kolibrios/programs/develop/libraries/newlib/math/cbrtl.c
Sergey Semyonov (Serge) 2336060a0c newlib: update
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
2011-03-11 18:52:24 +00:00

162 lines
3.1 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* cbrtl.c
*
* Cube root, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cbrtl();
*
* y = cbrtl( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE .125,8 80000 7.0e-20 2.2e-20
* IEEE exp(+-707) 100000 7.0e-20 2.4e-20
*
*/
/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/*
Modified for mingwex.a
2002-07-01 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
static const long double CBRT2 = 1.2599210498948731647672L;
static const long double CBRT4 = 1.5874010519681994747517L;
static const long double CBRT2I = 0.79370052598409973737585L;
static const long double CBRT4I = 0.62996052494743658238361L;
#ifndef __MINGW32__
#ifdef ANSIPROT
extern long double frexpl ( long double, int * );
extern long double ldexpl ( long double, int );
extern int isnanl ( long double );
#else
long double frexpl(), ldexpl();
extern int isnanl();
#endif
#ifdef INFINITIES
extern long double INFINITYL;
#endif
#endif /* __MINGW32__ */
long double cbrtl(x)
long double x;
{
int e, rem, sign;
long double z;
#ifdef __MINGW32__
if (!isfinite (x) || x == 0.0L)
return(x);
#else
#ifdef NANS
if(isnanl(x))
return(x);
#endif
#ifdef INFINITIES
if( x == INFINITYL)
return(x);
if( x == -INFINITYL)
return(x);
#endif
if( x == 0 )
return( x );
#endif /* __MINGW32__ */
if( x > 0 )
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexpl( x, &e );
/* Approximate cube root of number between .5 and 1,
* peak relative error = 1.2e-6
*/
x = (((( 1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x
+ 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if( e >= 0 )
{
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2;
else if( rem == 2 )
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2I;
else if( rem == 2 )
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexpl( x, e );
/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
if( sign < 0 )
x = -x;
return(x);
}