/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ //#include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "radeon_asic.h" #include "atom.h" #include #include int radeon_dynclks = -1; int radeon_r4xx_atom = 0; int radeon_agpmode = -1; int radeon_gart_size = 512; /* default gart size */ int radeon_benchmarking = 0; int radeon_connector_table = 0; int radeon_tv = 1; /* * Clear GPU surface registers. */ void radeon_surface_init(struct radeon_device *rdev) { ENTER(); /* FIXME: check this out */ if (rdev->family < CHIP_R600) { int i; for (i = 0; i < 8; i++) { WREG32(RADEON_SURFACE0_INFO + i * (RADEON_SURFACE1_INFO - RADEON_SURFACE0_INFO), 0); } /* enable surfaces */ WREG32(RADEON_SURFACE_CNTL, 0); } } /* * GPU scratch registers helpers function. */ void radeon_scratch_init(struct radeon_device *rdev) { int i; /* FIXME: check this out */ if (rdev->family < CHIP_R300) { rdev->scratch.num_reg = 5; } else { rdev->scratch.num_reg = 7; } for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = RADEON_SCRATCH_REG0 + (i * 4); } } int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.free[i]) { rdev->scratch.free[i] = false; *reg = rdev->scratch.reg[i]; return 0; } } return -EINVAL; } void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.reg[i] == reg) { rdev->scratch.free[i] = true; return; } } } /* * MC common functions */ int radeon_mc_setup(struct radeon_device *rdev) { uint32_t tmp; /* Some chips have an "issue" with the memory controller, the * location must be aligned to the size. We just align it down, * too bad if we walk over the top of system memory, we don't * use DMA without a remapped anyway. * Affected chips are rv280, all r3xx, and all r4xx, but not IGP */ /* FGLRX seems to setup like this, VRAM a 0, then GART. */ /* * Note: from R6xx the address space is 40bits but here we only * use 32bits (still have to see a card which would exhaust 4G * address space). */ if (rdev->mc.vram_location != 0xFFFFFFFFUL) { /* vram location was already setup try to put gtt after * if it fits */ tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size; tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1); if ((0xFFFFFFFFUL - tmp) >= rdev->mc.gtt_size) { rdev->mc.gtt_location = tmp; } else { if (rdev->mc.gtt_size >= rdev->mc.vram_location) { printk(KERN_ERR "[drm] GTT too big to fit " "before or after vram location.\n"); return -EINVAL; } rdev->mc.gtt_location = 0; } } else if (rdev->mc.gtt_location != 0xFFFFFFFFUL) { /* gtt location was already setup try to put vram before * if it fits */ if (rdev->mc.mc_vram_size < rdev->mc.gtt_location) { rdev->mc.vram_location = 0; } else { tmp = rdev->mc.gtt_location + rdev->mc.gtt_size; tmp += (rdev->mc.mc_vram_size - 1); tmp &= ~(rdev->mc.mc_vram_size - 1); if ((0xFFFFFFFFUL - tmp) >= rdev->mc.mc_vram_size) { rdev->mc.vram_location = tmp; } else { printk(KERN_ERR "[drm] vram too big to fit " "before or after GTT location.\n"); return -EINVAL; } } } else { rdev->mc.vram_location = 0; tmp = rdev->mc.mc_vram_size; tmp = (tmp + rdev->mc.gtt_size - 1) & ~(rdev->mc.gtt_size - 1); rdev->mc.gtt_location = tmp; } rdev->mc.vram_start = rdev->mc.vram_location; rdev->mc.vram_end = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1; rdev->mc.gtt_start = rdev->mc.gtt_location; rdev->mc.gtt_end = rdev->mc.gtt_location + rdev->mc.gtt_size - 1; DRM_INFO("radeon: VRAM %uM\n", (unsigned)(rdev->mc.mc_vram_size >> 20)); DRM_INFO("radeon: VRAM from 0x%08X to 0x%08X\n", (unsigned)rdev->mc.vram_location, (unsigned)(rdev->mc.vram_location + rdev->mc.mc_vram_size - 1)); DRM_INFO("radeon: GTT %uM\n", (unsigned)(rdev->mc.gtt_size >> 20)); DRM_INFO("radeon: GTT from 0x%08X to 0x%08X\n", (unsigned)rdev->mc.gtt_location, (unsigned)(rdev->mc.gtt_location + rdev->mc.gtt_size - 1)); return 0; } /* * GPU helpers function. */ bool radeon_card_posted(struct radeon_device *rdev) { uint32_t reg; ENTER(); /* first check CRTCs */ if (ASIC_IS_AVIVO(rdev)) { reg = RREG32(AVIVO_D1CRTC_CONTROL) | RREG32(AVIVO_D2CRTC_CONTROL); if (reg & AVIVO_CRTC_EN) { return true; } } else { reg = RREG32(RADEON_CRTC_GEN_CNTL) | RREG32(RADEON_CRTC2_GEN_CNTL); if (reg & RADEON_CRTC_EN) { return true; } } /* then check MEM_SIZE, in case the crtcs are off */ if (rdev->family >= CHIP_R600) reg = RREG32(R600_CONFIG_MEMSIZE); else reg = RREG32(RADEON_CONFIG_MEMSIZE); if (reg) return true; return false; } /* * Registers accessors functions. */ uint32_t radeon_invalid_rreg(struct radeon_device *rdev, uint32_t reg) { DRM_ERROR("Invalid callback to read register 0x%04X\n", reg); BUG_ON(1); return 0; } void radeon_invalid_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { DRM_ERROR("Invalid callback to write register 0x%04X with 0x%08X\n", reg, v); BUG_ON(1); } void radeon_register_accessor_init(struct radeon_device *rdev) { rdev->mc_rreg = &radeon_invalid_rreg; rdev->mc_wreg = &radeon_invalid_wreg; rdev->pll_rreg = &radeon_invalid_rreg; rdev->pll_wreg = &radeon_invalid_wreg; rdev->pciep_rreg = &radeon_invalid_rreg; rdev->pciep_wreg = &radeon_invalid_wreg; /* Don't change order as we are overridding accessor. */ if (rdev->family < CHIP_RV515) { rdev->pcie_reg_mask = 0xff; } else { rdev->pcie_reg_mask = 0x7ff; } /* FIXME: not sure here */ if (rdev->family <= CHIP_R580) { rdev->pll_rreg = &r100_pll_rreg; rdev->pll_wreg = &r100_pll_wreg; } if (rdev->family >= CHIP_R420) { rdev->mc_rreg = &r420_mc_rreg; rdev->mc_wreg = &r420_mc_wreg; } if (rdev->family >= CHIP_RV515) { rdev->mc_rreg = &rv515_mc_rreg; rdev->mc_wreg = &rv515_mc_wreg; } if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480) { rdev->mc_rreg = &rs400_mc_rreg; rdev->mc_wreg = &rs400_mc_wreg; } if (rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { rdev->mc_rreg = &rs690_mc_rreg; rdev->mc_wreg = &rs690_mc_wreg; } if (rdev->family == CHIP_RS600) { rdev->mc_rreg = &rs600_mc_rreg; rdev->mc_wreg = &rs600_mc_wreg; } // if (rdev->family >= CHIP_R600) { // rdev->pciep_rreg = &r600_pciep_rreg; // rdev->pciep_wreg = &r600_pciep_wreg; // } } /* * ASIC */ int radeon_asic_init(struct radeon_device *rdev) { radeon_register_accessor_init(rdev); switch (rdev->family) { case CHIP_R100: case CHIP_RV100: case CHIP_RS100: case CHIP_RV200: case CHIP_RS200: case CHIP_R200: case CHIP_RV250: case CHIP_RS300: case CHIP_RV280: rdev->asic = &r100_asic; break; case CHIP_R300: case CHIP_R350: case CHIP_RV350: case CHIP_RV380: rdev->asic = &r300_asic; if (rdev->flags & RADEON_IS_PCIE) { rdev->asic->gart_tlb_flush = &rv370_pcie_gart_tlb_flush; rdev->asic->gart_set_page = &rv370_pcie_gart_set_page; } break; case CHIP_R420: case CHIP_R423: case CHIP_RV410: rdev->asic = &r420_asic; break; case CHIP_RS400: case CHIP_RS480: rdev->asic = &rs400_asic; break; case CHIP_RS600: rdev->asic = &rs600_asic; break; case CHIP_RS690: case CHIP_RS740: rdev->asic = &rs690_asic; break; case CHIP_RV515: rdev->asic = &rv515_asic; break; case CHIP_R520: case CHIP_RV530: case CHIP_RV560: case CHIP_RV570: case CHIP_R580: rdev->asic = &r520_asic; break; case CHIP_R600: case CHIP_RV610: case CHIP_RV630: case CHIP_RV620: case CHIP_RV635: case CHIP_RV670: case CHIP_RS780: case CHIP_RS880: // rdev->asic = &r600_asic; break; case CHIP_RV770: case CHIP_RV730: case CHIP_RV710: case CHIP_RV740: // rdev->asic = &rv770_asic; break; default: /* FIXME: not supported yet */ return -EINVAL; } return 0; } /* * Wrapper around modesetting bits. */ int radeon_clocks_init(struct radeon_device *rdev) { int r; ENTER(); r = radeon_static_clocks_init(rdev->ddev); if (r) { return r; } DRM_INFO("Clocks initialized !\n"); return 0; } void radeon_clocks_fini(struct radeon_device *rdev) { } /* ATOM accessor methods */ static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->pll_rreg(rdev, reg); return r; } static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->pll_wreg(rdev, reg, val); } static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->mc_rreg(rdev, reg); return r; } static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->mc_wreg(rdev, reg, val); } static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32(reg*4, val); } static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32(reg*4); return r; } static struct card_info atom_card_info = { .dev = NULL, .reg_read = cail_reg_read, .reg_write = cail_reg_write, .mc_read = cail_mc_read, .mc_write = cail_mc_write, .pll_read = cail_pll_read, .pll_write = cail_pll_write, }; int radeon_atombios_init(struct radeon_device *rdev) { ENTER(); atom_card_info.dev = rdev->ddev; rdev->mode_info.atom_context = atom_parse(&atom_card_info, rdev->bios); radeon_atom_initialize_bios_scratch_regs(rdev->ddev); return 0; } void radeon_atombios_fini(struct radeon_device *rdev) { kfree(rdev->mode_info.atom_context); } int radeon_combios_init(struct radeon_device *rdev) { radeon_combios_initialize_bios_scratch_regs(rdev->ddev); return 0; } void radeon_combios_fini(struct radeon_device *rdev) { } int radeon_modeset_init(struct radeon_device *rdev); void radeon_modeset_fini(struct radeon_device *rdev); void radeon_agp_disable(struct radeon_device *rdev) { rdev->flags &= ~RADEON_IS_AGP; if (rdev->family >= CHIP_R600) { DRM_INFO("Forcing AGP to PCIE mode\n"); rdev->flags |= RADEON_IS_PCIE; } else if (rdev->family >= CHIP_RV515 || rdev->family == CHIP_RV380 || rdev->family == CHIP_RV410 || rdev->family == CHIP_R423) { DRM_INFO("Forcing AGP to PCIE mode\n"); rdev->flags |= RADEON_IS_PCIE; rdev->asic->gart_tlb_flush = &rv370_pcie_gart_tlb_flush; rdev->asic->gart_set_page = &rv370_pcie_gart_set_page; } else { DRM_INFO("Forcing AGP to PCI mode\n"); rdev->flags |= RADEON_IS_PCI; rdev->asic->gart_tlb_flush = &r100_pci_gart_tlb_flush; rdev->asic->gart_set_page = &r100_pci_gart_set_page; } } /* * Radeon device. */ int radeon_device_init(struct radeon_device *rdev, struct drm_device *ddev, struct pci_dev *pdev, uint32_t flags) { int r; int dma_bits; ENTER(); DRM_INFO("radeon: Initializing kernel modesetting.\n"); rdev->shutdown = false; rdev->ddev = ddev; rdev->pdev = pdev; rdev->flags = flags; rdev->family = flags & RADEON_FAMILY_MASK; rdev->is_atom_bios = false; rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT; rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024; rdev->gpu_lockup = false; rdev->accel_working = false; /* mutex initialization are all done here so we * can recall function without having locking issues */ // mutex_init(&rdev->cs_mutex); // mutex_init(&rdev->ib_pool.mutex); // mutex_init(&rdev->cp.mutex); // rwlock_init(&rdev->fence_drv.lock); /* Set asic functions */ r = radeon_asic_init(rdev); if (r) { return r; } if (radeon_agpmode == -1) { radeon_agp_disable(rdev); } /* set DMA mask + need_dma32 flags. * PCIE - can handle 40-bits. * IGP - can handle 40-bits (in theory) * AGP - generally dma32 is safest * PCI - only dma32 */ rdev->need_dma32 = false; if (rdev->flags & RADEON_IS_AGP) rdev->need_dma32 = true; if (rdev->flags & RADEON_IS_PCI) rdev->need_dma32 = true; dma_bits = rdev->need_dma32 ? 32 : 40; r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { printk(KERN_WARNING "radeon: No suitable DMA available.\n"); } /* Registers mapping */ /* TODO: block userspace mapping of io register */ rdev->rmmio_base = pci_resource_start(rdev->pdev, 2); rdev->rmmio_size = pci_resource_len(rdev->pdev, 2); rdev->rmmio = (void*)MapIoMem(rdev->rmmio_base, rdev->rmmio_size, PG_SW+PG_NOCACHE); if (rdev->rmmio == NULL) { return -ENOMEM; } DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base); DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size); /* if we have > 1 VGA cards, then disable the radeon VGA resources */ // r = vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode); // if (r) { // return -EINVAL; // } r = radeon_init(rdev); if (r) return r; if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) { /* Acceleration not working on AGP card try again * with fallback to PCI or PCIE GART */ radeon_gpu_reset(rdev); radeon_fini(rdev); radeon_agp_disable(rdev); r = radeon_init(rdev); if (r) return r; } // if (radeon_testing) { // radeon_test_moves(rdev); // } // if (radeon_benchmarking) { // radeon_benchmark(rdev); // } return 0; } static struct pci_device_id pciidlist[] = { radeon_PCI_IDS }; u32_t drvEntry(int action, char *cmdline) { struct pci_device_id *ent; dev_t device; int err; u32_t retval = 0; if(action != 1) return 0; if(!dbg_open("/hd0/2/atikms.log")) { printf("Can't open /hd0/2/atikms.log\nExit\n"); return 0; } if(cmdline) dbgprintf("cmdline: %s\n", cmdline); enum_pci_devices(); ent = find_pci_device(&device, pciidlist); if( unlikely(ent == NULL) ) { dbgprintf("device not found\n"); return 0; }; dbgprintf("device %x:%x\n", device.pci_dev.vendor, device.pci_dev.device); err = drm_get_dev(&device.pci_dev, ent); return retval; }; /* * Driver load/unload */ int radeon_driver_load_kms(struct drm_device *dev, unsigned long flags) { struct radeon_device *rdev; int r; ENTER(); rdev = kzalloc(sizeof(struct radeon_device), GFP_KERNEL); if (rdev == NULL) { return -ENOMEM; }; dev->dev_private = (void *)rdev; /* update BUS flag */ // if (drm_device_is_agp(dev)) { flags |= RADEON_IS_AGP; // } else if (drm_device_is_pcie(dev)) { // flags |= RADEON_IS_PCIE; // } else { // flags |= RADEON_IS_PCI; // } /* radeon_device_init should report only fatal error * like memory allocation failure or iomapping failure, * or memory manager initialization failure, it must * properly initialize the GPU MC controller and permit * VRAM allocation */ r = radeon_device_init(rdev, dev, dev->pdev, flags); if (r) { DRM_ERROR("Fatal error while trying to initialize radeon.\n"); return r; } /* Again modeset_init should fail only on fatal error * otherwise it should provide enough functionalities * for shadowfb to run */ r = radeon_modeset_init(rdev); if (r) { return r; } return 0; } int drm_get_dev(struct pci_dev *pdev, const struct pci_device_id *ent) { struct drm_device *dev; int ret; ENTER(); dev = malloc(sizeof(*dev)); if (!dev) return -ENOMEM; // ret = pci_enable_device(pdev); // if (ret) // goto err_g1; // pci_set_master(pdev); // if ((ret = drm_fill_in_dev(dev, pdev, ent, driver))) { // printk(KERN_ERR "DRM: Fill_in_dev failed.\n"); // goto err_g2; // } dev->pdev = pdev; dev->pci_device = pdev->device; dev->pci_vendor = pdev->vendor; // if (drm_core_check_feature(dev, DRIVER_MODESET)) { // pci_set_drvdata(pdev, dev); // ret = drm_get_minor(dev, &dev->control, DRM_MINOR_CONTROL); // if (ret) // goto err_g2; // } // if ((ret = drm_get_minor(dev, &dev->primary, DRM_MINOR_LEGACY))) // goto err_g3; // if (dev->driver->load) { // ret = dev->driver->load(dev, ent->driver_data); // if (ret) // goto err_g4; // } ret = radeon_driver_load_kms(dev, ent->driver_data ); if (ret) goto err_g4; // list_add_tail(&dev->driver_item, &driver->device_list); // DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", // driver->name, driver->major, driver->minor, driver->patchlevel, // driver->date, pci_name(pdev), dev->primary->index); set_mode(dev, 1280, 1024); LEAVE(); return 0; err_g4: // drm_put_minor(&dev->primary); //err_g3: // if (drm_core_check_feature(dev, DRIVER_MODESET)) // drm_put_minor(&dev->control); //err_g2: // pci_disable_device(pdev); //err_g1: free(dev); LEAVE(); return ret; } resource_size_t drm_get_resource_start(struct drm_device *dev, unsigned int resource) { return pci_resource_start(dev->pdev, resource); } resource_size_t drm_get_resource_len(struct drm_device *dev, unsigned int resource) { return pci_resource_len(dev->pdev, resource); } uint32_t __div64_32(uint64_t *n, uint32_t base) { uint64_t rem = *n; uint64_t b = base; uint64_t res, d = 1; uint32_t high = rem >> 32; /* Reduce the thing a bit first */ res = 0; if (high >= base) { high /= base; res = (uint64_t) high << 32; rem -= (uint64_t) (high*base) << 32; } while ((int64_t)b > 0 && b < rem) { b = b+b; d = d+d; } do { if (rem >= b) { rem -= b; res += d; } b >>= 1; d >>= 1; } while (d); *n = res; return rem; }