forked from KolibriOS/kolibrios
c7fc8e91d0
git-svn-id: svn://kolibrios.org@6515 a494cfbc-eb01-0410-851d-a64ba20cac60
505 lines
14 KiB
C
505 lines
14 KiB
C
/* Software floating-point emulation.
|
|
Definitions for IEEE Extended Precision.
|
|
Copyright (C) 1999-2014 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Jakub Jelinek (jj@ultra.linux.cz).
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU Lesser General Public
|
|
License, the Free Software Foundation gives you unlimited
|
|
permission to link the compiled version of this file into
|
|
combinations with other programs, and to distribute those
|
|
combinations without any restriction coming from the use of this
|
|
file. (The Lesser General Public License restrictions do apply in
|
|
other respects; for example, they cover modification of the file,
|
|
and distribution when not linked into a combine executable.)
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#if _FP_W_TYPE_SIZE < 32
|
|
# error "Here's a nickel, kid. Go buy yourself a real computer."
|
|
#endif
|
|
|
|
#if _FP_W_TYPE_SIZE < 64
|
|
# define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
|
|
# define _FP_FRACTBITS_DW_E (8*_FP_W_TYPE_SIZE)
|
|
#else
|
|
# define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
|
|
# define _FP_FRACTBITS_DW_E (4*_FP_W_TYPE_SIZE)
|
|
#endif
|
|
|
|
#define _FP_FRACBITS_E 64
|
|
#define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
|
|
#define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
|
|
#define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
|
|
#define _FP_EXPBITS_E 15
|
|
#define _FP_EXPBIAS_E 16383
|
|
#define _FP_EXPMAX_E 32767
|
|
|
|
#define _FP_QNANBIT_E \
|
|
((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
|
|
#define _FP_QNANBIT_SH_E \
|
|
((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
|
|
#define _FP_IMPLBIT_E \
|
|
((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
|
|
#define _FP_IMPLBIT_SH_E \
|
|
((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
|
|
#define _FP_OVERFLOW_E \
|
|
((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
|
|
|
|
#define _FP_WFRACBITS_DW_E (2 * _FP_WFRACBITS_E)
|
|
#define _FP_WFRACXBITS_DW_E (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
|
|
#define _FP_HIGHBIT_DW_E \
|
|
((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
|
|
|
|
typedef float XFtype __attribute__ ((mode (XF)));
|
|
|
|
#if _FP_W_TYPE_SIZE < 64
|
|
|
|
union _FP_UNION_E
|
|
{
|
|
XFtype flt;
|
|
struct _FP_STRUCT_LAYOUT
|
|
{
|
|
# if __BYTE_ORDER == __BIG_ENDIAN
|
|
unsigned long pad1 : _FP_W_TYPE_SIZE;
|
|
unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
|
|
unsigned long sign : 1;
|
|
unsigned long exp : _FP_EXPBITS_E;
|
|
unsigned long frac1 : _FP_W_TYPE_SIZE;
|
|
unsigned long frac0 : _FP_W_TYPE_SIZE;
|
|
# else
|
|
unsigned long frac0 : _FP_W_TYPE_SIZE;
|
|
unsigned long frac1 : _FP_W_TYPE_SIZE;
|
|
unsigned exp : _FP_EXPBITS_E;
|
|
unsigned sign : 1;
|
|
# endif /* not bigendian */
|
|
} bits __attribute__ ((packed));
|
|
};
|
|
|
|
|
|
# define FP_DECL_E(X) _FP_DECL (4, X)
|
|
|
|
# define FP_UNPACK_RAW_E(X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
|
|
FP_UNPACK_RAW_E_flo.flt = (val); \
|
|
\
|
|
X##_f[2] = 0; \
|
|
X##_f[3] = 0; \
|
|
X##_f[0] = FP_UNPACK_RAW_E_flo.bits.frac0; \
|
|
X##_f[1] = FP_UNPACK_RAW_E_flo.bits.frac1; \
|
|
X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
|
|
X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_RAW_EP(X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
|
|
= (union _FP_UNION_E *) (val); \
|
|
\
|
|
X##_f[2] = 0; \
|
|
X##_f[3] = 0; \
|
|
X##_f[0] = FP_UNPACK_RAW_EP_flo->bits.frac0; \
|
|
X##_f[1] = FP_UNPACK_RAW_EP_flo->bits.frac1; \
|
|
X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
|
|
X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_RAW_E(val, X) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E FP_PACK_RAW_E_flo; \
|
|
\
|
|
if (X##_e) \
|
|
X##_f[1] |= _FP_IMPLBIT_E; \
|
|
else \
|
|
X##_f[1] &= ~(_FP_IMPLBIT_E); \
|
|
FP_PACK_RAW_E_flo.bits.frac0 = X##_f[0]; \
|
|
FP_PACK_RAW_E_flo.bits.frac1 = X##_f[1]; \
|
|
FP_PACK_RAW_E_flo.bits.exp = X##_e; \
|
|
FP_PACK_RAW_E_flo.bits.sign = X##_s; \
|
|
\
|
|
(val) = FP_PACK_RAW_E_flo.flt; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_RAW_EP(val, X) \
|
|
do \
|
|
{ \
|
|
if (!FP_INHIBIT_RESULTS) \
|
|
{ \
|
|
union _FP_UNION_E *FP_PACK_RAW_EP_flo \
|
|
= (union _FP_UNION_E *) (val); \
|
|
\
|
|
if (X##_e) \
|
|
X##_f[1] |= _FP_IMPLBIT_E; \
|
|
else \
|
|
X##_f[1] &= ~(_FP_IMPLBIT_E); \
|
|
FP_PACK_RAW_EP_flo->bits.frac0 = X##_f[0]; \
|
|
FP_PACK_RAW_EP_flo->bits.frac1 = X##_f[1]; \
|
|
FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
|
|
FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_E(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_E (X, (val)); \
|
|
_FP_UNPACK_CANONICAL (E, 4, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_EP(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_EP (X, (val)); \
|
|
_FP_UNPACK_CANONICAL (E, 4, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_SEMIRAW_E(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_E (X, (val)); \
|
|
_FP_UNPACK_SEMIRAW (E, 4, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_SEMIRAW_EP(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_EP (X, (val)); \
|
|
_FP_UNPACK_SEMIRAW (E, 4, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_E(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_CANONICAL (E, 4, X); \
|
|
FP_PACK_RAW_E ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_EP(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_CANONICAL (E, 4, X); \
|
|
FP_PACK_RAW_EP ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_SEMIRAW_E(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_SEMIRAW (E, 4, X); \
|
|
FP_PACK_RAW_E ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_SEMIRAW_EP(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_SEMIRAW (E, 4, X); \
|
|
FP_PACK_RAW_EP ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 4, X)
|
|
# define FP_NEG_E(R, X) _FP_NEG (E, 4, R, X)
|
|
# define FP_ADD_E(R, X, Y) _FP_ADD (E, 4, R, X, Y)
|
|
# define FP_SUB_E(R, X, Y) _FP_SUB (E, 4, R, X, Y)
|
|
# define FP_MUL_E(R, X, Y) _FP_MUL (E, 4, R, X, Y)
|
|
# define FP_DIV_E(R, X, Y) _FP_DIV (E, 4, R, X, Y)
|
|
# define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X)
|
|
# define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z)
|
|
|
|
/* Square root algorithms:
|
|
We have just one right now, maybe Newton approximation
|
|
should be added for those machines where division is fast.
|
|
This has special _E version because standard _4 square
|
|
root would not work (it has to start normally with the
|
|
second word and not the first), but as we have to do it
|
|
anyway, we optimize it by doing most of the calculations
|
|
in two UWtype registers instead of four. */
|
|
|
|
# define _FP_SQRT_MEAT_E(R, S, T, X, q) \
|
|
do \
|
|
{ \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
_FP_FRAC_SRL_4 (X, (_FP_WORKBITS)); \
|
|
while (q) \
|
|
{ \
|
|
T##_f[1] = S##_f[1] + (q); \
|
|
if (T##_f[1] <= X##_f[1]) \
|
|
{ \
|
|
S##_f[1] = T##_f[1] + (q); \
|
|
X##_f[1] -= T##_f[1]; \
|
|
R##_f[1] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_2 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
while (q) \
|
|
{ \
|
|
T##_f[0] = S##_f[0] + (q); \
|
|
T##_f[1] = S##_f[1]; \
|
|
if (T##_f[1] < X##_f[1] \
|
|
|| (T##_f[1] == X##_f[1] \
|
|
&& T##_f[0] <= X##_f[0])) \
|
|
{ \
|
|
S##_f[0] = T##_f[0] + (q); \
|
|
S##_f[1] += (T##_f[0] > S##_f[0]); \
|
|
_FP_FRAC_DEC_2 (X, T); \
|
|
R##_f[0] += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_2 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
_FP_FRAC_SLL_4 (R, (_FP_WORKBITS)); \
|
|
if (X##_f[0] | X##_f[1]) \
|
|
{ \
|
|
if (S##_f[1] < X##_f[1] \
|
|
|| (S##_f[1] == X##_f[1] \
|
|
&& S##_f[0] < X##_f[0])) \
|
|
R##_f[0] |= _FP_WORK_ROUND; \
|
|
R##_f[0] |= _FP_WORK_STICKY; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_CMP_E(r, X, Y, un, ex) _FP_CMP (E, 4, (r), X, Y, (un), (ex))
|
|
# define FP_CMP_EQ_E(r, X, Y, ex) _FP_CMP_EQ (E, 4, (r), X, Y, (ex))
|
|
# define FP_CMP_UNORD_E(r, X, Y, ex) _FP_CMP_UNORD (E, 4, (r), X, Y, (ex))
|
|
|
|
# define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 4, (r), X, (rsz), (rsg))
|
|
# define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 4, X, (r), (rs), rt)
|
|
|
|
# define _FP_FRAC_HIGH_E(X) (X##_f[2])
|
|
# define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
|
|
|
|
# define _FP_FRAC_HIGH_DW_E(X) (X##_f[4])
|
|
|
|
#else /* not _FP_W_TYPE_SIZE < 64 */
|
|
union _FP_UNION_E
|
|
{
|
|
XFtype flt;
|
|
struct _FP_STRUCT_LAYOUT
|
|
{
|
|
# if __BYTE_ORDER == __BIG_ENDIAN
|
|
_FP_W_TYPE pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
|
|
unsigned sign : 1;
|
|
unsigned exp : _FP_EXPBITS_E;
|
|
_FP_W_TYPE frac : _FP_W_TYPE_SIZE;
|
|
# else
|
|
_FP_W_TYPE frac : _FP_W_TYPE_SIZE;
|
|
unsigned exp : _FP_EXPBITS_E;
|
|
unsigned sign : 1;
|
|
# endif
|
|
} bits;
|
|
};
|
|
|
|
# define FP_DECL_E(X) _FP_DECL (2, X)
|
|
|
|
# define FP_UNPACK_RAW_E(X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
|
|
FP_UNPACK_RAW_E_flo.flt = (val); \
|
|
\
|
|
X##_f0 = FP_UNPACK_RAW_E_flo.bits.frac; \
|
|
X##_f1 = 0; \
|
|
X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
|
|
X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_RAW_EP(X, val) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
|
|
= (union _FP_UNION_E *) (val); \
|
|
\
|
|
X##_f0 = FP_UNPACK_RAW_EP_flo->bits.frac; \
|
|
X##_f1 = 0; \
|
|
X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
|
|
X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_RAW_E(val, X) \
|
|
do \
|
|
{ \
|
|
union _FP_UNION_E FP_PACK_RAW_E_flo; \
|
|
\
|
|
if (X##_e) \
|
|
X##_f0 |= _FP_IMPLBIT_E; \
|
|
else \
|
|
X##_f0 &= ~(_FP_IMPLBIT_E); \
|
|
FP_PACK_RAW_E_flo.bits.frac = X##_f0; \
|
|
FP_PACK_RAW_E_flo.bits.exp = X##_e; \
|
|
FP_PACK_RAW_E_flo.bits.sign = X##_s; \
|
|
\
|
|
(val) = FP_PACK_RAW_E_flo.flt; \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_RAW_EP(fs, val, X) \
|
|
do \
|
|
{ \
|
|
if (!FP_INHIBIT_RESULTS) \
|
|
{ \
|
|
union _FP_UNION_E *FP_PACK_RAW_EP_flo \
|
|
= (union _FP_UNION_E *) (val); \
|
|
\
|
|
if (X##_e) \
|
|
X##_f0 |= _FP_IMPLBIT_E; \
|
|
else \
|
|
X##_f0 &= ~(_FP_IMPLBIT_E); \
|
|
FP_PACK_RAW_EP_flo->bits.frac = X##_f0; \
|
|
FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
|
|
FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
# define FP_UNPACK_E(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_E (X, (val)); \
|
|
_FP_UNPACK_CANONICAL (E, 2, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_EP(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_EP (X, (val)); \
|
|
_FP_UNPACK_CANONICAL (E, 2, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_SEMIRAW_E(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_E (X, (val)); \
|
|
_FP_UNPACK_SEMIRAW (E, 2, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_UNPACK_SEMIRAW_EP(X, val) \
|
|
do \
|
|
{ \
|
|
FP_UNPACK_RAW_EP (X, (val)); \
|
|
_FP_UNPACK_SEMIRAW (E, 2, X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_E(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_CANONICAL (E, 2, X); \
|
|
FP_PACK_RAW_E ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_EP(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_CANONICAL (E, 2, X); \
|
|
FP_PACK_RAW_EP ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_SEMIRAW_E(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_SEMIRAW (E, 2, X); \
|
|
FP_PACK_RAW_E ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_PACK_SEMIRAW_EP(val, X) \
|
|
do \
|
|
{ \
|
|
_FP_PACK_SEMIRAW (E, 2, X); \
|
|
FP_PACK_RAW_EP ((val), X); \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 2, X)
|
|
# define FP_NEG_E(R, X) _FP_NEG (E, 2, R, X)
|
|
# define FP_ADD_E(R, X, Y) _FP_ADD (E, 2, R, X, Y)
|
|
# define FP_SUB_E(R, X, Y) _FP_SUB (E, 2, R, X, Y)
|
|
# define FP_MUL_E(R, X, Y) _FP_MUL (E, 2, R, X, Y)
|
|
# define FP_DIV_E(R, X, Y) _FP_DIV (E, 2, R, X, Y)
|
|
# define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X)
|
|
# define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z)
|
|
|
|
/* Square root algorithms:
|
|
We have just one right now, maybe Newton approximation
|
|
should be added for those machines where division is fast.
|
|
We optimize it by doing most of the calculations
|
|
in one UWtype registers instead of two, although we don't
|
|
have to. */
|
|
# define _FP_SQRT_MEAT_E(R, S, T, X, q) \
|
|
do \
|
|
{ \
|
|
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
|
|
_FP_FRAC_SRL_2 (X, (_FP_WORKBITS)); \
|
|
while (q) \
|
|
{ \
|
|
T##_f0 = S##_f0 + (q); \
|
|
if (T##_f0 <= X##_f0) \
|
|
{ \
|
|
S##_f0 = T##_f0 + (q); \
|
|
X##_f0 -= T##_f0; \
|
|
R##_f0 += (q); \
|
|
} \
|
|
_FP_FRAC_SLL_1 (X, 1); \
|
|
(q) >>= 1; \
|
|
} \
|
|
_FP_FRAC_SLL_2 (R, (_FP_WORKBITS)); \
|
|
if (X##_f0) \
|
|
{ \
|
|
if (S##_f0 < X##_f0) \
|
|
R##_f0 |= _FP_WORK_ROUND; \
|
|
R##_f0 |= _FP_WORK_STICKY; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
# define FP_CMP_E(r, X, Y, un, ex) _FP_CMP (E, 2, (r), X, Y, (un), (ex))
|
|
# define FP_CMP_EQ_E(r, X, Y, ex) _FP_CMP_EQ (E, 2, (r), X, Y, (ex))
|
|
# define FP_CMP_UNORD_E(r, X, Y, ex) _FP_CMP_UNORD (E, 2, (r), X, Y, (ex))
|
|
|
|
# define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 2, (r), X, (rsz), (rsg))
|
|
# define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 2, X, (r), (rs), rt)
|
|
|
|
# define _FP_FRAC_HIGH_E(X) (X##_f1)
|
|
# define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
|
|
|
|
# define _FP_FRAC_HIGH_DW_E(X) (X##_f[2])
|
|
|
|
#endif /* not _FP_W_TYPE_SIZE < 64 */
|