/* * FFV1 decoder * * Copyright (c) 2003-2013 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FF Video Codec 1 (a lossless codec) decoder */ #include "libavutil/avassert.h" #include "libavutil/crc.h" #include "libavutil/opt.h" #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #include "libavutil/timer.h" #include "avcodec.h" #include "internal.h" #include "get_bits.h" #include "rangecoder.h" #include "golomb.h" #include "mathops.h" #include "ffv1.h" static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed) { if (get_rac(c, state + 0)) return 0; else { int i, e, a; e = 0; while (get_rac(c, state + 1 + FFMIN(e, 9))) { // 1..10 e++; if (e > 31) return AVERROR_INVALIDDATA; } a = 1; for (i = e - 1; i >= 0; i--) a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31 e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21 return (a ^ e) - e; } } static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) { return get_symbol_inline(c, state, is_signed); } static inline int get_vlc_symbol(GetBitContext *gb, VlcState *const state, int bits) { int k, i, v, ret; i = state->count; k = 0; while (i < state->error_sum) { // FIXME: optimize k++; i += i; } v = get_sr_golomb(gb, k, 12, bits); ff_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k); #if 0 // JPEG LS if (k == 0 && 2 * state->drift <= -state->count) v ^= (-1); #else v ^= ((2 * state->drift + state->count) >> 31); #endif ret = fold(v + state->bias, bits); update_vlc_state(state, v); return ret; } static av_always_inline void decode_line(FFV1Context *s, int w, int16_t *sample[2], int plane_index, int bits) { PlaneContext *const p = &s->plane[plane_index]; RangeCoder *const c = &s->c; int x; int run_count = 0; int run_mode = 0; int run_index = s->run_index; if (s->slice_coding_mode == 1) { int i; for (x = 0; x < w; x++) { int v = 0; for (i=0; icontext_count); if (s->ac) { diff = get_symbol_inline(c, p->state[context], 1); } else { if (context == 0 && run_mode == 0) run_mode = 1; if (run_mode) { if (run_count == 0 && run_mode == 1) { if (get_bits1(&s->gb)) { run_count = 1 << ff_log2_run[run_index]; if (x + run_count <= w) run_index++; } else { if (ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]); else run_count = 0; if (run_index) run_index--; run_mode = 2; } } run_count--; if (run_count < 0) { run_mode = 0; run_count = 0; diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); if (diff >= 0) diff++; } else diff = 0; } else diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); ff_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n", run_count, run_index, run_mode, x, get_bits_count(&s->gb)); } if (sign) diff = -diff; sample[1][x] = av_mod_uintp2(predict(sample[1] + x, sample[0] + x) + diff, bits); } s->run_index = run_index; } static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index) { int x, y; int16_t *sample[2]; sample[0] = s->sample_buffer + 3; sample[1] = s->sample_buffer + w + 6 + 3; s->run_index = 0; memset(s->sample_buffer, 0, 2 * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { int16_t *temp = sample[0]; // FIXME: try a normal buffer sample[0] = sample[1]; sample[1] = temp; sample[1][-1] = sample[0][0]; sample[0][w] = sample[0][w - 1]; // { START_TIMER if (s->avctx->bits_per_raw_sample <= 8) { decode_line(s, w, sample, plane_index, 8); for (x = 0; x < w; x++) src[x + stride * y] = sample[1][x]; } else { decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample); if (s->packed_at_lsb) { for (x = 0; x < w; x++) { ((uint16_t*)(src + stride*y))[x] = sample[1][x]; } } else { for (x = 0; x < w; x++) { ((uint16_t*)(src + stride*y))[x] = sample[1][x] << (16 - s->avctx->bits_per_raw_sample); } } } // STOP_TIMER("decode-line") } } } static void decode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3]) { int x, y, p; int16_t *sample[4][2]; int lbd = s->avctx->bits_per_raw_sample <= 8; int bits = s->avctx->bits_per_raw_sample > 0 ? s->avctx->bits_per_raw_sample : 8; int offset = 1 << bits; for (x = 0; x < 4; x++) { sample[x][0] = s->sample_buffer + x * 2 * (w + 6) + 3; sample[x][1] = s->sample_buffer + (x * 2 + 1) * (w + 6) + 3; } s->run_index = 0; memset(s->sample_buffer, 0, 8 * (w + 6) * sizeof(*s->sample_buffer)); for (y = 0; y < h; y++) { for (p = 0; p < 3 + s->transparency; p++) { int16_t *temp = sample[p][0]; // FIXME: try a normal buffer sample[p][0] = sample[p][1]; sample[p][1] = temp; sample[p][1][-1]= sample[p][0][0 ]; sample[p][0][ w]= sample[p][0][w-1]; if (lbd && s->slice_coding_mode == 0) decode_line(s, w, sample[p], (p + 1)/2, 9); else decode_line(s, w, sample[p], (p + 1)/2, bits + (s->slice_coding_mode != 1)); } for (x = 0; x < w; x++) { int g = sample[0][1][x]; int b = sample[1][1][x]; int r = sample[2][1][x]; int a = sample[3][1][x]; if (s->slice_coding_mode != 1) { b -= offset; r -= offset; g -= (b * s->slice_rct_by_coef + r * s->slice_rct_ry_coef) >> 2; b += g; r += g; } if (lbd) *((uint32_t*)(src[0] + x*4 + stride[0]*y)) = b + (g<<8) + (r<<16) + (a<<24); else { *((uint16_t*)(src[0] + x*2 + stride[0]*y)) = b; *((uint16_t*)(src[1] + x*2 + stride[1]*y)) = g; *((uint16_t*)(src[2] + x*2 + stride[2]*y)) = r; } } } } static int decode_slice_header(FFV1Context *f, FFV1Context *fs) { RangeCoder *c = &fs->c; uint8_t state[CONTEXT_SIZE]; unsigned ps, i, context_count; memset(state, 128, sizeof(state)); av_assert0(f->version > 2); fs->slice_x = get_symbol(c, state, 0) * f->width ; fs->slice_y = get_symbol(c, state, 0) * f->height; fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x; fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y; fs->slice_x /= f->num_h_slices; fs->slice_y /= f->num_v_slices; fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x; fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y; if ((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height) return -1; if ( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height) return -1; for (i = 0; i < f->plane_count; i++) { PlaneContext * const p = &fs->plane[i]; int idx = get_symbol(c, state, 0); if (idx >= (unsigned)f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return -1; } p->quant_table_index = idx; memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table)); context_count = f->context_count[idx]; if (p->context_count < context_count) { av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count = context_count; } ps = get_symbol(c, state, 0); if (ps == 1) { f->cur->interlaced_frame = 1; f->cur->top_field_first = 1; } else if (ps == 2) { f->cur->interlaced_frame = 1; f->cur->top_field_first = 0; } else if (ps == 3) { f->cur->interlaced_frame = 0; } f->cur->sample_aspect_ratio.num = get_symbol(c, state, 0); f->cur->sample_aspect_ratio.den = get_symbol(c, state, 0); if (av_image_check_sar(f->width, f->height, f->cur->sample_aspect_ratio) < 0) { av_log(f->avctx, AV_LOG_WARNING, "ignoring invalid SAR: %u/%u\n", f->cur->sample_aspect_ratio.num, f->cur->sample_aspect_ratio.den); f->cur->sample_aspect_ratio = (AVRational){ 0, 1 }; } if (fs->version > 3) { fs->slice_reset_contexts = get_rac(c, state); fs->slice_coding_mode = get_symbol(c, state, 0); if (fs->slice_coding_mode != 1) { fs->slice_rct_by_coef = get_symbol(c, state, 0); fs->slice_rct_ry_coef = get_symbol(c, state, 0); if ((uint64_t)fs->slice_rct_by_coef + (uint64_t)fs->slice_rct_ry_coef > 4) { av_log(f->avctx, AV_LOG_ERROR, "slice_rct_y_coef out of range\n"); return AVERROR_INVALIDDATA; } } } return 0; } static int decode_slice(AVCodecContext *c, void *arg) { FFV1Context *fs = *(void **)arg; FFV1Context *f = fs->avctx->priv_data; int width, height, x, y, ret; const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step_minus1 + 1; AVFrame * const p = f->cur; int i, si; for( si=0; fs != f->slice_context[si]; si ++) ; if(f->fsrc && !p->key_frame) ff_thread_await_progress(&f->last_picture, si, 0); if(f->fsrc && !p->key_frame) { FFV1Context *fssrc = f->fsrc->slice_context[si]; FFV1Context *fsdst = f->slice_context[si]; av_assert1(fsdst->plane_count == fssrc->plane_count); av_assert1(fsdst == fs); if (!p->key_frame) fsdst->slice_damaged |= fssrc->slice_damaged; for (i = 0; i < f->plane_count; i++) { PlaneContext *psrc = &fssrc->plane[i]; PlaneContext *pdst = &fsdst->plane[i]; av_free(pdst->state); av_free(pdst->vlc_state); memcpy(pdst, psrc, sizeof(*pdst)); pdst->state = NULL; pdst->vlc_state = NULL; if (fssrc->ac) { pdst->state = av_malloc_array(CONTEXT_SIZE, psrc->context_count); memcpy(pdst->state, psrc->state, CONTEXT_SIZE * psrc->context_count); } else { pdst->vlc_state = av_malloc_array(sizeof(*pdst->vlc_state), psrc->context_count); memcpy(pdst->vlc_state, psrc->vlc_state, sizeof(*pdst->vlc_state) * psrc->context_count); } } } fs->slice_rct_by_coef = 1; fs->slice_rct_ry_coef = 1; if (f->version > 2) { if (ff_ffv1_init_slice_state(f, fs) < 0) return AVERROR(ENOMEM); if (decode_slice_header(f, fs) < 0) { fs->slice_x = fs->slice_y = fs->slice_height = fs->slice_width = 0; fs->slice_damaged = 1; return AVERROR_INVALIDDATA; } } if ((ret = ff_ffv1_init_slice_state(f, fs)) < 0) return ret; if (f->cur->key_frame || fs->slice_reset_contexts) ff_ffv1_clear_slice_state(f, fs); width = fs->slice_width; height = fs->slice_height; x = fs->slice_x; y = fs->slice_y; if (!fs->ac) { if (f->version == 3 && f->micro_version > 1 || f->version > 3) get_rac(&fs->c, (uint8_t[]) { 129 }); fs->ac_byte_count = f->version > 2 || (!x && !y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0; init_get_bits(&fs->gb, fs->c.bytestream_start + fs->ac_byte_count, (fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count) * 8); } av_assert1(width && height); if (f->colorspace == 0) { const int chroma_width = FF_CEIL_RSHIFT(width, f->chroma_h_shift); const int chroma_height = FF_CEIL_RSHIFT(height, f->chroma_v_shift); const int cx = x >> f->chroma_h_shift; const int cy = y >> f->chroma_v_shift; decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0); if (f->chroma_planes) { decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1); decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1); } if (fs->transparency) decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], (f->version >= 4 && !f->chroma_planes) ? 1 : 2); } else { uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0], p->data[1] + ps * x + y * p->linesize[1], p->data[2] + ps * x + y * p->linesize[2] }; decode_rgb_frame(fs, planes, width, height, p->linesize); } if (fs->ac && f->version > 2) { int v; get_rac(&fs->c, (uint8_t[]) { 129 }); v = fs->c.bytestream_end - fs->c.bytestream - 2 - 5*f->ec; if (v) { av_log(f->avctx, AV_LOG_ERROR, "bytestream end mismatching by %d\n", v); fs->slice_damaged = 1; } } emms_c(); ff_thread_report_progress(&f->picture, si, 0); return 0; } static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale) { int v; int i = 0; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for (v = 0; i < 128; v++) { unsigned len = get_symbol(c, state, 0) + 1; if (len > 128 - i || !len) return AVERROR_INVALIDDATA; while (len--) { quant_table[i] = scale * v; i++; } } for (i = 1; i < 128; i++) quant_table[256 - i] = -quant_table[i]; quant_table[128] = -quant_table[127]; return 2 * v - 1; } static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]) { int i; int context_count = 1; for (i = 0; i < 5; i++) { int ret = read_quant_table(c, quant_table[i], context_count); if (ret < 0) return ret; context_count *= ret; if (context_count > 32768U) { return AVERROR_INVALIDDATA; } } return (context_count + 1) / 2; } static int read_extra_header(FFV1Context *f) { RangeCoder *const c = &f->c; uint8_t state[CONTEXT_SIZE]; int i, j, k, ret; uint8_t state2[32][CONTEXT_SIZE]; unsigned crc = 0; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); f->version = get_symbol(c, state, 0); if (f->version < 2) { av_log(f->avctx, AV_LOG_ERROR, "Invalid version in global header\n"); return AVERROR_INVALIDDATA; } if (f->version > 2) { c->bytestream_end -= 4; f->micro_version = get_symbol(c, state, 0); if (f->micro_version < 0) return AVERROR_INVALIDDATA; } f->ac = f->avctx->coder_type = get_symbol(c, state, 0); if (f->ac > 1) { for (i = 1; i < 256; i++) f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i]; } f->colorspace = get_symbol(c, state, 0); //YUV cs type f->avctx->bits_per_raw_sample = get_symbol(c, state, 0); f->chroma_planes = get_rac(c, state); f->chroma_h_shift = get_symbol(c, state, 0); f->chroma_v_shift = get_symbol(c, state, 0); f->transparency = get_rac(c, state); f->plane_count = 1 + (f->chroma_planes || f->version<4) + f->transparency; f->num_h_slices = 1 + get_symbol(c, state, 0); f->num_v_slices = 1 + get_symbol(c, state, 0); if (f->chroma_h_shift > 4U || f->chroma_v_shift > 4U) { av_log(f->avctx, AV_LOG_ERROR, "chroma shift parameters %d %d are invalid\n", f->chroma_h_shift, f->chroma_v_shift); return AVERROR_INVALIDDATA; } if (f->num_h_slices > (unsigned)f->width || !f->num_h_slices || f->num_v_slices > (unsigned)f->height || !f->num_v_slices ) { av_log(f->avctx, AV_LOG_ERROR, "slice count invalid\n"); return AVERROR_INVALIDDATA; } f->quant_table_count = get_symbol(c, state, 0); if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES || !f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant table count %d is invalid\n", f->quant_table_count); f->quant_table_count = 0; return AVERROR_INVALIDDATA; } for (i = 0; i < f->quant_table_count; i++) { f->context_count[i] = read_quant_tables(c, f->quant_tables[i]); if (f->context_count[i] < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return AVERROR_INVALIDDATA; } } if ((ret = ff_ffv1_allocate_initial_states(f)) < 0) return ret; for (i = 0; i < f->quant_table_count; i++) if (get_rac(c, state)) { for (j = 0; j < f->context_count[i]; j++) for (k = 0; k < CONTEXT_SIZE; k++) { int pred = j ? f->initial_states[i][j - 1][k] : 128; f->initial_states[i][j][k] = (pred + get_symbol(c, state2[k], 1)) & 0xFF; } } if (f->version > 2) { f->ec = get_symbol(c, state, 0); if (f->micro_version > 2) f->intra = get_symbol(c, state, 0); } if (f->version > 2) { unsigned v; v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size); if (v || f->avctx->extradata_size < 4) { av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v); return AVERROR_INVALIDDATA; } crc = AV_RB32(f->avctx->extradata + f->avctx->extradata_size - 4); } if (f->avctx->debug & FF_DEBUG_PICT_INFO) av_log(f->avctx, AV_LOG_DEBUG, "global: ver:%d.%d, coder:%d, colorspace: %d bpr:%d chroma:%d(%d:%d), alpha:%d slices:%dx%d qtabs:%d ec:%d intra:%d CRC:0x%08X\n", f->version, f->micro_version, f->ac, f->colorspace, f->avctx->bits_per_raw_sample, f->chroma_planes, f->chroma_h_shift, f->chroma_v_shift, f->transparency, f->num_h_slices, f->num_v_slices, f->quant_table_count, f->ec, f->intra, crc ); return 0; } static int read_header(FFV1Context *f) { uint8_t state[CONTEXT_SIZE]; int i, j, context_count = -1; //-1 to avoid warning RangeCoder *const c = &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if (f->version < 2) { int chroma_planes, chroma_h_shift, chroma_v_shift, transparency, colorspace, bits_per_raw_sample; unsigned v= get_symbol(c, state, 0); if (v >= 2) { av_log(f->avctx, AV_LOG_ERROR, "invalid version %d in ver01 header\n", v); return AVERROR_INVALIDDATA; } f->version = v; f->ac = f->avctx->coder_type = get_symbol(c, state, 0); if (f->ac > 1) { for (i = 1; i < 256; i++) f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i]; } colorspace = get_symbol(c, state, 0); //YUV cs type bits_per_raw_sample = f->version > 0 ? get_symbol(c, state, 0) : f->avctx->bits_per_raw_sample; chroma_planes = get_rac(c, state); chroma_h_shift = get_symbol(c, state, 0); chroma_v_shift = get_symbol(c, state, 0); transparency = get_rac(c, state); if (colorspace == 0 && f->avctx->skip_alpha) transparency = 0; if (f->plane_count) { if (colorspace != f->colorspace || bits_per_raw_sample != f->avctx->bits_per_raw_sample || chroma_planes != f->chroma_planes || chroma_h_shift != f->chroma_h_shift || chroma_v_shift != f->chroma_v_shift || transparency != f->transparency) { av_log(f->avctx, AV_LOG_ERROR, "Invalid change of global parameters\n"); return AVERROR_INVALIDDATA; } } if (chroma_h_shift > 4U || chroma_v_shift > 4U) { av_log(f->avctx, AV_LOG_ERROR, "chroma shift parameters %d %d are invalid\n", chroma_h_shift, chroma_v_shift); return AVERROR_INVALIDDATA; } f->colorspace = colorspace; f->avctx->bits_per_raw_sample = bits_per_raw_sample; f->chroma_planes = chroma_planes; f->chroma_h_shift = chroma_h_shift; f->chroma_v_shift = chroma_v_shift; f->transparency = transparency; f->plane_count = 2 + f->transparency; } if (f->colorspace == 0) { if (!f->transparency && !f->chroma_planes) { if (f->avctx->bits_per_raw_sample <= 8) f->avctx->pix_fmt = AV_PIX_FMT_GRAY8; else f->avctx->pix_fmt = AV_PIX_FMT_GRAY16; } else if (f->avctx->bits_per_raw_sample<=8 && !f->transparency) { switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case 0x01: f->avctx->pix_fmt = AV_PIX_FMT_YUV440P; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 0x20: f->avctx->pix_fmt = AV_PIX_FMT_YUV411P; break; case 0x22: f->avctx->pix_fmt = AV_PIX_FMT_YUV410P; break; } } else if (f->avctx->bits_per_raw_sample <= 8 && f->transparency) { switch(16*f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break; } } else if (f->avctx->bits_per_raw_sample == 9 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P9; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P9; break; } } else if (f->avctx->bits_per_raw_sample == 9 && f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P9; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P9; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P9; break; } } else if (f->avctx->bits_per_raw_sample == 10 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P10; break; } } else if (f->avctx->bits_per_raw_sample == 10 && f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P10; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P10; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P10; break; } } else if (f->avctx->bits_per_raw_sample == 16 && !f->transparency){ switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break; } } else if (f->avctx->bits_per_raw_sample == 16 && f->transparency){ switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P16; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P16; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P16; break; } } } else if (f->colorspace == 1) { if (f->chroma_h_shift || f->chroma_v_shift) { av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n"); return AVERROR(ENOSYS); } if ( f->avctx->bits_per_raw_sample == 9) f->avctx->pix_fmt = AV_PIX_FMT_GBRP9; else if (f->avctx->bits_per_raw_sample == 10) f->avctx->pix_fmt = AV_PIX_FMT_GBRP10; else if (f->avctx->bits_per_raw_sample == 12) f->avctx->pix_fmt = AV_PIX_FMT_GBRP12; else if (f->avctx->bits_per_raw_sample == 14) f->avctx->pix_fmt = AV_PIX_FMT_GBRP14; else if (f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_RGB32; else f->avctx->pix_fmt = AV_PIX_FMT_0RGB32; } else { av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n"); return AVERROR(ENOSYS); } if (f->avctx->pix_fmt == AV_PIX_FMT_NONE) { av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR(ENOSYS); } ff_dlog(f->avctx, "%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt); if (f->version < 2) { context_count = read_quant_tables(c, f->quant_table); if (context_count < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return AVERROR_INVALIDDATA; } f->slice_count = f->max_slice_count; } else if (f->version < 3) { f->slice_count = get_symbol(c, state, 0); } else { const uint8_t *p = c->bytestream_end; for (f->slice_count = 0; f->slice_count < MAX_SLICES && 3 < p - c->bytestream_start; f->slice_count++) { int trailer = 3 + 5*!!f->ec; int size = AV_RB24(p-trailer); if (size + trailer > p - c->bytestream_start) break; p -= size + trailer; } } if (f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0 || f->slice_count > f->max_slice_count) { av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid (max=%d)\n", f->slice_count, f->max_slice_count); return AVERROR_INVALIDDATA; } for (j = 0; j < f->slice_count; j++) { FFV1Context *fs = f->slice_context[j]; fs->ac = f->ac; fs->packed_at_lsb = f->packed_at_lsb; fs->slice_damaged = 0; if (f->version == 2) { fs->slice_x = get_symbol(c, state, 0) * f->width ; fs->slice_y = get_symbol(c, state, 0) * f->height; fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x; fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y; fs->slice_x /= f->num_h_slices; fs->slice_y /= f->num_v_slices; fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x; fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y; if ((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height) return AVERROR_INVALIDDATA; if ( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height) return AVERROR_INVALIDDATA; } for (i = 0; i < f->plane_count; i++) { PlaneContext *const p = &fs->plane[i]; if (f->version == 2) { int idx = get_symbol(c, state, 0); if (idx > (unsigned)f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return AVERROR_INVALIDDATA; } p->quant_table_index = idx; memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table)); context_count = f->context_count[idx]; } else { memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table)); } if (f->version <= 2) { av_assert0(context_count >= 0); if (p->context_count < context_count) { av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count = context_count; } } } return 0; } static av_cold int decode_init(AVCodecContext *avctx) { FFV1Context *f = avctx->priv_data; int ret; if ((ret = ff_ffv1_common_init(avctx)) < 0) return ret; if (avctx->extradata && (ret = read_extra_header(f)) < 0) return ret; if ((ret = ff_ffv1_init_slice_contexts(f)) < 0) return ret; avctx->internal->allocate_progress = 1; return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { uint8_t *buf = avpkt->data; int buf_size = avpkt->size; FFV1Context *f = avctx->priv_data; RangeCoder *const c = &f->slice_context[0]->c; int i, ret; uint8_t keystate = 128; uint8_t *buf_p; AVFrame *p; if (f->last_picture.f) ff_thread_release_buffer(avctx, &f->last_picture); FFSWAP(ThreadFrame, f->picture, f->last_picture); f->cur = p = f->picture.f; if (f->version < 3 && avctx->field_order > AV_FIELD_PROGRESSIVE) { /* we have interlaced material flagged in container */ p->interlaced_frame = 1; if (avctx->field_order == AV_FIELD_TT || avctx->field_order == AV_FIELD_TB) p->top_field_first = 1; } f->avctx = avctx; ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); p->pict_type = AV_PICTURE_TYPE_I; //FIXME I vs. P if (get_rac(c, &keystate)) { p->key_frame = 1; f->key_frame_ok = 0; if ((ret = read_header(f)) < 0) return ret; f->key_frame_ok = 1; } else { if (!f->key_frame_ok) { av_log(avctx, AV_LOG_ERROR, "Cannot decode non-keyframe without valid keyframe\n"); return AVERROR_INVALIDDATA; } p->key_frame = 0; } if ((ret = ff_thread_get_buffer(avctx, &f->picture, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; if (avctx->debug & FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_DEBUG, "ver:%d keyframe:%d coder:%d ec:%d slices:%d bps:%d\n", f->version, p->key_frame, f->ac, f->ec, f->slice_count, f->avctx->bits_per_raw_sample); ff_thread_finish_setup(avctx); buf_p = buf + buf_size; for (i = f->slice_count - 1; i >= 0; i--) { FFV1Context *fs = f->slice_context[i]; int trailer = 3 + 5*!!f->ec; int v; if (i || f->version > 2) v = AV_RB24(buf_p-trailer) + trailer; else v = buf_p - c->bytestream_start; if (buf_p - c->bytestream_start < v) { av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n"); ff_thread_report_progress(&f->picture, INT_MAX, 0); return AVERROR_INVALIDDATA; } buf_p -= v; if (f->ec) { unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v); if (crc) { int64_t ts = avpkt->pts != AV_NOPTS_VALUE ? avpkt->pts : avpkt->dts; av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!", crc); if (ts != AV_NOPTS_VALUE && avctx->pkt_timebase.num) { av_log(f->avctx, AV_LOG_ERROR, "at %f seconds\n", ts*av_q2d(avctx->pkt_timebase)); } else if (ts != AV_NOPTS_VALUE) { av_log(f->avctx, AV_LOG_ERROR, "at %"PRId64"\n", ts); } else { av_log(f->avctx, AV_LOG_ERROR, "\n"); } fs->slice_damaged = 1; } if (avctx->debug & FF_DEBUG_PICT_INFO) { av_log(avctx, AV_LOG_DEBUG, "slice %d, CRC: 0x%08X\n", i, AV_RB32(buf_p + v - 4)); } } if (i) { ff_init_range_decoder(&fs->c, buf_p, v); } else fs->c.bytestream_end = buf_p + v; fs->avctx = avctx; fs->cur = p; } avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*)); for (i = f->slice_count - 1; i >= 0; i--) { FFV1Context *fs = f->slice_context[i]; int j; if (fs->slice_damaged && f->last_picture.f->data[0]) { const uint8_t *src[4]; uint8_t *dst[4]; ff_thread_await_progress(&f->last_picture, INT_MAX, 0); for (j = 0; j < 4; j++) { int sh = (j == 1 || j == 2) ? f->chroma_h_shift : 0; int sv = (j == 1 || j == 2) ? f->chroma_v_shift : 0; dst[j] = p->data[j] + p->linesize[j] * (fs->slice_y >> sv) + (fs->slice_x >> sh); src[j] = f->last_picture.f->data[j] + f->last_picture.f->linesize[j] * (fs->slice_y >> sv) + (fs->slice_x >> sh); } av_image_copy(dst, p->linesize, src, f->last_picture.f->linesize, avctx->pix_fmt, fs->slice_width, fs->slice_height); } } ff_thread_report_progress(&f->picture, INT_MAX, 0); f->picture_number++; if (f->last_picture.f) ff_thread_release_buffer(avctx, &f->last_picture); f->cur = NULL; if ((ret = av_frame_ref(data, f->picture.f)) < 0) return ret; *got_frame = 1; return buf_size; } static int init_thread_copy(AVCodecContext *avctx) { FFV1Context *f = avctx->priv_data; int i, ret; f->picture.f = NULL; f->last_picture.f = NULL; f->sample_buffer = NULL; f->max_slice_count = 0; f->slice_count = 0; for (i = 0; i < f->quant_table_count; i++) { av_assert0(f->version > 1); f->initial_states[i] = av_memdup(f->initial_states[i], f->context_count[i] * sizeof(*f->initial_states[i])); } f->picture.f = av_frame_alloc(); f->last_picture.f = av_frame_alloc(); if ((ret = ff_ffv1_init_slice_contexts(f)) < 0) return ret; return 0; } static void copy_fields(FFV1Context *fsdst, FFV1Context *fssrc, FFV1Context *fsrc) { fsdst->version = fsrc->version; fsdst->micro_version = fsrc->micro_version; fsdst->chroma_planes = fsrc->chroma_planes; fsdst->chroma_h_shift = fsrc->chroma_h_shift; fsdst->chroma_v_shift = fsrc->chroma_v_shift; fsdst->transparency = fsrc->transparency; fsdst->plane_count = fsrc->plane_count; fsdst->ac = fsrc->ac; fsdst->colorspace = fsrc->colorspace; fsdst->ec = fsrc->ec; fsdst->intra = fsrc->intra; fsdst->slice_damaged = fssrc->slice_damaged; fsdst->key_frame_ok = fsrc->key_frame_ok; fsdst->bits_per_raw_sample = fsrc->bits_per_raw_sample; fsdst->packed_at_lsb = fsrc->packed_at_lsb; fsdst->slice_count = fsrc->slice_count; if (fsrc->version<3){ fsdst->slice_x = fssrc->slice_x; fsdst->slice_y = fssrc->slice_y; fsdst->slice_width = fssrc->slice_width; fsdst->slice_height = fssrc->slice_height; } } static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { FFV1Context *fsrc = src->priv_data; FFV1Context *fdst = dst->priv_data; int i, ret; if (dst == src) return 0; { ThreadFrame picture = fdst->picture, last_picture = fdst->last_picture; uint8_t (*initial_states[MAX_QUANT_TABLES])[32]; struct FFV1Context *slice_context[MAX_SLICES]; memcpy(initial_states, fdst->initial_states, sizeof(fdst->initial_states)); memcpy(slice_context, fdst->slice_context , sizeof(fdst->slice_context)); memcpy(fdst, fsrc, sizeof(*fdst)); memcpy(fdst->initial_states, initial_states, sizeof(fdst->initial_states)); memcpy(fdst->slice_context, slice_context , sizeof(fdst->slice_context)); fdst->picture = picture; fdst->last_picture = last_picture; for (i = 0; inum_h_slices * fdst->num_v_slices; i++) { FFV1Context *fssrc = fsrc->slice_context[i]; FFV1Context *fsdst = fdst->slice_context[i]; copy_fields(fsdst, fssrc, fsrc); } av_assert0(!fdst->plane[0].state); av_assert0(!fdst->sample_buffer); } av_assert1(fdst->max_slice_count == fsrc->max_slice_count); ff_thread_release_buffer(dst, &fdst->picture); if (fsrc->picture.f->data[0]) { if ((ret = ff_thread_ref_frame(&fdst->picture, &fsrc->picture)) < 0) return ret; } fdst->fsrc = fsrc; return 0; } AVCodec ff_ffv1_decoder = { .name = "ffv1", .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = decode_init, .close = ff_ffv1_close, .decode = decode_frame, .init_thread_copy = ONLY_IF_THREADS_ENABLED(init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(update_thread_context), .capabilities = AV_CODEC_CAP_DR1 /*| AV_CODEC_CAP_DRAW_HORIZ_BAND*/ | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, };