forked from KolibriOS/kolibrios
driver for managing temporary memory-based disks
git-svn-id: svn://kolibrios.org@2644 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
parent
46ebef439c
commit
ccb3bac301
295
kernel/trunk/drivers/tmpdisk.asm
Normal file
295
kernel/trunk/drivers/tmpdisk.asm
Normal file
@ -0,0 +1,295 @@
|
||||
; Disk driver to create FAT16/FAT32 memory-based temporary disk aka RAM disk.
|
||||
; (c) CleverMouse
|
||||
|
||||
; Note: in the ideal world, a disk driver should not care about a file system
|
||||
; on it. In the current world, however, there is no way to format a disk in
|
||||
; FAT, so this part of file-system-specific operations is included in the
|
||||
; driver.
|
||||
|
||||
; When this driver is loading, it registers itself in the system and does
|
||||
; nothing more. When loaded, this driver controls pseudo-disk devices
|
||||
; named /tmp#/, where # is a digit from 0 to 9. The driver does not create
|
||||
; any device by itself, waiting for instructions from an application.
|
||||
; The driver responds to the following IOCTLs from a control application:
|
||||
SRV_GETVERSION equ 0 ; input ignored,
|
||||
; output = dword API_VERSION
|
||||
DEV_ADD_DISK equ 1 ; input = structure add_disk_struc,
|
||||
; no output
|
||||
DEV_DEL_DISK equ 2 ; input = structure del_disk_struc,
|
||||
; no output
|
||||
; For all IOCTLs the driver returns one of the following error codes:
|
||||
NO_ERROR equ 0
|
||||
ERROR_INVALID_IOCTL equ 1 ; unknown IOCTL code, wrong input/output size...
|
||||
ERROR_INVALID_ID equ 2 ; .DiskId must be from 0 to 9
|
||||
ERROR_SIZE_TOO_LARGE equ 3 ; .DiskSize is too large
|
||||
ERROR_SIZE_TOO_SMALL equ 4 ; .DiskSize is too small
|
||||
ERROR_NO_MEMORY equ 5 ; memory allocation failed
|
||||
|
||||
|
||||
API_VERSION equ 1
|
||||
; Input structures:
|
||||
struc add_disk_struc
|
||||
{
|
||||
.DiskSize dd ? ; disk size in sectors, 1 sector = 512 bytes
|
||||
; Note: .DiskSize is the full size, including FAT service data.
|
||||
; Size for useful data is slightly less than this number.
|
||||
.DiskId db ? ; from 0 to 9
|
||||
.sizeof:
|
||||
}
|
||||
virtual at 0
|
||||
add_disk_struc add_disk_struc
|
||||
end virtual
|
||||
struc del_disk_struc
|
||||
{
|
||||
.DiskId db ? ; from 0 to 9
|
||||
.sizeof:
|
||||
}
|
||||
virtual at 0
|
||||
del_disk_struc del_disk_struc
|
||||
end virtual
|
||||
|
||||
max_num_disks equ 10
|
||||
|
||||
; standard driver stuff
|
||||
format MS COFF
|
||||
|
||||
DEBUG equ 0
|
||||
include 'proc32.inc'
|
||||
include 'imports.inc'
|
||||
|
||||
public START
|
||||
public version
|
||||
|
||||
struc IOCTL
|
||||
{
|
||||
.handle dd ?
|
||||
.io_code dd ?
|
||||
.input dd ?
|
||||
.inp_size dd ?
|
||||
.output dd ?
|
||||
.out_size dd ?
|
||||
}
|
||||
|
||||
virtual at 0
|
||||
IOCTL IOCTL
|
||||
end virtual
|
||||
|
||||
section '.flat' code readable align 16
|
||||
; the start procedure (see the description above)
|
||||
proc START
|
||||
; This procedure is called in two situations:
|
||||
; when the driver is loading and when the system is shutting down.
|
||||
; 1. Check that the driver is loading; do nothing unless so.
|
||||
xor eax, eax ; set return value in case we will do nothing
|
||||
cmp dword [esp+4], 1
|
||||
jne .nothing
|
||||
; 2. Register the driver in the system.
|
||||
stdcall RegService, my_service, service_proc
|
||||
; 3. Return the value returned by RegService back to the system.
|
||||
.nothing:
|
||||
retn 4
|
||||
endp
|
||||
|
||||
; Service procedure for the driver - handle all IOCTL requests for the driver.
|
||||
; The description of handled IOCTLs is located in the start of this file.
|
||||
proc service_proc
|
||||
; 1. Save used registers to be stdcall.
|
||||
; Note: this shifts esp, so the first parameter [esp+4] becomes [esp+16].
|
||||
; Note: edi is used not by this procedure itself, but by worker procedures.
|
||||
push ebx esi edi
|
||||
; 2. Get parameter from the stack: [esp+16] is the first parameter,
|
||||
; pointer to IOCTL structure.
|
||||
mov edx, [esp+16] ; edx -> IOCTL
|
||||
; 3. Set the return value to 'invalid IOCTL'.
|
||||
; Now, if one of conditions for IOCTL does not met, the code
|
||||
; can simply return the value already loaded.
|
||||
mov al, ERROR_INVALID_IOCTL
|
||||
; 4. Get request code and select a handler for the code.
|
||||
mov ecx, [edx+IOCTL.io_code]
|
||||
test ecx, ecx ; check for SRV_GETVERSION
|
||||
jnz .no.srv_getversion
|
||||
; 4. This is SRV_GETVERSION request, no input, 4 bytes output, API_VERSION.
|
||||
; 4a. Output size must be at least 4 bytes.
|
||||
cmp [edx+IOCTL.out_size], 4
|
||||
jl .return
|
||||
; 4b. Write result to the output buffer.
|
||||
mov eax, [edx+IOCTL.output]
|
||||
mov dword [eax], API_VERSION
|
||||
; 4c. Return success.
|
||||
xor eax, eax
|
||||
jmp .return
|
||||
.no.srv_getversion:
|
||||
dec ecx ; check for DEV_ADD_DISK
|
||||
jnz .no.dev_add_disk
|
||||
; 5. This is DEV_ADD_DISK request, input is add_disk_struc, output is 1 byte
|
||||
; 5a. Input size must be exactly add_disk_struc.sizeof bytes.
|
||||
cmp [edx+IOCTL.inp_size], add_disk_struc.sizeof
|
||||
jnz .return
|
||||
; 5b. Load input parameters and call the worker procedure.
|
||||
mov eax, [edx+IOCTL.input]
|
||||
movzx ebx, [eax+add_disk_struc.DiskId]
|
||||
mov esi, [eax+add_disk_struc.DiskSize]
|
||||
call add_disk
|
||||
; 5c. Return back to the caller the value from the worker procedure.
|
||||
jmp .return
|
||||
.no.dev_add_disk:
|
||||
dec ecx ; check for DEV_DEL_DISK
|
||||
jnz .return
|
||||
; 6. This is DEV_DEL_DISK request, input is del_disk_struc
|
||||
; 6a. Input size must be exactly del_disk_struc.sizeof bytes.
|
||||
cmp [edx+IOCTL.inp_size], del_disk_struc.sizeof
|
||||
jnz .return
|
||||
; 6b. Load input parameters and call the worker procedure.
|
||||
mov eax, [edx+IOCTL.input]
|
||||
movzx ebx, [eax+del_disk_struc.DiskId]
|
||||
call del_disk
|
||||
; 6c. Return back to the caller the value from the worker procedure.
|
||||
.return:
|
||||
; 7. Exit.
|
||||
; 7a. The code above returns a value in al for efficiency,
|
||||
; propagate it to eax.
|
||||
movzx eax, al
|
||||
; 7b. Restore used registers to be stdcall.
|
||||
pop edi esi ebx
|
||||
; 7c. Return, popping one argument.
|
||||
retn 4
|
||||
endp
|
||||
|
||||
; The worker procedure for DEV_ADD_DISK request.
|
||||
; Creates a memory-based disk of given size and formats it in FAT16/32.
|
||||
; Called with ebx = disk id, esi = disk size,
|
||||
; returns error code in al.
|
||||
proc add_disk
|
||||
; 1. Check that disk id is correct and free.
|
||||
; Otherwise, return the corresponding error code.
|
||||
mov al, ERROR_INVALID_ID
|
||||
cmp ebx, max_num_disks
|
||||
jae .return
|
||||
cmp [disk_pointers+ebx*4], 0
|
||||
jnz .return
|
||||
; 2. Check that the size is reasonable.
|
||||
; Otherwise, return the corresponding error code.
|
||||
mov al, ERROR_SIZE_TOO_LARGE
|
||||
cmp esi, MAX_SIZE
|
||||
ja .return
|
||||
mov al, ERROR_SIZE_TOO_SMALL
|
||||
cmp esi, MIN_FAT16_SIZE
|
||||
jb .return
|
||||
; 3. Allocate memory for the disk, store the pointer in edi.
|
||||
; If failed, return the corresponding error code.
|
||||
mov eax, esi
|
||||
shl eax, 9
|
||||
stdcall KernelAlloc, eax
|
||||
mov edi, eax
|
||||
test eax, eax
|
||||
mov al, ERROR_NO_MEMORY
|
||||
jz .return
|
||||
; 4. Store the pointer and the size in the global variables.
|
||||
; It is possible, though very unlikely, that two threads
|
||||
; have called this function in parallel with the same id,
|
||||
; so [disk_pointers+ebx*4] could be filled by another thread.
|
||||
; Play extra safe and store new value only if old value is zero.
|
||||
xor eax, eax
|
||||
lock cmpxchg [disk_pointers+ebx*4], edi
|
||||
jz @f
|
||||
; Otherwise, free the allocated memory and return the corresponding error code.
|
||||
stdcall KernelFree, edi
|
||||
mov al, ERROR_INVALID_ID
|
||||
jmp .return
|
||||
@@:
|
||||
mov [disk_sizes+ebx*4], esi
|
||||
; 5. Call the worker procedure for formatting this disk.
|
||||
; It should not fail.
|
||||
call format_disk
|
||||
; 6. Register the disk in the system.
|
||||
; 6a. Generate name as /tmp#, where # = ebx + '0'. Use two dwords in the stack.
|
||||
push 0
|
||||
push 'tmp'
|
||||
mov eax, esp ; eax points to 'tmp' + zero byte + zero dword
|
||||
lea ecx, [ebx+'0'] ; ecx = digit
|
||||
mov [eax+3], cl ; eax points to 'tmp#' + zero dword
|
||||
; 6b. Call the kernel API. Use disk id as 'userdata' parameter for callbacks.
|
||||
stdcall DiskAdd, disk_functions, eax, ebx, 0
|
||||
; 6c. Restore the stack after 6a.
|
||||
pop ecx ecx
|
||||
; 6c. Check the result. If DiskAdd has failed, cleanup and return
|
||||
; ERROR_NO_MEMORY, this is the most probable or even the only reason to fail.
|
||||
test eax, eax
|
||||
jnz @f
|
||||
mov [disk_sizes+ebx*4], 0
|
||||
mov [disk_pointers+ebx*4], 0
|
||||
stdcall KernelFree, edi
|
||||
mov al, ERROR_NO_MEMORY
|
||||
jmp .return
|
||||
@@:
|
||||
push eax
|
||||
; 6d. Notify the kernel that media is inserted.
|
||||
stdcall DiskMediaChanged, eax, 1
|
||||
; 6e. Disk is fully configured; store its handle in the global variable
|
||||
; and return success.
|
||||
pop [disk_handles+ebx*4]
|
||||
xor eax, eax
|
||||
; 7. Return.
|
||||
.return:
|
||||
retn
|
||||
endp
|
||||
|
||||
; The worker procedure for DEV_DEL_DISK request.
|
||||
; Deletes a previously created memory-based disk.
|
||||
; Called with ebx = disk id,
|
||||
; returns error code in al.
|
||||
proc del_disk
|
||||
; 1. Check that disk id is correct.
|
||||
; Otherwise, return the corresponding error code.
|
||||
mov al, ERROR_INVALID_ID
|
||||
cmp ebx, max_num_disks
|
||||
jae .return
|
||||
; 2. Get the disk handle, simultaneously clearing the global variable.
|
||||
xor edx, edx
|
||||
xchg edx, [disk_handles+ebx*4]
|
||||
; 3. Check that the handle is non-zero.
|
||||
; Otherwise, return the corresponding error code.
|
||||
test edx, edx
|
||||
jz .return
|
||||
; 4. Delete the disk from the system.
|
||||
stdcall DiskDel, edx
|
||||
; 5. Return success.
|
||||
; Note that we can't free memory yet; it will be done in tmpdisk_close.
|
||||
xor eax, eax
|
||||
.return:
|
||||
retn
|
||||
endp
|
||||
|
||||
; Include implementation of tmpdisk_* callbacks.
|
||||
include 'tmpdisk_work.inc'
|
||||
; Include FAT-specific code.
|
||||
include 'tmpdisk_fat.inc'
|
||||
|
||||
; initialized data
|
||||
align 4
|
||||
disk_functions:
|
||||
dd disk_functions_end - disk_functions
|
||||
dd tmpdisk_close
|
||||
dd 0 ; no need in .closemedia
|
||||
dd tmpdisk_querymedia
|
||||
dd tmpdisk_read
|
||||
dd tmpdisk_write
|
||||
dd 0 ; no need in .flush
|
||||
dd tmpdisk_adjust_cache_size
|
||||
disk_functions_end:
|
||||
; disk_handles = array of values for Disk* kernel functions
|
||||
label disk_handles dword
|
||||
times max_num_disks dd 0
|
||||
; disk_pointers = array of pointers to disk data
|
||||
label disk_pointers dword
|
||||
times max_num_disks dd 0
|
||||
; disk_sizes = array of disk sizes
|
||||
label disk_sizes dword
|
||||
times max_num_disks dd 0
|
||||
|
||||
version dd 0x00060006
|
||||
my_service db 'tmpdisk',0
|
||||
|
||||
; uninitialized data
|
||||
; actually, not used here
|
||||
;section '.data' data readable writable align 16 ; standard driver stuff
|
327
kernel/trunk/drivers/tmpdisk_fat.inc
Normal file
327
kernel/trunk/drivers/tmpdisk_fat.inc
Normal file
@ -0,0 +1,327 @@
|
||||
; FAT-specific code for tmpdisk.asm.
|
||||
; Formats a disk to FAT16 or FAT32, depending on size.
|
||||
; Note: formatting is adjusted for memory-based disks. Although the resulting
|
||||
; image is a valid FAT32 volume, it has no "spare" sectors, e.g. second copy
|
||||
; of FAT or place for second sector of MS FAT32 bootloader.
|
||||
|
||||
; Some constants
|
||||
FAT16_ROOTDIR_SECTORS = 16 ; can be changed, but why not?
|
||||
; FAT16:
|
||||
; 1 bootsector,
|
||||
; min 0xFF5 sectors for data,
|
||||
; min (0xFF5*2/512) = 16 sectors per FAT, we use only one copy,
|
||||
; FAT16_ROOTDIR_SECTORS for root directory
|
||||
MIN_FAT16_SIZE = 1 + 16 + FAT16_ROOTDIR_SECTORS + 0xFF5
|
||||
; FAT32:
|
||||
; 1 bootsector,
|
||||
; 1 sector for fsinfo,
|
||||
; min 0xFFF5 sectors for data,
|
||||
; min (0xFFF5*4/512) = 512 sectors per FAT, we use only one copy
|
||||
MIN_FAT32_SIZE = 1 + 1 + 512 + 0xFFF5
|
||||
MAX_SIZE = 1 shl (30 - 9) ; 1G in 512-byte sectors
|
||||
|
||||
; Initializes FATxx structures on the disk.
|
||||
; Called with edi = pointer to disk data, esi = size of disk.
|
||||
proc format_disk
|
||||
; Determine FAT type and jump to the corresponding handler.
|
||||
cmp esi, MIN_FAT32_SIZE
|
||||
jae format_disk_fat32
|
||||
; Fall through to format_disk_fat16.
|
||||
endp
|
||||
|
||||
; Structure of FAT16 bootsector. Field names are from MS spec.
|
||||
struc FAT16BOOT
|
||||
{
|
||||
.BS_jmpBoot rb 3
|
||||
.BS_OEMName rb 8
|
||||
.BPB_BytsPerSec dw ?
|
||||
.BPB_SecsPerClus db ?
|
||||
.BPB_RsvdSecCnt dw ?
|
||||
.BPB_NumFATs db ?
|
||||
.BPB_RootEntCnt dw ?
|
||||
.BPB_TotSec16 dw ?
|
||||
.BPB_Media db ?
|
||||
.BPB_FATSz16 dw ?
|
||||
.BPB_SecPerTrk dw ?
|
||||
.BPB_NumHeads dw ?
|
||||
.BPB_HiddSec dd ?
|
||||
.BPB_TotSec32 dd ?
|
||||
.BS_DrvNum db ?
|
||||
.BS_Reserved1 db ?
|
||||
.BS_BootSig db ?
|
||||
.BS_VolID dd ?
|
||||
.BS_VolLab rb 11
|
||||
.BS_FilSysType rb 8
|
||||
}
|
||||
virtual at 0
|
||||
FAT16BOOT FAT16BOOT
|
||||
end virtual
|
||||
|
||||
; Initializes FAT16 structures on the disk.
|
||||
; Called with edi = pointer to disk data, esi = size of disk.
|
||||
format_disk_fat16:
|
||||
; 1. Calculate number of clusters.
|
||||
; 1a. There are fixed-sized areas and there are data+FAT;
|
||||
; every cluster uses 512 bytes in data area and 2 bytes in FAT area.
|
||||
lea eax, [esi-1-FAT16_ROOTDIR_SECTORS]
|
||||
; two following lines are equivalent to edx = floor(eax*512/514)
|
||||
mov ecx, 0xFF00FF01
|
||||
mul ecx ; edx = number of clusters
|
||||
; 1b. Force the number be less than 0xfff5.
|
||||
mov eax, 0xFFF4
|
||||
cmp edx, eax
|
||||
jb @f
|
||||
mov edx, eax
|
||||
@@:
|
||||
; 2. Zero all system areas on the disk.
|
||||
lea ecx, [256*(1+FAT16_ROOTDIR_SECTORS)/2+edx+255]
|
||||
and ecx, not 255
|
||||
shr ecx, 1
|
||||
xor eax, eax
|
||||
push edi
|
||||
rep stosd
|
||||
pop edi
|
||||
; 3. Generate the bootsector.
|
||||
; 3a. Copy static stub.
|
||||
push esi edi
|
||||
mov esi, fat16bootsector_stub
|
||||
mov ecx, fat16bootsector_stub_size
|
||||
rep movsb
|
||||
pop edi esi
|
||||
mov word [edi+510], 0xAA55
|
||||
; 3b. Set fields which depend on size.
|
||||
cmp esi, 0x10000
|
||||
jae .size_is_32bit
|
||||
mov [edi+FAT16BOOT.BPB_TotSec16], si
|
||||
jmp .size_written
|
||||
.size_is_32bit:
|
||||
mov [edi+FAT16BOOT.BPB_TotSec32], esi
|
||||
.size_written:
|
||||
lea eax, [edx+255]
|
||||
shr eax, 8
|
||||
mov [edi+FAT16BOOT.BPB_FATSz16], ax
|
||||
; 3c. Generate volume ID.
|
||||
call generate_volume_id
|
||||
mov [edi+FAT16BOOT.BS_VolID], eax
|
||||
; 4. Initialize FAT.
|
||||
mov dword [edi+512], 0xFFFFFFF8
|
||||
; 5. Return.
|
||||
ret
|
||||
|
||||
; Structure of FAT32 bootsector. Field names are from MS spec.
|
||||
struc FAT32BOOT
|
||||
{
|
||||
.BS_jmpBoot rb 3
|
||||
.BS_OEMName rb 8
|
||||
.BPB_BytsPerSec dw ?
|
||||
.BPB_SecsPerClus db ?
|
||||
.BPB_RsvdSecCnt dw ?
|
||||
.BPB_NumFATs db ?
|
||||
.BPB_RootEntCnt dw ?
|
||||
.BPB_TotSec16 dw ?
|
||||
.BPB_Media db ?
|
||||
.BPB_FATSz16 dw ?
|
||||
.BPB_SecPerTrk dw ?
|
||||
.BPB_NumHeads dw ?
|
||||
.BPB_HiddSec dd ?
|
||||
.BPB_TotSec32 dd ?
|
||||
.BPB_FATSz32 dd ?
|
||||
.BPB_ExtFlags dw ?
|
||||
.BPB_FSVer dw ?
|
||||
.BPB_RootClus dd ?
|
||||
.BPB_FSInfo dw ?
|
||||
.BPB_BkBootSec dw ?
|
||||
.BPB_Reserved rb 12
|
||||
.BS_DrvNum db ?
|
||||
.BS_Reserved1 db ?
|
||||
.BS_BootSig db ?
|
||||
.BS_VolID dd ?
|
||||
.BS_VolLab rb 11
|
||||
.BS_FilSysType rb 8
|
||||
}
|
||||
virtual at 0
|
||||
FAT32BOOT FAT32BOOT
|
||||
end virtual
|
||||
|
||||
; Initializes FAT32 structures on the disk.
|
||||
; Called with edi = pointer to disk data, esi = size of disk.
|
||||
format_disk_fat32:
|
||||
; 1. Calculate number of clusters.
|
||||
; 1a. There is fixed-sized area and there are data+FAT;
|
||||
; every cluster uses 512 bytes in data area and 4 bytes in FAT area.
|
||||
lea eax, [esi-1-1]
|
||||
; two following lines are equivalent to edx=floor(eax*512/516) if eax<10000000h
|
||||
mov ecx, 0xFE03F810
|
||||
mul ecx ; edx = number of clusters
|
||||
; 2. Zero all system areas on the disk and first cluster of data,
|
||||
; used for root directory.
|
||||
lea ecx, [128*(1+1+1)+edx+127]
|
||||
and ecx, not 127
|
||||
xor eax, eax
|
||||
push edi
|
||||
rep stosd
|
||||
pop edi
|
||||
; 3. Generate the bootsector.
|
||||
; 3a. Copy static stub.
|
||||
push esi edi
|
||||
mov esi, fat32bootsector_stub
|
||||
mov ecx, fat32bootsector_stub_size
|
||||
rep movsb
|
||||
pop edi esi
|
||||
mov word [edi+510], 0xAA55
|
||||
; 3b. Set fields which depend on size.
|
||||
mov [edi+FAT32BOOT.BPB_TotSec32], esi
|
||||
lea eax, [edx+127]
|
||||
shr eax, 7
|
||||
mov [edi+FAT32BOOT.BPB_FATSz32], eax
|
||||
; 3c. Generate volume ID.
|
||||
call generate_volume_id
|
||||
mov [edi+FAT32BOOT.BS_VolID], eax
|
||||
; 4. Initialize fsinfo sector.
|
||||
mov dword [edi+512], 'RRaA'
|
||||
mov dword [edi+512+484], 'rrAa'
|
||||
dec edx ; one cluster is occupied by root dir
|
||||
mov dword [edi+512+488], edx ; free count
|
||||
mov byte [edi+512+492], 3 ; first free cluster
|
||||
mov word [edi+512+510], 0xAA55
|
||||
; 5. Initialize FAT.
|
||||
mov dword [edi+512*2], 0x0FFFFFF8
|
||||
mov dword [edi+512*2+4], 0x0FFFFFFF
|
||||
mov dword [edi+512*2+8], 0x0FFFFFFF
|
||||
; 6. Return.
|
||||
ret
|
||||
|
||||
; Generate volume serial number, which should try to be unique for each volume.
|
||||
; Use CMOS date+time, copy-pasted from fat32.inc.
|
||||
generate_volume_id:
|
||||
call get_time_for_file
|
||||
mov cx, ax
|
||||
call get_date_for_file
|
||||
shl eax, 16
|
||||
mov ax, cx
|
||||
ret
|
||||
|
||||
; Three following procedures are copy-pasted from fat32.inc.
|
||||
bcd2bin:
|
||||
;----------------------------------
|
||||
; input : AL=BCD number (eg. 0x11)
|
||||
; output : AH=0
|
||||
; AL=decimal number (eg. 11)
|
||||
;----------------------------------
|
||||
xor ah, ah
|
||||
shl ax, 4
|
||||
shr al, 4
|
||||
aad
|
||||
ret
|
||||
|
||||
get_date_for_file:
|
||||
;-----------------------------------------------------
|
||||
; Get date from CMOS and pack day,month,year in AX
|
||||
; DATE bits 0..4 : day of month 0..31
|
||||
; 5..8 : month of year 1..12
|
||||
; 9..15 : count of years from 1980
|
||||
;-----------------------------------------------------
|
||||
mov al, 0x7 ;day
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
ror eax, 5
|
||||
|
||||
mov al, 0x8 ;month
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
ror eax, 4
|
||||
|
||||
mov al, 0x9 ;year
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
add ax, 20 ;because CMOS return only the two last
|
||||
;digit (eg. 2000 -> 00 , 2001 -> 01) and we
|
||||
rol eax, 9 ;need the difference with 1980 (eg. 2001-1980)
|
||||
ret
|
||||
|
||||
|
||||
get_time_for_file:
|
||||
;-----------------------------------------------------
|
||||
; Get time from CMOS and pack hour,minute,second in AX
|
||||
; TIME bits 0..4 : second (the low bit is lost)
|
||||
; 5..10 : minute 0..59
|
||||
; 11..15 : hour 0..23
|
||||
;-----------------------------------------------------
|
||||
mov al, 0x0 ;second
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
ror eax, 6
|
||||
|
||||
mov al, 0x2 ;minute
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
ror eax, 6
|
||||
|
||||
mov al, 0x4 ;hour
|
||||
out 0x70, al
|
||||
in al, 0x71
|
||||
call bcd2bin
|
||||
rol eax, 11
|
||||
ret
|
||||
|
||||
; some data
|
||||
fat16bootsector_stub:
|
||||
db 0EBh, 3Ch, 90h ; BS_jmpBoot
|
||||
db 'KOLIBRI ' ; BS_OEMName
|
||||
dw 512 ; BPB_BytsPerSec
|
||||
db 1 ; BPB_SecsPerClus
|
||||
dw 1 ; BPB_RsvdSecCnt
|
||||
db 1 ; BPB_NumFATs
|
||||
dw FAT16_ROOTDIR_SECTORS*16 ; BPB_RootEntCnt
|
||||
dw 0 ; BPB_TotSec16, filled in format_disk_fat16
|
||||
db 0F8h ; BPB_Media
|
||||
dw 0 ; BPB_FATSz16, filled in format_disk_fat16
|
||||
dw 32 ; BPB_SecPerTrk
|
||||
dw 128 ; BPB_NumHeads
|
||||
dd 0 ; BPB_HiddSec
|
||||
dd 0 ; BPB_TotSec32, filled in format_disk_fat16
|
||||
db 80h ; BS_DrvNum
|
||||
db 0 ; BS_Reserved1
|
||||
db 29h ; BS_BootSig
|
||||
dd 0 ; BS_VolID, filled in format_disk_fat16
|
||||
db 'NO NAME ' ; BS_VolLab
|
||||
db 'FAT16 ' ; BS_FilSysType
|
||||
; just in case add some meaningful bytes if someone tries to boot
|
||||
db 0CDh, 19h, 0EBh, 0FEh ; int 19h, jmp $
|
||||
fat16bootsector_stub_size = $ - fat16bootsector_stub
|
||||
fat32bootsector_stub:
|
||||
db 0EBh, 58h, 90h ; BS_jmpBoot
|
||||
db 'KOLIBRI ' ; BS_OEMName
|
||||
dw 512 ; BPB_BytsPerSec
|
||||
db 1 ; BPB_SecsPerClus
|
||||
dw 1 ; BPB_RsvdSecCnt
|
||||
db 1 ; BPB_NumFATs
|
||||
dw 0 ; BPB_RootEntCnt
|
||||
dw 0 ; BPB_TotSec16
|
||||
db 0F8h ; BPB_Media
|
||||
dw 0 ; BPB_FATSz16
|
||||
dw 32 ; BPB_SecPerTrk
|
||||
dw 128 ; BPB_NumHeads
|
||||
dd 0 ; BPB_HiddSec
|
||||
dd 0 ; BPB_TotSec32, filled in format_disk_fat32
|
||||
dd 0 ; BPB_FATSz32, filled in format_disk_fat32
|
||||
dw 0 ; BPB_ExtFlags
|
||||
dw 0 ; BPB_FSVer
|
||||
dd 2 ; BPB_RootClus
|
||||
dw 1 ; BPB_FSInfo
|
||||
dw 0 ; BPB_BkBootSec
|
||||
rb 12 ; BPB_Reserved
|
||||
db 80h ; BS_DrvNum
|
||||
db 0 ; BS_Reserved1
|
||||
db 29h ; BS_BootSig
|
||||
dd 0 ; BS_VolID, filled in format_disk_fat32
|
||||
db 'NO NAME ' ; BS_VolLab
|
||||
db 'FAT32 ' ; BS_FilSysType
|
||||
; same bytes as in fat16bootsector_stub
|
||||
db 0CDh, 19h, 0EBh, 0FEh ; int 19h, jmp $
|
||||
fat32bootsector_stub_size = $ - fat32bootsector_stub
|
144
kernel/trunk/drivers/tmpdisk_work.inc
Normal file
144
kernel/trunk/drivers/tmpdisk_work.inc
Normal file
@ -0,0 +1,144 @@
|
||||
; Callbacks which implement tmpdisk-specific disk functions for tmpdisk.asm.
|
||||
|
||||
; The first argument of every callback is .userdata = userdata arg of AddDisk.
|
||||
; For tmpdisk, .userdata is the disk id, one of 0,...,max_num_disks-1.
|
||||
|
||||
DISK_STATUS_OK = 0 ; success
|
||||
DISK_STATUS_GENERAL_ERROR = -1; if no other code is suitable
|
||||
DISK_STATUS_INVALID_CALL = 1 ; invalid input parameters
|
||||
DISK_STATUS_NO_MEDIA = 2 ; no media present
|
||||
DISK_STATUS_END_OF_MEDIA = 3 ; end of media while reading/writing data
|
||||
|
||||
; The last function that is called for the given disk. The kernel calls it when
|
||||
; the kernel has finished all operations with the disk and it is safe to free
|
||||
; all driver-specific data identified by 'userdata'.
|
||||
proc tmpdisk_close
|
||||
virtual at esp+4
|
||||
.userdata dd ?
|
||||
end virtual
|
||||
; Free the memory for disk and zero global variables.
|
||||
mov edx, [.userdata]
|
||||
mov [disk_sizes+edx*4], 0
|
||||
xor eax, eax
|
||||
xchg eax, [disk_pointers+edx*4]
|
||||
stdcall KernelFree, eax
|
||||
retn 4
|
||||
endp
|
||||
|
||||
struc DISKMEDIAINFO
|
||||
{
|
||||
.flags dd ?
|
||||
DISK_MEDIA_READONLY = 1
|
||||
.sectorsize dd ?
|
||||
.capacity dq ?
|
||||
}
|
||||
virtual at 0
|
||||
DISKMEDIAINFO DISKMEDIAINFO
|
||||
end virtual
|
||||
|
||||
; Returns information about disk media.
|
||||
proc tmpdisk_querymedia
|
||||
virtual at esp+4
|
||||
.userdata dd ?
|
||||
.info dd ?
|
||||
end virtual
|
||||
; Media is always present, sector size is always 512 bytes,
|
||||
; the size of disk in sectors is stored in a global variable.
|
||||
mov edx, [.userdata]
|
||||
mov ecx, [.info]
|
||||
mov [ecx+DISKMEDIAINFO.flags], 0
|
||||
mov [ecx+DISKMEDIAINFO.sectorsize], 512
|
||||
mov eax, [disk_sizes+edx*4]
|
||||
mov dword [ecx+DISKMEDIAINFO.capacity], eax
|
||||
mov dword [ecx+DISKMEDIAINFO.capacity+4], 0
|
||||
; Return zero as an indicator of success.
|
||||
xor eax, eax
|
||||
retn 8
|
||||
endp
|
||||
|
||||
; Reads one or more sectors from the device.
|
||||
tmpdisk_read:
|
||||
xor edx, edx ; 0 = reading
|
||||
jmp tmpdisk_readwrite
|
||||
|
||||
; Writes one or more sectors to the device.
|
||||
tmpdisk_write:
|
||||
mov dl, 1 ; 1 = writing
|
||||
; Fall through to tmpdisk_readwrite.
|
||||
|
||||
; Common procedure for reading and writing.
|
||||
; dl = 0 for reading, dl = 1 for writing.
|
||||
; Arguments of tmpdisk_read and tmpdisk_write are the same,
|
||||
; they continue to be stack arguments of this procedure.
|
||||
proc tmpdisk_readwrite \
|
||||
userdata:dword, \
|
||||
buffer:dword, \
|
||||
start_sector:qword, \
|
||||
numsectors_ptr:dword
|
||||
; 1. Save used registers to be stdcall.
|
||||
push esi edi
|
||||
mov esi, [userdata]
|
||||
mov edi, [numsectors_ptr]
|
||||
; 1. Determine number of sectors to be transferred.
|
||||
; This is either the requested number of sectors or number of sectors
|
||||
; up to the disk boundary, depending of what is less.
|
||||
xor ecx, ecx
|
||||
; 1a. Test whether [start_sector] is less than [disk_sizes] for selected disk.
|
||||
; If so, calculate number of sectors between [start_sector] and [disk_sizes].
|
||||
; Otherwise, the actual number of sectors is zero.
|
||||
cmp dword [start_sector+4], ecx
|
||||
jnz .got_number
|
||||
mov eax, [disk_sizes+esi*4]
|
||||
sub eax, dword [start_sector]
|
||||
jbe .got_number
|
||||
; 1b. Get the requested number of sectors.
|
||||
mov ecx, [edi]
|
||||
; 1c. If it is greater than number of sectors calculated in 1a, use the value
|
||||
; from 1a.
|
||||
cmp ecx, eax
|
||||
jb .got_number
|
||||
mov ecx, eax
|
||||
.got_number:
|
||||
; 2. Compare the actual number of sectors with requested. If they are
|
||||
; equal, set eax (it will be the returned value) to zero. Otherwise,
|
||||
; use DISK_STATUS_END_OF_MEDIA.
|
||||
xor eax, eax
|
||||
cmp ecx, [edi]
|
||||
jz @f
|
||||
mov al, DISK_STATUS_END_OF_MEDIA
|
||||
@@:
|
||||
; 3. Store the actual number of sectors.
|
||||
mov [edi], ecx
|
||||
; 4. Calculate source and destination addresses.
|
||||
mov edi, dword [start_sector]
|
||||
shl edi, 9
|
||||
add edi, [disk_pointers+esi*4]
|
||||
mov esi, [buffer]
|
||||
; 5. Calculate number of dwords to be transferred.
|
||||
shl ecx, 9-2
|
||||
; 6. Now esi = [buffer], edi = pointer inside disk.
|
||||
; This is normal for write operations;
|
||||
; exchange esi and edi for read operations.
|
||||
test dl, dl
|
||||
jnz @f
|
||||
xchg esi, edi
|
||||
@@:
|
||||
; 7. Copy data.
|
||||
rep movsd
|
||||
; 8. Restore used registers to be stdcall and return.
|
||||
; The value in eax was calculated in step 2.
|
||||
pop edi esi
|
||||
ret
|
||||
endp
|
||||
|
||||
; The kernel calls this function when initializing cache subsystem for
|
||||
; the media. This call allows the driver to adjust the cache size.
|
||||
proc tmpdisk_adjust_cache_size
|
||||
virtual at esp+4
|
||||
.userdata dd ?
|
||||
.suggested_size dd ?
|
||||
end virtual
|
||||
; Since tmpdisk does not need cache, just return 0.
|
||||
xor eax, eax
|
||||
retn 8
|
||||
endp
|
Loading…
Reference in New Issue
Block a user