SourcePictTypeRadial: ret = gen3_init_radial(sna, picture, op, channel, x - dst_x, y - dst_y); break; } if (ret == -1) { if (!precise) ret = sna_render_picture_approximate_gradient(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (ret == -1) ret = sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } return ret; } if (picture->alphaMap) { DBG(("%s -- fallback, alphamap\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (sna_picture_is_solid(picture, &color)) { DBG(("%s: solid drawable [%08x]\n", __FUNCTION__, color)); return gen3_init_solid(channel, color); } if (sna_picture_is_clear(picture, x, y, w, h, &color)) { DBG(("%s: clear drawable [%08x]\n", __FUNCTION__, color)); return gen3_init_solid(channel, color_convert(color, picture->format, PICT_a8r8g8b8)); } if (!gen3_check_repeat(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (!gen3_check_filter(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->filter = picture->filter; channel->pict_format = picture->format; pixmap = get_drawable_pixmap(picture->pDrawable); get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy); x += dx + picture->pDrawable->x; y += dy + picture->pDrawable->y; if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); x += dx; y += dy; channel->transform = NULL; channel->filter = PictFilterNearest; } else { channel->transform = picture->transform; channel->is_affine = sna_transform_is_affine(picture->transform); } if (!gen3_composite_channel_set_format(channel, picture->format) && !gen3_composite_channel_set_xformat(picture, channel, x, y, w, h)) return sna_render_picture_convert(sna, picture, channel, pixmap, x, y, w, h, dst_x, dst_y, false); assert(channel->card_format); if (too_large(pixmap->drawable.width, pixmap->drawable.height)) { DBG(("%s: pixmap too large (%dx%d), extracting (%d, %d)x(%d,%d)\n", __FUNCTION__, pixmap->drawable.width, pixmap->drawable.height, x, y, w, h)); return sna_render_picture_extract(sna, picture, channel, x, y, w, h, dst_x, dst_y); } return sna_render_pixmap_bo(sna, channel, pixmap, x, y, w, h, dst_x, dst_y); } static inline bool source_use_blt(struct sna *sna, PicturePtr picture) { /* If it is a solid, try to use the BLT paths */ if (!picture->pDrawable) return picture->pSourcePict->type == SourcePictTypeSolidFill; if (picture->pDrawable->width == 1 && picture->pDrawable->height == 1 && picture->repeat) return true; if (too_large(picture->pDrawable->width, picture->pDrawable->height)) return true; return !is_gpu(sna, picture->pDrawable, PREFER_GPU_RENDER); } static bool try_blt(struct sna *sna, PicturePtr dst, PicturePtr src, int width, int height) { if (sna->kgem.mode != KGEM_RENDER) { DBG(("%s: already performing BLT\n", __FUNCTION__)); return true; } if (too_large(width, height)) { DBG(("%s: operation too large for 3D pipe (%d, %d)\n", __FUNCTION__, width, height)); return true; } if (too_large(dst->pDrawable->width, dst->pDrawable->height)) { DBG(("%s: target too large for 3D pipe (%d, %d)\n", __FUNCTION__, dst->pDrawable->width, dst->pDrawable->height)); return true; } /* is the source picture only in cpu memory e.g. a shm pixmap? */ return source_use_blt(sna, src); } #endif static void gen3_align_vertex(struct sna *sna, const struct sna_composite_op *op) { if (op->floats_per_vertex != sna->render_state.gen3.last_floats_per_vertex) { if (sna->render.vertex_size - sna->render.vertex_used < 2*op->floats_per_rect) gen3_vertex_finish(sna); DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n", sna->render_state.gen3.last_floats_per_vertex, op->floats_per_vertex, sna->render.vertex_index, (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex)); sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex; sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex; assert(sna->render.vertex_used < sna->render.vertex_size - op->floats_per_rect); sna->render_state.gen3.last_floats_per_vertex = op->floats_per_vertex; } } static inline bool is_constant_ps(uint32_t type) { switch (type) { case SHADER_NONE: /* be warned! */ case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: return true; default: return false; } } #if 0 static bool gen3_composite_fallback(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst) { PixmapPtr src_pixmap; PixmapPtr mask_pixmap; PixmapPtr dst_pixmap; bool src_fallback, mask_fallback; if (!gen3_check_dst_format(dst->format)) { DBG(("%s: unknown destination format: %d\n", __FUNCTION__, dst->format)); return true; } dst_pixmap = get_drawable_pixmap(dst->pDrawable); src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL; src_fallback = source_fallback(src, src_pixmap, dst->polyMode == PolyModePrecise); if (mask) { mask_pixmap = mask->pDrawable ? get_drawable_pixmap(mask->pDrawable) : NULL; mask_fallback = source_fallback(mask, mask_pixmap, dst->polyMode == PolyModePrecise); } else { mask_pixmap = NULL; mask_fallback = false; } /* If we are using the destination as a source and need to * readback in order to upload the source, do it all * on the cpu. */ if (src_pixmap == dst_pixmap && src_fallback) { DBG(("%s: src is dst and will fallback\n",__FUNCTION__)); return true; } if (mask_pixmap == dst_pixmap && mask_fallback) { DBG(("%s: mask is dst and will fallback\n",__FUNCTION__)); return true; } if (mask && mask->componentAlpha && PICT_FORMAT_RGB(mask->format) && gen3_blend_op[op].src_alpha && gen3_blend_op[op].src_blend != BLENDFACT_ZERO && op != PictOpOver) { DBG(("%s: component-alpha mask with op=%d, should fallback\n", __FUNCTION__, op)); return true; } /* If anything is on the GPU, push everything out to the GPU */ if (dst_use_gpu(dst_pixmap)) { DBG(("%s: dst is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } if (src_pixmap && !src_fallback) { DBG(("%s: src is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } if (mask_pixmap && !mask_fallback) { DBG(("%s: mask is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } /* However if the dst is not on the GPU and we need to * render one of the sources using the CPU, we may * as well do the entire operation in place onthe CPU. */ if (src_fallback) { DBG(("%s: dst is on the CPU and src will fallback\n", __FUNCTION__)); return true; } if (mask && mask_fallback) { DBG(("%s: dst is on the CPU and mask will fallback\n", __FUNCTION__)); return true; } if (too_large(dst_pixmap->drawable.width, dst_pixmap->drawable.height) && dst_is_cpu(dst_pixmap)) { DBG(("%s: dst is on the CPU and too large\n", __FUNCTION__)); return true; } DBG(("%s: dst is not on the GPU and the operation should not fallback: use-cpu? %d\n", __FUNCTION__, dst_use_cpu(dst_pixmap))); return dst_use_cpu(dst_pixmap); } static bool gen3_render_composite(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t mask_x, int16_t mask_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, struct sna_composite_op *tmp) { DBG(("%s()\n", __FUNCTION__)); if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return false; } /* Try to use the BLT engine unless it implies a * 3D -> 2D context switch. */ if (mask == NULL && try_blt(sna, dst, src, width, height) && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp, false)) return true; if (gen3_composite_fallback(sna, op, src, mask, dst)) return false; if (need_tiling(sna, width, height)) return sna_tiling_composite(op, src, mask, dst, src_x, src_y, mask_x, mask_y, dst_x, dst_y, width, height, tmp); if (!gen3_composite_set_target(sna, tmp, dst, dst_x, dst_y, width, height)) { DBG(("%s: unable to set render target\n", __FUNCTION__)); return false; } tmp->op = op; tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format); if (too_large(tmp->dst.width, tmp->dst.height) || !gen3_check_pitch_3d(tmp->dst.bo)) { if (!sna_render_composite_redirect(sna, tmp, dst_x, dst_y, width, height, op > PictOpSrc || dst->pCompositeClip->data)) return false; } tmp->u.gen3.num_constants = 0; tmp->src.u.gen3.type = SHADER_TEXTURE; tmp->src.is_affine = true; DBG(("%s: preparing source\n", __FUNCTION__)); switch (gen3_composite_picture(sna, src, tmp, &tmp->src, src_x, src_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_dst; case 0: tmp->src.u.gen3.type = SHADER_ZERO; break; case 1: if (mask == NULL && tmp->src.bo && sna_blt_composite__convert(sna, dst_x, dst_y, width, height, tmp)) return true; gen3_composite_channel_convert(&tmp->src); break; } DBG(("%s: source type=%d\n", __FUNCTION__, tmp->src.u.gen3.type)); tmp->mask.u.gen3.type = SHADER_NONE; tmp->mask.is_affine = true; tmp->need_magic_ca_pass = false; tmp->has_component_alpha = false; if (mask && tmp->src.u.gen3.type != SHADER_ZERO) { if (!reuse_source(sna, src, &tmp->src, src_x, src_y, mask, &tmp->mask, mask_x, mask_y)) { tmp->mask.u.gen3.type = SHADER_TEXTURE; DBG(("%s: preparing mask\n", __FUNCTION__)); switch (gen3_composite_picture(sna, mask, tmp, &tmp->mask, mask_x, mask_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_src; case 0: tmp->mask.u.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->mask); break; } } DBG(("%s: mask type=%d\n", __FUNCTION__, tmp->mask.u.gen3.type)); if (tmp->mask.u.gen3.type == SHADER_ZERO) { if (tmp->src.bo) { kgem_bo_destroy(&sna->kgem, tmp->src.bo); tmp->src.bo = NULL; } tmp->src.u.gen3.type = SHADER_ZERO; tmp->mask.u.gen3.type = SHADER_NONE; } if (tmp->mask.u.gen3.type != SHADER_NONE) { if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) { /* Check if it's component alpha that relies on a source alpha * and on the source value. We can only get one of those * into the single source value that we get to blend with. */ DBG(("%s: component-alpha mask: %d\n", __FUNCTION__, tmp->mask.u.gen3.type)); tmp->has_component_alpha = true; if (tmp->mask.u.gen3.type == SHADER_WHITE) { tmp->mask.u.gen3.type = SHADER_NONE; tmp->has_component_alpha = false; } else if (gen3_blend_op[op].src_alpha && gen3_blend_op[op].src_blend != BLENDFACT_ZERO) { if (op != PictOpOver) goto cleanup_mask; tmp->need_magic_ca_pass = true; tmp->op = PictOpOutReverse; } } else { if (tmp->mask.is_opaque) { tmp->mask.u.gen3.type = SHADER_NONE; } else if (is_constant_ps(tmp->src.u.gen3.type) && is_constant_ps(tmp->mask.u.gen3.type)) { uint32_t v; v = multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 24); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 16); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 8); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 0); DBG(("%s: combining constant source/mask: %x x %x -> %x\n", __FUNCTION__, tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, v)); tmp->src.u.gen3.type = SHADER_CONSTANT; tmp->src.u.gen3.mode = v; tmp->src.is_opaque = false; tmp->mask.u.gen3.type = SHADER_NONE; } } } } DBG(("%s: final src/mask type=%d/%d, affine=%d/%d\n", __FUNCTION__, tmp->src.u.gen3.type, tmp->mask.u.gen3.type, tmp->src.is_affine, tmp->mask.is_affine)); tmp->prim_emit = gen3_emit_composite_primitive; if (is_constant_ps(tmp->mask.u.gen3.type)) { switch (tmp->src.u.gen3.type) { case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_constant__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_constant__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_constant; tmp->emit_boxes = gen3_emit_composite_boxes_constant; } break; case SHADER_LINEAR: case SHADER_RADIAL: if (tmp->src.transform == NULL) { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_identity_gradient__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_identity_gradient__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_identity_gradient; tmp->emit_boxes = gen3_emit_composite_boxes_identity_gradient; } } else if (tmp->src.is_affine) { tmp->src.scale[1] = tmp->src.scale[0] = 1. / tmp->src.transform->matrix[2][2]; #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_affine_gradient__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_affine_gradient__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_affine_gradient; tmp->emit_boxes = gen3_emit_composite_boxes_affine_gradient; } } break; case SHADER_TEXTURE: if (tmp->src.transform == NULL) { if ((tmp->src.offset[0]|tmp->src.offset[1]|tmp->dst.x|tmp->dst.y) == 0) { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_identity_source_no_offset__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_identity_source_no_offset__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_identity_source_no_offset; tmp->emit_boxes = gen3_emit_composite_boxes_identity_source_no_offset; } } else { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_identity_source__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_identity_source__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_identity_source; tmp->emit_boxes = gen3_emit_composite_boxes_identity_source; } } } else if (tmp->src.is_affine) { tmp->src.scale[0] /= tmp->src.transform->matrix[2][2]; tmp->src.scale[1] /= tmp->src.transform->matrix[2][2]; #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_affine_source__sse2; tmp->emit_boxes = gen3_emit_composite_boxes_affine_source__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_affine_source; tmp->emit_boxes = gen3_emit_composite_boxes_affine_source; } } break; } } else if (tmp->mask.u.gen3.type == SHADER_TEXTURE) { if (tmp->mask.transform == NULL) { if (is_constant_ps(tmp->src.u.gen3.type)) { if ((tmp->mask.offset[0]|tmp->mask.offset[1]|tmp->dst.x|tmp->dst.y) == 0) { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask_no_offset__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask_no_offset; } } else { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask; } } } else if (tmp->src.transform == NULL) { #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask; } } else if (tmp->src.is_affine) { tmp->src.scale[0] /= tmp->src.transform->matrix[2][2]; tmp->src.scale[1] /= tmp->src.transform->matrix[2][2]; #if defined(sse2) && !defined(__x86_64__) if (sna->cpu_features & SSE2) { tmp->prim_emit = gen3_emit_composite_primitive_affine_source_mask__sse2; } else #endif { tmp->prim_emit = gen3_emit_composite_primitive_affine_source_mask; } } } } tmp->floats_per_vertex = 2; if (!is_constant_ps(tmp->src.u.gen3.type)) tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4; if (!is_constant_ps(tmp->mask.u.gen3.type)) tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4; DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__, !is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0, !is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0, tmp->floats_per_vertex, tmp->prim_emit != gen3_emit_composite_primitive)); tmp->floats_per_rect = 3 * tmp->floats_per_vertex; tmp->blt = gen3_render_composite_blt; tmp->box = gen3_render_composite_box; tmp->boxes = gen3_render_composite_boxes__blt; if (tmp->emit_boxes) { tmp->boxes = gen3_render_composite_boxes; tmp->thread_boxes = gen3_render_composite_boxes__thread; } tmp->done = gen3_render_composite_done; if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) goto cleanup_mask; } gen3_emit_composite_state(sna, tmp); gen3_align_vertex(sna, tmp); return true; cleanup_mask: if (tmp->mask.bo) kgem_bo_destroy(&sna->kgem, tmp->mask.bo); cleanup_src: if (tmp->src.bo) kgem_bo_destroy(&sna->kgem, tmp->src.bo); cleanup_dst: if (tmp->redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->dst.bo); return false; } #endif static void gen3_render_flush(struct sna *sna) { gen3_vertex_close(sna); assert(sna->render.vertex_reloc[0] == 0); assert(sna->render.vertex_offset == 0); } static void gen3_render_fini(struct sna *sna) { } const char *gen3_render_init(struct sna *sna, const char *backend) { struct sna_render *render = &sna->render; #if 0 #if !NO_COMPOSITE render->composite = gen3_render_composite; render->prefer_gpu |= PREFER_GPU_RENDER; #endif #if !NO_COMPOSITE_SPANS render->check_composite_spans = gen3_check_composite_spans; render->composite_spans = gen3_render_composite_spans; render->prefer_gpu |= PREFER_GPU_SPANS; #endif render->video = gen3_render_video; render->copy_boxes = gen3_render_copy_boxes; render->copy = gen3_render_copy; render->fill_boxes = gen3_render_fill_boxes; render->fill = gen3_render_fill; render->fill_one = gen3_render_fill_one; #endif render->blit_tex = gen3_blit_tex; render->caps = HW_BIT_BLIT | HW_TEX_BLIT; render->reset = gen3_render_reset; render->flush = gen3_render_flush; render->fini = gen3_render_fini; render->max_3d_size = MAX_3D_SIZE; render->max_3d_pitch = MAX_3D_PITCH; sna->kgem.retire = gen3_render_retire; sna->kgem.expire = gen3_render_expire; return "Alviso (gen3)"; } static bool gen3_blit_tex(struct sna *sna, uint8_t op, bool scale, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr mask,struct kgem_bo *mask_bo, PixmapPtr dst, struct kgem_bo *dst_bo, int32_t src_x, int32_t src_y, int32_t msk_x, int32_t msk_y, int32_t dst_x, int32_t dst_y, int32_t width, int32_t height, struct sna_composite_op *tmp) { DBG(("%s: %dx%d, current mode=%d\n", __FUNCTION__, width, height, sna->kgem.ring)); tmp->op = PictOpSrc; tmp->dst.pixmap = dst; tmp->dst.bo = dst_bo; tmp->dst.width = dst->drawable.width; tmp->dst.height = dst->drawable.height; tmp->dst.format = PICT_x8r8g8b8; tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format); tmp->u.gen3.num_constants = 0; tmp->src.u.gen3.type = SHADER_TEXTURE; tmp->src.is_affine = true; tmp->src.repeat = RepeatNone; tmp->src.filter = PictFilterNearest; tmp->src.bo = src_bo; tmp->src.pict_format = PICT_x8r8g8b8; gen3_composite_channel_set_format(&tmp->src, tmp->src.pict_format); tmp->src.width = src->drawable.width; tmp->src.height = src->drawable.height; tmp->mask.u.gen3.type = SHADER_TEXTURE; tmp->mask.is_affine = true; tmp->need_magic_ca_pass = false; tmp->has_component_alpha = false; tmp->mask.repeat = RepeatNone; tmp->mask.filter = PictFilterNearest; tmp->mask.is_affine = true; tmp->mask.bo = mask_bo; tmp->mask.pict_format = PIXMAN_a8; gen3_composite_channel_set_format(&tmp->mask, tmp->mask.pict_format); tmp->mask.width = mask->drawable.width; tmp->mask.height = mask->drawable.height; if( scale ) { tmp->src.scale[0] = 1.f/width; tmp->src.scale[1] = 1.f/height; } else { tmp->src.scale[0] = 1.f/src->drawable.width; tmp->src.scale[1] = 1.f/src->drawable.height; } tmp->mask.scale[0] = 1.f/mask->drawable.width; tmp->mask.scale[1] = 1.f/mask->drawable.height; tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask; tmp->floats_per_vertex = 2; if (!is_constant_ps(tmp->src.u.gen3.type)) tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4; if (!is_constant_ps(tmp->mask.u.gen3.type)) tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4; // DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__, // !is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0, // !is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0, // tmp->floats_per_vertex, // tmp->prim_emit != gen3_emit_composite_primitive)); tmp->floats_per_rect = 3 * tmp->floats_per_vertex; tmp->blt = gen3_render_composite_blt; tmp->done = gen3_render_composite_done; if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) { kgem_submit(&sna->kgem); } gen3_emit_composite_state(sna, tmp); gen3_align_vertex(sna, tmp); return true; }