/* * Copyright © 2004 Carl Worth * Copyright © 2006 Red Hat, Inc. * Copyright © 2008 Chris Wilson * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Carl Worth * * Contributor(s): * Carl D. Worth * Chris Wilson */ /* Provide definitions for standalone compilation */ #include "cairoint.h" #include "cairo-boxes-private.h" #include "cairo-combsort-private.h" #include "cairo-error-private.h" typedef struct _cairo_bo_edge cairo_bo_edge_t; typedef struct _cairo_bo_trap cairo_bo_trap_t; /* A deferred trapezoid of an edge */ struct _cairo_bo_trap { cairo_bo_edge_t *right; int32_t top; }; struct _cairo_bo_edge { cairo_edge_t edge; cairo_bo_edge_t *prev; cairo_bo_edge_t *next; cairo_bo_trap_t deferred_trap; }; typedef enum { CAIRO_BO_EVENT_TYPE_START, CAIRO_BO_EVENT_TYPE_STOP } cairo_bo_event_type_t; typedef struct _cairo_bo_event { cairo_bo_event_type_t type; cairo_point_t point; cairo_bo_edge_t *edge; } cairo_bo_event_t; typedef struct _cairo_bo_sweep_line { cairo_bo_event_t **events; cairo_bo_edge_t *head; cairo_bo_edge_t *stopped; int32_t current_y; cairo_bo_edge_t *current_edge; } cairo_bo_sweep_line_t; static inline int _cairo_point_compare (const cairo_point_t *a, const cairo_point_t *b) { int cmp; cmp = a->y - b->y; if (likely (cmp)) return cmp; return a->x - b->x; } static inline int _cairo_bo_edge_compare (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b) { int cmp; cmp = a->edge.line.p1.x - b->edge.line.p1.x; if (likely (cmp)) return cmp; return b->edge.bottom - a->edge.bottom; } static inline int cairo_bo_event_compare (const cairo_bo_event_t *a, const cairo_bo_event_t *b) { int cmp; cmp = _cairo_point_compare (&a->point, &b->point); if (likely (cmp)) return cmp; cmp = a->type - b->type; if (cmp) return cmp; return a - b; } static inline cairo_bo_event_t * _cairo_bo_event_dequeue (cairo_bo_sweep_line_t *sweep_line) { return *sweep_line->events++; } CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort, cairo_bo_event_t *, cairo_bo_event_compare) static void _cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line, cairo_bo_event_t **events, int num_events) { _cairo_bo_event_queue_sort (events, num_events); events[num_events] = NULL; sweep_line->events = events; sweep_line->head = NULL; sweep_line->current_y = INT32_MIN; sweep_line->current_edge = NULL; } static void _cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line, cairo_bo_edge_t *edge) { if (sweep_line->current_edge != NULL) { cairo_bo_edge_t *prev, *next; int cmp; cmp = _cairo_bo_edge_compare (sweep_line->current_edge, edge); if (cmp < 0) { prev = sweep_line->current_edge; next = prev->next; while (next != NULL && _cairo_bo_edge_compare (next, edge) < 0) prev = next, next = prev->next; prev->next = edge; edge->prev = prev; edge->next = next; if (next != NULL) next->prev = edge; } else if (cmp > 0) { next = sweep_line->current_edge; prev = next->prev; while (prev != NULL && _cairo_bo_edge_compare (prev, edge) > 0) next = prev, prev = next->prev; next->prev = edge; edge->next = next; edge->prev = prev; if (prev != NULL) prev->next = edge; else sweep_line->head = edge; } else { prev = sweep_line->current_edge; edge->prev = prev; edge->next = prev->next; if (prev->next != NULL) prev->next->prev = edge; prev->next = edge; } } else { sweep_line->head = edge; } sweep_line->current_edge = edge; } static void _cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line, cairo_bo_edge_t *edge) { if (edge->prev != NULL) edge->prev->next = edge->next; else sweep_line->head = edge->next; if (edge->next != NULL) edge->next->prev = edge->prev; if (sweep_line->current_edge == edge) sweep_line->current_edge = edge->prev ? edge->prev : edge->next; } static inline cairo_bool_t edges_collinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b) { return a->edge.line.p1.x == b->edge.line.p1.x; } static cairo_status_t _cairo_bo_edge_end_trap (cairo_bo_edge_t *left, int32_t bot, cairo_bool_t do_traps, void *container) { cairo_bo_trap_t *trap = &left->deferred_trap; cairo_status_t status = CAIRO_STATUS_SUCCESS; /* Only emit (trivial) non-degenerate trapezoids with positive height. */ if (likely (trap->top < bot)) { if (do_traps) { _cairo_traps_add_trap (container, trap->top, bot, &left->edge.line, &trap->right->edge.line); status = _cairo_traps_status ((cairo_traps_t *) container); } else { cairo_box_t box; box.p1.x = left->edge.line.p1.x; box.p1.y = trap->top; box.p2.x = trap->right->edge.line.p1.x; box.p2.y = bot; status = _cairo_boxes_add (container, &box); } } trap->right = NULL; return status; } /* Start a new trapezoid at the given top y coordinate, whose edges * are `edge' and `edge->next'. If `edge' already has a trapezoid, * then either add it to the traps in `traps', if the trapezoid's * right edge differs from `edge->next', or do nothing if the new * trapezoid would be a continuation of the existing one. */ static inline cairo_status_t _cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t *left, cairo_bo_edge_t *right, int top, cairo_bool_t do_traps, void *container) { cairo_status_t status; if (left->deferred_trap.right == right) return CAIRO_STATUS_SUCCESS; if (left->deferred_trap.right != NULL) { if (right != NULL && edges_collinear (left->deferred_trap.right, right)) { /* continuation on right, so just swap edges */ left->deferred_trap.right = right; return CAIRO_STATUS_SUCCESS; } status = _cairo_bo_edge_end_trap (left, top, do_traps, container); if (unlikely (status)) return status; } if (right != NULL && ! edges_collinear (left, right)) { left->deferred_trap.top = top; left->deferred_trap.right = right; } return CAIRO_STATUS_SUCCESS; } static inline cairo_status_t _active_edges_to_traps (cairo_bo_edge_t *left, int32_t top, cairo_fill_rule_t fill_rule, cairo_bool_t do_traps, void *container) { cairo_bo_edge_t *right; cairo_status_t status; if (fill_rule == CAIRO_FILL_RULE_WINDING) { while (left != NULL) { int in_out; /* Greedily search for the closing edge, so that we generate the * maximal span width with the minimal number of trapezoids. */ in_out = left->edge.dir; /* Check if there is a co-linear edge with an existing trap */ right = left->next; if (left->deferred_trap.right == NULL) { while (right != NULL && right->deferred_trap.right == NULL) right = right->next; if (right != NULL && edges_collinear (left, right)) { /* continuation on left */ left->deferred_trap = right->deferred_trap; right->deferred_trap.right = NULL; } } /* End all subsumed traps */ right = left->next; while (right != NULL) { if (right->deferred_trap.right != NULL) { status = _cairo_bo_edge_end_trap (right, top, do_traps, container); if (unlikely (status)) return status; } in_out += right->edge.dir; if (in_out == 0) { /* skip co-linear edges */ if (right->next == NULL || ! edges_collinear (right, right->next)) { break; } } right = right->next; } status = _cairo_bo_edge_start_or_continue_trap (left, right, top, do_traps, container); if (unlikely (status)) return status; left = right; if (left != NULL) left = left->next; } } else { while (left != NULL) { int in_out = 0; right = left->next; while (right != NULL) { if (right->deferred_trap.right != NULL) { status = _cairo_bo_edge_end_trap (right, top, do_traps, container); if (unlikely (status)) return status; } if ((in_out++ & 1) == 0) { cairo_bo_edge_t *next; cairo_bool_t skip = FALSE; /* skip co-linear edges */ next = right->next; if (next != NULL) skip = edges_collinear (right, next); if (! skip) break; } right = right->next; } status = _cairo_bo_edge_start_or_continue_trap (left, right, top, do_traps, container); if (unlikely (status)) return status; left = right; if (left != NULL) left = left->next; } } return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_bentley_ottmann_tessellate_rectilinear (cairo_bo_event_t **start_events, int num_events, cairo_fill_rule_t fill_rule, cairo_bool_t do_traps, void *container) { cairo_bo_sweep_line_t sweep_line; cairo_bo_event_t *event; cairo_status_t status; _cairo_bo_sweep_line_init (&sweep_line, start_events, num_events); while ((event = _cairo_bo_event_dequeue (&sweep_line))) { if (event->point.y != sweep_line.current_y) { status = _active_edges_to_traps (sweep_line.head, sweep_line.current_y, fill_rule, do_traps, container); if (unlikely (status)) return status; sweep_line.current_y = event->point.y; } switch (event->type) { case CAIRO_BO_EVENT_TYPE_START: _cairo_bo_sweep_line_insert (&sweep_line, event->edge); break; case CAIRO_BO_EVENT_TYPE_STOP: _cairo_bo_sweep_line_delete (&sweep_line, event->edge); if (event->edge->deferred_trap.right != NULL) { status = _cairo_bo_edge_end_trap (event->edge, sweep_line.current_y, do_traps, container); if (unlikely (status)) return status; } break; } } return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_bentley_ottmann_tessellate_rectilinear_polygon (cairo_traps_t *traps, const cairo_polygon_t *polygon, cairo_fill_rule_t fill_rule) { cairo_status_t status; cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)]; cairo_bo_event_t *events; cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1]; cairo_bo_event_t **event_ptrs; cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)]; cairo_bo_edge_t *edges; int num_events; int i, j; if (unlikely (polygon->num_edges == 0)) return CAIRO_STATUS_SUCCESS; num_events = 2 * polygon->num_edges; events = stack_events; event_ptrs = stack_event_ptrs; edges = stack_edges; if (num_events > ARRAY_LENGTH (stack_events)) { events = _cairo_malloc_ab_plus_c (num_events, sizeof (cairo_bo_event_t) + sizeof (cairo_bo_edge_t) + sizeof (cairo_bo_event_t *), sizeof (cairo_bo_event_t *)); if (unlikely (events == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); event_ptrs = (cairo_bo_event_t **) (events + num_events); edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1); } for (i = j = 0; i < polygon->num_edges; i++) { edges[i].edge = polygon->edges[i]; edges[i].deferred_trap.right = NULL; edges[i].prev = NULL; edges[i].next = NULL; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_START; events[j].point.y = polygon->edges[i].top; events[j].point.x = polygon->edges[i].line.p1.x; events[j].edge = &edges[i]; j++; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_STOP; events[j].point.y = polygon->edges[i].bottom; events[j].point.x = polygon->edges[i].line.p1.x; events[j].edge = &edges[i]; j++; } status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j, fill_rule, TRUE, traps); if (events != stack_events) free (events); traps->is_rectilinear = TRUE; return status; } cairo_status_t _cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (const cairo_polygon_t *polygon, cairo_fill_rule_t fill_rule, cairo_boxes_t *boxes) { cairo_status_t status; cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)]; cairo_bo_event_t *events; cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1]; cairo_bo_event_t **event_ptrs; cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)]; cairo_bo_edge_t *edges; int num_events; int i, j; if (unlikely (polygon->num_edges == 0)) return CAIRO_STATUS_SUCCESS; num_events = 2 * polygon->num_edges; events = stack_events; event_ptrs = stack_event_ptrs; edges = stack_edges; if (num_events > ARRAY_LENGTH (stack_events)) { events = _cairo_malloc_ab_plus_c (num_events, sizeof (cairo_bo_event_t) + sizeof (cairo_bo_edge_t) + sizeof (cairo_bo_event_t *), sizeof (cairo_bo_event_t *)); if (unlikely (events == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); event_ptrs = (cairo_bo_event_t **) (events + num_events); edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1); } for (i = j = 0; i < polygon->num_edges; i++) { edges[i].edge = polygon->edges[i]; edges[i].deferred_trap.right = NULL; edges[i].prev = NULL; edges[i].next = NULL; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_START; events[j].point.y = polygon->edges[i].top; events[j].point.x = polygon->edges[i].line.p1.x; events[j].edge = &edges[i]; j++; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_STOP; events[j].point.y = polygon->edges[i].bottom; events[j].point.x = polygon->edges[i].line.p1.x; events[j].edge = &edges[i]; j++; } status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j, fill_rule, FALSE, boxes); if (events != stack_events) free (events); return status; } cairo_status_t _cairo_bentley_ottmann_tessellate_rectilinear_traps (cairo_traps_t *traps, cairo_fill_rule_t fill_rule) { cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)]; cairo_bo_event_t *events; cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1]; cairo_bo_event_t **event_ptrs; cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)]; cairo_bo_edge_t *edges; cairo_status_t status; int i, j, k; if (unlikely (traps->num_traps == 0)) return CAIRO_STATUS_SUCCESS; assert (traps->is_rectilinear); i = 4 * traps->num_traps; events = stack_events; event_ptrs = stack_event_ptrs; edges = stack_edges; if (i > ARRAY_LENGTH (stack_events)) { events = _cairo_malloc_ab_plus_c (i, sizeof (cairo_bo_event_t) + sizeof (cairo_bo_edge_t) + sizeof (cairo_bo_event_t *), sizeof (cairo_bo_event_t *)); if (unlikely (events == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); event_ptrs = (cairo_bo_event_t **) (events + i); edges = (cairo_bo_edge_t *) (event_ptrs + i + 1); } for (i = j = k = 0; i < traps->num_traps; i++) { edges[k].edge.top = traps->traps[i].top; edges[k].edge.bottom = traps->traps[i].bottom; edges[k].edge.line = traps->traps[i].left; edges[k].edge.dir = 1; edges[k].deferred_trap.right = NULL; edges[k].prev = NULL; edges[k].next = NULL; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_START; events[j].point.y = traps->traps[i].top; events[j].point.x = traps->traps[i].left.p1.x; events[j].edge = &edges[k]; j++; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_STOP; events[j].point.y = traps->traps[i].bottom; events[j].point.x = traps->traps[i].left.p1.x; events[j].edge = &edges[k]; j++; k++; edges[k].edge.top = traps->traps[i].top; edges[k].edge.bottom = traps->traps[i].bottom; edges[k].edge.line = traps->traps[i].right; edges[k].edge.dir = -1; edges[k].deferred_trap.right = NULL; edges[k].prev = NULL; edges[k].next = NULL; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_START; events[j].point.y = traps->traps[i].top; events[j].point.x = traps->traps[i].right.p1.x; events[j].edge = &edges[k]; j++; event_ptrs[j] = &events[j]; events[j].type = CAIRO_BO_EVENT_TYPE_STOP; events[j].point.y = traps->traps[i].bottom; events[j].point.x = traps->traps[i].right.p1.x; events[j].edge = &edges[k]; j++; k++; } _cairo_traps_clear (traps); status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j, fill_rule, TRUE, traps); traps->is_rectilinear = TRUE; if (events != stack_events) free (events); return status; }