forked from KolibriOS/kolibrios
51563dce61
git-svn-id: svn://kolibrios.org@3280 a494cfbc-eb01-0410-851d-a64ba20cac60
305 lines
10 KiB
C
305 lines
10 KiB
C
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Chris Wilson <chris@chris-wilson.co.uk>
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "sna.h"
|
|
#include "sna_render.h"
|
|
#include "sna_render_inline.h"
|
|
#include "gen4_vertex.h"
|
|
|
|
void gen4_vertex_flush(struct sna *sna)
|
|
{
|
|
DBG(("%s[%x] = %d\n", __FUNCTION__,
|
|
4*sna->render.vertex_offset,
|
|
sna->render.vertex_index - sna->render.vertex_start));
|
|
|
|
assert(sna->render.vertex_offset);
|
|
assert(sna->render.vertex_index > sna->render.vertex_start);
|
|
|
|
sna->kgem.batch[sna->render.vertex_offset] =
|
|
sna->render.vertex_index - sna->render.vertex_start;
|
|
sna->render.vertex_offset = 0;
|
|
}
|
|
|
|
int gen4_vertex_finish(struct sna *sna)
|
|
{
|
|
struct kgem_bo *bo;
|
|
unsigned int i;
|
|
unsigned hint, size;
|
|
|
|
DBG(("%s: used=%d / %d\n", __FUNCTION__,
|
|
sna->render.vertex_used, sna->render.vertex_size));
|
|
assert(sna->render.vertex_offset == 0);
|
|
assert(sna->render.vertex_used);
|
|
|
|
sna_vertex_wait__locked(&sna->render);
|
|
|
|
/* Note: we only need dword alignment (currently) */
|
|
|
|
bo = sna->render.vbo;
|
|
if (bo) {
|
|
for (i = 0; i < sna->render.nvertex_reloc; i++) {
|
|
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
|
|
i, sna->render.vertex_reloc[i]));
|
|
|
|
sna->kgem.batch[sna->render.vertex_reloc[i]] =
|
|
kgem_add_reloc(&sna->kgem,
|
|
sna->render.vertex_reloc[i], bo,
|
|
I915_GEM_DOMAIN_VERTEX << 16,
|
|
0);
|
|
}
|
|
|
|
assert(!sna->render.active);
|
|
sna->render.nvertex_reloc = 0;
|
|
sna->render.vertex_used = 0;
|
|
sna->render.vertex_index = 0;
|
|
sna->render.vbo = NULL;
|
|
sna->render.vb_id = 0;
|
|
|
|
kgem_bo_destroy(&sna->kgem, bo);
|
|
}
|
|
|
|
hint = CREATE_GTT_MAP;
|
|
if (bo)
|
|
hint |= CREATE_CACHED | CREATE_NO_THROTTLE;
|
|
|
|
size = 256*1024;
|
|
assert(!sna->render.active);
|
|
sna->render.vertices = NULL;
|
|
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
|
|
while (sna->render.vbo == NULL && size > 16*1024) {
|
|
size /= 2;
|
|
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
|
|
}
|
|
if (sna->render.vbo == NULL)
|
|
sna->render.vbo = kgem_create_linear(&sna->kgem,
|
|
256*1024, CREATE_GTT_MAP);
|
|
if (sna->render.vbo)
|
|
sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo);
|
|
if (sna->render.vertices == NULL) {
|
|
if (sna->render.vbo) {
|
|
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
|
|
sna->render.vbo = NULL;
|
|
}
|
|
sna->render.vertices = sna->render.vertex_data;
|
|
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
|
|
return 0;
|
|
}
|
|
|
|
if (sna->render.vertex_used) {
|
|
DBG(("%s: copying initial buffer x %d to handle=%d\n",
|
|
__FUNCTION__,
|
|
sna->render.vertex_used,
|
|
sna->render.vbo->handle));
|
|
assert(sizeof(float)*sna->render.vertex_used <=
|
|
__kgem_bo_size(sna->render.vbo));
|
|
memcpy(sna->render.vertices,
|
|
sna->render.vertex_data,
|
|
sizeof(float)*sna->render.vertex_used);
|
|
}
|
|
|
|
size = __kgem_bo_size(sna->render.vbo)/4;
|
|
if (size >= UINT16_MAX)
|
|
size = UINT16_MAX - 1;
|
|
|
|
DBG(("%s: create vbo handle=%d, size=%d\n",
|
|
__FUNCTION__, sna->render.vbo->handle, size));
|
|
|
|
sna->render.vertex_size = size;
|
|
return sna->render.vertex_size - sna->render.vertex_used;
|
|
}
|
|
|
|
void gen4_vertex_close(struct sna *sna)
|
|
{
|
|
struct kgem_bo *bo, *free_bo = NULL;
|
|
unsigned int i, delta = 0;
|
|
|
|
assert(sna->render.vertex_offset == 0);
|
|
if (!sna->render.vb_id)
|
|
return;
|
|
|
|
DBG(("%s: used=%d, vbo active? %d, vb=%x, nreloc=%d\n",
|
|
__FUNCTION__, sna->render.vertex_used, sna->render.vbo ? sna->render.vbo->handle : 0,
|
|
sna->render.vb_id, sna->render.nvertex_reloc));
|
|
|
|
assert(!sna->render.active);
|
|
|
|
bo = sna->render.vbo;
|
|
if (bo) {
|
|
if (sna->render.vertex_size - sna->render.vertex_used < 64) {
|
|
DBG(("%s: discarding vbo (full), handle=%d\n", __FUNCTION__, sna->render.vbo->handle));
|
|
sna->render.vbo = NULL;
|
|
sna->render.vertices = sna->render.vertex_data;
|
|
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
|
|
free_bo = bo;
|
|
} else if (IS_CPU_MAP(bo->map) && !sna->kgem.has_llc) {
|
|
DBG(("%s: converting CPU map to GTT\n", __FUNCTION__));
|
|
sna->render.vertices =
|
|
kgem_bo_map__gtt(&sna->kgem, sna->render.vbo);
|
|
if (sna->render.vertices == NULL) {
|
|
sna->render.vbo = NULL;
|
|
sna->render.vertices = sna->render.vertex_data;
|
|
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
|
|
free_bo = bo;
|
|
}
|
|
|
|
}
|
|
} else {
|
|
if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) {
|
|
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
|
|
sna->render.vertex_used, sna->kgem.nbatch));
|
|
memcpy(sna->kgem.batch + sna->kgem.nbatch,
|
|
sna->render.vertex_data,
|
|
sna->render.vertex_used * 4);
|
|
delta = sna->kgem.nbatch * 4;
|
|
bo = NULL;
|
|
sna->kgem.nbatch += sna->render.vertex_used;
|
|
} else {
|
|
bo = kgem_create_linear(&sna->kgem,
|
|
4*sna->render.vertex_used,
|
|
CREATE_NO_THROTTLE);
|
|
if (bo && !kgem_bo_write(&sna->kgem, bo,
|
|
sna->render.vertex_data,
|
|
4*sna->render.vertex_used)) {
|
|
kgem_bo_destroy(&sna->kgem, bo);
|
|
bo = NULL;
|
|
}
|
|
DBG(("%s: new vbo: %d\n", __FUNCTION__,
|
|
sna->render.vertex_used));
|
|
free_bo = bo;
|
|
}
|
|
}
|
|
|
|
assert(sna->render.nvertex_reloc);
|
|
for (i = 0; i < sna->render.nvertex_reloc; i++) {
|
|
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
|
|
i, sna->render.vertex_reloc[i]));
|
|
|
|
sna->kgem.batch[sna->render.vertex_reloc[i]] =
|
|
kgem_add_reloc(&sna->kgem,
|
|
sna->render.vertex_reloc[i], bo,
|
|
I915_GEM_DOMAIN_VERTEX << 16,
|
|
delta);
|
|
}
|
|
sna->render.nvertex_reloc = 0;
|
|
sna->render.vb_id = 0;
|
|
|
|
if (sna->render.vbo == NULL) {
|
|
assert(!sna->render.active);
|
|
sna->render.vertex_used = 0;
|
|
sna->render.vertex_index = 0;
|
|
assert(sna->render.vertices == sna->render.vertex_data);
|
|
assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data));
|
|
}
|
|
|
|
if (free_bo)
|
|
kgem_bo_destroy(&sna->kgem, free_bo);
|
|
}
|
|
|
|
fastcall static void
|
|
emit_primitive_identity_source_mask(struct sna *sna,
|
|
const struct sna_composite_op *op,
|
|
const struct sna_composite_rectangles *r)
|
|
{
|
|
union {
|
|
struct sna_coordinate p;
|
|
float f;
|
|
} dst;
|
|
float src_x, src_y;
|
|
float msk_x, msk_y;
|
|
float w, h;
|
|
float *v;
|
|
|
|
src_x = r->src.x + op->src.offset[0];
|
|
src_y = r->src.y + op->src.offset[1];
|
|
msk_x = r->mask.x + op->mask.offset[0];
|
|
msk_y = r->mask.y + op->mask.offset[1];
|
|
w = r->width;
|
|
h = r->height;
|
|
|
|
assert(op->floats_per_rect == 15);
|
|
assert((sna->render.vertex_used % 5) == 0);
|
|
v = sna->render.vertices + sna->render.vertex_used;
|
|
sna->render.vertex_used += 15;
|
|
|
|
dst.p.x = r->dst.x + r->width;
|
|
dst.p.y = r->dst.y + r->height;
|
|
v[0] = dst.f;
|
|
v[1] = (src_x + w) * op->src.scale[0];
|
|
v[2] = (src_y + h) * op->src.scale[1];
|
|
v[3] = (msk_x + w) * op->mask.scale[0];
|
|
v[4] = (msk_y + h) * op->mask.scale[1];
|
|
|
|
dst.p.x = r->dst.x;
|
|
v[5] = dst.f;
|
|
v[6] = src_x * op->src.scale[0];
|
|
v[7] = v[2];
|
|
v[8] = msk_x * op->mask.scale[0];
|
|
v[9] = v[4];
|
|
|
|
dst.p.y = r->dst.y;
|
|
v[10] = dst.f;
|
|
v[11] = v[6];
|
|
v[12] = src_y * op->src.scale[1];
|
|
v[13] = v[8];
|
|
v[14] = msk_y * op->mask.scale[1];
|
|
}
|
|
|
|
unsigned gen4_choose_composite_emitter(struct sna_composite_op *tmp)
|
|
{
|
|
unsigned vb;
|
|
|
|
if (tmp->mask.bo) {
|
|
if (tmp->mask.transform == NULL) {
|
|
if (tmp->src.is_solid) {
|
|
DBG(("%s: solid, identity mask\n", __FUNCTION__));
|
|
} else if (tmp->src.is_linear) {
|
|
DBG(("%s: linear, identity mask\n", __FUNCTION__));
|
|
} else if (tmp->src.transform == NULL) {
|
|
DBG(("%s: identity source, identity mask\n", __FUNCTION__));
|
|
tmp->prim_emit = emit_primitive_identity_source_mask;
|
|
tmp->floats_per_vertex = 5;
|
|
vb = 2 << 2 | 2;
|
|
} else if (tmp->src.is_affine) {
|
|
DBG(("%s: simple src, identity mask\n", __FUNCTION__));
|
|
} else {
|
|
DBG(("%s: projective source, identity mask\n", __FUNCTION__));
|
|
}
|
|
} else {
|
|
DBG(("%s: general mask: floats-per-vertex=%d, vb=%x\n",
|
|
__FUNCTION__,tmp->floats_per_vertex, vb));
|
|
}
|
|
} else {
|
|
}
|
|
tmp->floats_per_rect = 3 * tmp->floats_per_vertex;
|
|
|
|
return vb;
|
|
}
|