kolibrios/drivers/video/Intel-2D/sna.c
Sergey Semyonov (Serge) 013e845fb3 Intel-2D: usermode 2D driver
git-svn-id: svn://kolibrios.org@3254 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-02-17 21:12:06 +00:00

599 lines
18 KiB
C

//#include "../bitmap.h"
#include <memory.h>
#include <malloc.h>
#include "sna.h"
const struct intel_device_info *
intel_detect_chipset(struct pci_device *pci);
//struct kgem_bo *create_bo(bitmap_t *bitmap);
static bool sna_solid_cache_init(struct sna *sna);
struct sna *sna_device;
void no_render_init(struct sna *sna)
{
struct sna_render *render = &sna->render;
memset (render,0, sizeof (*render));
render->prefer_gpu = PREFER_GPU_BLT;
render->vertices = render->vertex_data;
render->vertex_size = ARRAY_SIZE(render->vertex_data);
// render->composite = no_render_composite;
// render->copy_boxes = no_render_copy_boxes;
// render->copy = no_render_copy;
// render->fill_boxes = no_render_fill_boxes;
// render->fill = no_render_fill;
// render->fill_one = no_render_fill_one;
// render->clear = no_render_clear;
// render->reset = no_render_reset;
// render->flush = no_render_flush;
// render->fini = no_render_fini;
// sna->kgem.context_switch = no_render_context_switch;
// sna->kgem.retire = no_render_retire;
// if (sna->kgem.gen >= 60)
sna->kgem.ring = KGEM_RENDER;
sna_vertex_init(sna);
}
void sna_vertex_init(struct sna *sna)
{
// pthread_mutex_init(&sna->render.lock, NULL);
// pthread_cond_init(&sna->render.wait, NULL);
sna->render.active = 0;
}
bool sna_accel_init(struct sna *sna)
{
const char *backend;
// list_init(&sna->deferred_free);
// list_init(&sna->dirty_pixmaps);
// list_init(&sna->active_pixmaps);
// list_init(&sna->inactive_clock[0]);
// list_init(&sna->inactive_clock[1]);
// sna_accel_install_timers(sna);
backend = "no";
no_render_init(sna);
if (sna->info->gen >= 0100) {
/* } else if (sna->info->gen >= 070) {
if (gen7_render_init(sna))
backend = "IvyBridge"; */
} else if (sna->info->gen >= 060) {
if (gen6_render_init(sna))
backend = "SandyBridge";
/* } else if (sna->info->gen >= 050) {
if (gen5_render_init(sna))
backend = "Ironlake";
} else if (sna->info->gen >= 040) {
if (gen4_render_init(sna))
backend = "Broadwater/Crestline";
} else if (sna->info->gen >= 030) {
if (gen3_render_init(sna))
backend = "gen3";
} else if (sna->info->gen >= 020) {
if (gen2_render_init(sna))
backend = "gen2"; */
}
DBG(("%s(backend=%s, prefer_gpu=%x)\n",
__FUNCTION__, backend, sna->render.prefer_gpu));
kgem_reset(&sna->kgem);
// if (!sna_solid_cache_init(sna))
// return false;
sna_device = sna;
#if 0
{
struct kgem_bo *screen_bo;
bitmap_t screen;
screen.pitch = 1024*4;
screen.gaddr = 0;
screen.width = 1024;
screen.height = 768;
screen.obj = (void*)-1;
screen_bo = create_bo(&screen);
sna->render.clear(sna, &screen, screen_bo);
}
#endif
return true;
}
int sna_init(uint32_t service)
{
ioctl_t io;
static struct pci_device device;
struct sna *sna;
DBG(("%s\n", __FUNCTION__));
sna = malloc(sizeof(struct sna));
if (sna == NULL)
return false;
io.handle = service;
io.io_code = SRV_GET_INFO;
io.input = &device;
io.inp_size = sizeof(device);
io.output = NULL;
io.out_size = 0;
if (call_service(&io)!=0)
return false;
sna->PciInfo = &device;
sna->info = intel_detect_chipset(sna->PciInfo);
kgem_init(&sna->kgem, service, sna->PciInfo, sna->info->gen);
/*
if (!xf86ReturnOptValBool(sna->Options,
OPTION_RELAXED_FENCING,
sna->kgem.has_relaxed_fencing)) {
xf86DrvMsg(scrn->scrnIndex,
sna->kgem.has_relaxed_fencing ? X_CONFIG : X_PROBED,
"Disabling use of relaxed fencing\n");
sna->kgem.has_relaxed_fencing = 0;
}
if (!xf86ReturnOptValBool(sna->Options,
OPTION_VMAP,
sna->kgem.has_vmap)) {
xf86DrvMsg(scrn->scrnIndex,
sna->kgem.has_vmap ? X_CONFIG : X_PROBED,
"Disabling use of vmap\n");
sna->kgem.has_vmap = 0;
}
*/
/* Disable tiling by default */
sna->tiling = SNA_TILING_DISABLE;
/* Default fail-safe value of 75 Hz */
// sna->vblank_interval = 1000 * 1000 * 1000 / 75;
sna->flags = 0;
return sna_accel_init(sna);
}
#if 0
static bool sna_solid_cache_init(struct sna *sna)
{
struct sna_solid_cache *cache = &sna->render.solid_cache;
DBG(("%s\n", __FUNCTION__));
cache->cache_bo =
kgem_create_linear(&sna->kgem, sizeof(cache->color));
if (!cache->cache_bo)
return FALSE;
/*
* Initialise [0] with white since it is very common and filling the
* zeroth slot simplifies some of the checks.
*/
cache->color[0] = 0xffffffff;
cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t));
cache->bo[0]->pitch = 4;
cache->dirty = 1;
cache->size = 1;
cache->last = 0;
return TRUE;
}
void
sna_render_flush_solid(struct sna *sna)
{
struct sna_solid_cache *cache = &sna->render.solid_cache;
DBG(("sna_render_flush_solid(size=%d)\n", cache->size));
assert(cache->dirty);
assert(cache->size);
kgem_bo_write(&sna->kgem, cache->cache_bo,
cache->color, cache->size*sizeof(uint32_t));
cache->dirty = 0;
cache->last = 0;
}
static void
sna_render_finish_solid(struct sna *sna, bool force)
{
struct sna_solid_cache *cache = &sna->render.solid_cache;
int i;
DBG(("sna_render_finish_solid(force=%d, domain=%d, busy=%d, dirty=%d)\n",
force, cache->cache_bo->domain, cache->cache_bo->rq != NULL, cache->dirty));
if (!force && cache->cache_bo->domain != DOMAIN_GPU)
return;
if (cache->dirty)
sna_render_flush_solid(sna);
for (i = 0; i < cache->size; i++) {
if (cache->bo[i] == NULL)
continue;
kgem_bo_destroy(&sna->kgem, cache->bo[i]);
cache->bo[i] = NULL;
}
kgem_bo_destroy(&sna->kgem, cache->cache_bo);
DBG(("sna_render_finish_solid reset\n"));
cache->cache_bo = kgem_create_linear(&sna->kgem, sizeof(cache->color));
cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t));
cache->bo[0]->pitch = 4;
if (force)
cache->size = 1;
}
struct kgem_bo *
sna_render_get_solid(struct sna *sna, uint32_t color)
{
struct sna_solid_cache *cache = &sna->render.solid_cache;
int i;
DBG(("%s: %08x\n", __FUNCTION__, color));
// if ((color & 0xffffff) == 0) /* alpha only */
// return kgem_bo_reference(sna->render.alpha_cache.bo[color>>24]);
if (color == 0xffffffff) {
DBG(("%s(white)\n", __FUNCTION__));
return kgem_bo_reference(cache->bo[0]);
}
if (cache->color[cache->last] == color) {
DBG(("sna_render_get_solid(%d) = %x (last)\n",
cache->last, color));
return kgem_bo_reference(cache->bo[cache->last]);
}
for (i = 1; i < cache->size; i++) {
if (cache->color[i] == color) {
if (cache->bo[i] == NULL) {
DBG(("sna_render_get_solid(%d) = %x (recreate)\n",
i, color));
goto create;
} else {
DBG(("sna_render_get_solid(%d) = %x (old)\n",
i, color));
goto done;
}
}
}
sna_render_finish_solid(sna, i == ARRAY_SIZE(cache->color));
i = cache->size++;
cache->color[i] = color;
cache->dirty = 1;
DBG(("sna_render_get_solid(%d) = %x (new)\n", i, color));
create:
cache->bo[i] = kgem_create_proxy(cache->cache_bo,
i*sizeof(uint32_t), sizeof(uint32_t));
cache->bo[i]->pitch = 4;
done:
cache->last = i;
return kgem_bo_reference(cache->bo[i]);
}
#endif
int sna_blit_copy(uint32_t dst_bitmap, int dst_x, int dst_y,
int w, int h, uint32_t src_bitmap, int src_x, int src_y)
{
struct sna_copy_op copy;
struct kgem_bo src_bo, dst_bo;
memset(&src_bo, 0, sizeof(src_bo));
memset(&dst_bo, 0, sizeof(dst_bo));
// src_bo.gaddr = src_bitmap->gaddr;
// src_bo.pitch = src_bitmap->pitch;
// src_bo.tiling = 0;
// dst_bo.gaddr = dst_bitmap->gaddr;
// dst_bo.pitch = dst_bitmap->pitch;
// dst_bo.tiling = 0;
memset(&copy, 0, sizeof(copy));
sna_device->render.copy(sna_device, GXcopy, NULL, &src_bo, NULL, &dst_bo, &copy);
copy.blt(sna_device, &copy, src_x, src_y, w, h, dst_x, dst_y);
copy.done(sna_device, &copy);
// _kgem_submit(&sna_device->kgem, &execbuffer);
};
/*
int sna_blit_tex(bitmap_t *dst_bitmap, int dst_x, int dst_y,
int w, int h, bitmap_t *src_bitmap, int src_x, int src_y,
bitmap_t *mask_bitmap)
{
struct sna_composite_op cop;
batchbuffer_t execbuffer;
BoxRec box;
struct kgem_bo src_bo, mask_bo, dst_bo;
memset(&cop, 0, sizeof(cop));
memset(&execbuffer, 0, sizeof(execbuffer));
memset(&src_bo, 0, sizeof(src_bo));
memset(&dst_bo, 0, sizeof(dst_bo));
memset(&mask_bo, 0, sizeof(mask_bo));
src_bo.gaddr = src_bitmap->gaddr;
src_bo.pitch = src_bitmap->pitch;
src_bo.tiling = 0;
dst_bo.gaddr = dst_bitmap->gaddr;
dst_bo.pitch = dst_bitmap->pitch;
dst_bo.tiling = 0;
mask_bo.gaddr = mask_bitmap->gaddr;
mask_bo.pitch = mask_bitmap->pitch;
mask_bo.tiling = 0;
box.x1 = dst_x;
box.y1 = dst_y;
box.x2 = dst_x+w;
box.y2 = dst_y+h;
sna_device->render.composite(sna_device, 0,
src_bitmap, &src_bo,
mask_bitmap, &mask_bo,
dst_bitmap, &dst_bo,
src_x, src_y,
src_x, src_y,
dst_x, dst_y,
w, h, &cop);
cop.box(sna_device, &cop, &box);
cop.done(sna_device, &cop);
INIT_LIST_HEAD(&execbuffer.objects);
list_add_tail(&src_bitmap->obj->exec_list, &execbuffer.objects);
list_add_tail(&mask_bitmap->obj->exec_list, &execbuffer.objects);
_kgem_submit(&sna_device->kgem, &execbuffer);
};
*/
static const struct intel_device_info intel_generic_info = {
.gen = -1,
};
static const struct intel_device_info intel_i915_info = {
.gen = 030,
};
static const struct intel_device_info intel_i945_info = {
.gen = 031,
};
static const struct intel_device_info intel_g33_info = {
.gen = 033,
};
static const struct intel_device_info intel_i965_info = {
.gen = 040,
};
static const struct intel_device_info intel_g4x_info = {
.gen = 045,
};
static const struct intel_device_info intel_ironlake_info = {
.gen = 050,
};
static const struct intel_device_info intel_sandybridge_info = {
.gen = 060,
};
static const struct intel_device_info intel_ivybridge_info = {
.gen = 070,
};
static const struct intel_device_info intel_valleyview_info = {
.gen = 071,
};
static const struct intel_device_info intel_haswell_info = {
.gen = 075,
};
#define INTEL_DEVICE_MATCH(d,i) \
{ 0x8086, (d), PCI_MATCH_ANY, PCI_MATCH_ANY, 0x3 << 16, 0xff << 16, (intptr_t)(i) }
static const struct pci_id_match intel_device_match[] = {
INTEL_DEVICE_MATCH (PCI_CHIP_I915_G, &intel_i915_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_E7221_G, &intel_i915_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I915_GM, &intel_i915_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I945_G, &intel_i945_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I945_GM, &intel_i945_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I945_GME, &intel_i945_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_M, &intel_g33_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_G, &intel_g33_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_G33_G, &intel_g33_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_Q33_G, &intel_g33_info ),
/* Another marketing win: Q35 is another g33 device not a gen4 part
* like its G35 brethren.
*/
INTEL_DEVICE_MATCH (PCI_CHIP_Q35_G, &intel_g33_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I965_G, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_G35_G, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I965_Q, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I946_GZ, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I965_GM, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_I965_GME, &intel_i965_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_GM45_GM, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_G45_E_G, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_G45_G, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_Q45_G, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_G41_G, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_B43_G, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_B43_G1, &intel_g4x_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_D_G, &intel_ironlake_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_M_G, &intel_ironlake_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT1, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2_PLUS, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT1, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_S_GT, &intel_sandybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT1, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT2, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT1, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT2, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT1, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT2, &intel_ivybridge_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT1, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2_PLUS, &intel_haswell_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_PO, &intel_valleyview_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_1, &intel_valleyview_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_2, &intel_valleyview_info ),
INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_3, &intel_valleyview_info ),
INTEL_DEVICE_MATCH (PCI_MATCH_ANY, &intel_generic_info ),
{ 0, 0, 0 },
};
const struct pci_id_match *PciDevMatch(uint16_t dev,const struct pci_id_match *list)
{
while(list->device_id)
{
if(dev==list->device_id)
return list;
list++;
}
return NULL;
}
const struct intel_device_info *
intel_detect_chipset(struct pci_device *pci)
{
const struct pci_id_match *ent = NULL;
const char *name = NULL;
int i;
ent = PciDevMatch(pci->device_id, intel_device_match);
if(ent != NULL)
return (const struct intel_device_info*)ent->match_data;
else
return &intel_generic_info;
#if 0
for (i = 0; intel_chipsets[i].name != NULL; i++) {
if (DEVICE_ID(pci) == intel_chipsets[i].token) {
name = intel_chipsets[i].name;
break;
}
}
if (name == NULL) {
xf86DrvMsg(scrn->scrnIndex, X_WARNING, "unknown chipset\n");
name = "unknown";
} else {
xf86DrvMsg(scrn->scrnIndex, from,
"Integrated Graphics Chipset: Intel(R) %s\n",
name);
}
scrn->chipset = name;
#endif
}