forked from KolibriOS/kolibrios
37b6abf576
git-svn-id: svn://kolibrios.org@1892 a494cfbc-eb01-0410-851d-a64ba20cac60
2144 lines
57 KiB
C
2144 lines
57 KiB
C
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
|
|
/* cairo - a vector graphics library with display and print output
|
|
*
|
|
* Copyright © 2002 University of Southern California
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it either under the terms of the GNU Lesser General Public
|
|
* License version 2.1 as published by the Free Software Foundation
|
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
|
* notice, a recipient may use your version of this file under either
|
|
* the MPL or the LGPL.
|
|
*
|
|
* You should have received a copy of the LGPL along with this library
|
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
|
* You should have received a copy of the MPL along with this library
|
|
* in the file COPYING-MPL-1.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License
|
|
* Version 1.1 (the "License"); you may not use this file except in
|
|
* compliance with the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
|
* the specific language governing rights and limitations.
|
|
*
|
|
* The Original Code is the cairo graphics library.
|
|
*
|
|
* The Initial Developer of the Original Code is University of Southern
|
|
* California.
|
|
*
|
|
* Contributor(s):
|
|
* Carl D. Worth <cworth@cworth.org>
|
|
* Chris Wilson <chris@chris-wilson.co.uk>
|
|
*/
|
|
|
|
#define _BSD_SOURCE /* for hypot() */
|
|
#include "cairoint.h"
|
|
|
|
#include "cairo-boxes-private.h"
|
|
#include "cairo-error-private.h"
|
|
#include "cairo-path-fixed-private.h"
|
|
#include "cairo-slope-private.h"
|
|
|
|
typedef struct _cairo_stroker_dash {
|
|
cairo_bool_t dashed;
|
|
unsigned int dash_index;
|
|
cairo_bool_t dash_on;
|
|
cairo_bool_t dash_starts_on;
|
|
double dash_remain;
|
|
|
|
double dash_offset;
|
|
const double *dashes;
|
|
unsigned int num_dashes;
|
|
} cairo_stroker_dash_t;
|
|
|
|
typedef struct cairo_stroker {
|
|
cairo_stroke_style_t style;
|
|
|
|
const cairo_matrix_t *ctm;
|
|
const cairo_matrix_t *ctm_inverse;
|
|
double tolerance;
|
|
double ctm_determinant;
|
|
cairo_bool_t ctm_det_positive;
|
|
|
|
void *closure;
|
|
cairo_status_t (*add_external_edge) (void *closure,
|
|
const cairo_point_t *p1,
|
|
const cairo_point_t *p2);
|
|
cairo_status_t (*add_triangle) (void *closure,
|
|
const cairo_point_t triangle[3]);
|
|
cairo_status_t (*add_triangle_fan) (void *closure,
|
|
const cairo_point_t *midpt,
|
|
const cairo_point_t *points,
|
|
int npoints);
|
|
cairo_status_t (*add_convex_quad) (void *closure,
|
|
const cairo_point_t quad[4]);
|
|
|
|
cairo_pen_t pen;
|
|
|
|
cairo_point_t current_point;
|
|
cairo_point_t first_point;
|
|
|
|
cairo_bool_t has_initial_sub_path;
|
|
|
|
cairo_bool_t has_current_face;
|
|
cairo_stroke_face_t current_face;
|
|
|
|
cairo_bool_t has_first_face;
|
|
cairo_stroke_face_t first_face;
|
|
|
|
cairo_stroker_dash_t dash;
|
|
|
|
cairo_bool_t has_bounds;
|
|
cairo_box_t bounds;
|
|
} cairo_stroker_t;
|
|
|
|
static void
|
|
_cairo_stroker_dash_start (cairo_stroker_dash_t *dash)
|
|
{
|
|
double offset;
|
|
cairo_bool_t on = TRUE;
|
|
unsigned int i = 0;
|
|
|
|
if (! dash->dashed)
|
|
return;
|
|
|
|
offset = dash->dash_offset;
|
|
|
|
/* We stop searching for a starting point as soon as the
|
|
offset reaches zero. Otherwise when an initial dash
|
|
segment shrinks to zero it will be skipped over. */
|
|
while (offset > 0.0 && offset >= dash->dashes[i]) {
|
|
offset -= dash->dashes[i];
|
|
on = !on;
|
|
if (++i == dash->num_dashes)
|
|
i = 0;
|
|
}
|
|
|
|
dash->dash_index = i;
|
|
dash->dash_on = dash->dash_starts_on = on;
|
|
dash->dash_remain = dash->dashes[i] - offset;
|
|
}
|
|
|
|
static void
|
|
_cairo_stroker_dash_step (cairo_stroker_dash_t *dash, double step)
|
|
{
|
|
dash->dash_remain -= step;
|
|
if (dash->dash_remain <= 0.) {
|
|
if (++dash->dash_index == dash->num_dashes)
|
|
dash->dash_index = 0;
|
|
|
|
dash->dash_on = ! dash->dash_on;
|
|
dash->dash_remain = dash->dashes[dash->dash_index];
|
|
}
|
|
}
|
|
|
|
static void
|
|
_cairo_stroker_dash_init (cairo_stroker_dash_t *dash,
|
|
const cairo_stroke_style_t *style)
|
|
{
|
|
dash->dashed = style->dash != NULL;
|
|
if (! dash->dashed)
|
|
return;
|
|
|
|
dash->dashes = style->dash;
|
|
dash->num_dashes = style->num_dashes;
|
|
dash->dash_offset = style->dash_offset;
|
|
|
|
_cairo_stroker_dash_start (dash);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_init (cairo_stroker_t *stroker,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
const cairo_matrix_t *ctm_inverse,
|
|
double tolerance)
|
|
{
|
|
cairo_status_t status;
|
|
|
|
stroker->style = *stroke_style;
|
|
stroker->ctm = ctm;
|
|
stroker->ctm_inverse = ctm_inverse;
|
|
stroker->tolerance = tolerance;
|
|
|
|
stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm);
|
|
stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0;
|
|
|
|
status = _cairo_pen_init (&stroker->pen,
|
|
stroke_style->line_width / 2.0,
|
|
tolerance, ctm);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->has_bounds = FALSE;
|
|
|
|
stroker->has_current_face = FALSE;
|
|
stroker->has_first_face = FALSE;
|
|
stroker->has_initial_sub_path = FALSE;
|
|
|
|
_cairo_stroker_dash_init (&stroker->dash, stroke_style);
|
|
|
|
stroker->add_external_edge = NULL;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
_cairo_stroker_limit (cairo_stroker_t *stroker,
|
|
const cairo_box_t *boxes,
|
|
int num_boxes)
|
|
{
|
|
double dx, dy;
|
|
cairo_fixed_t fdx, fdy;
|
|
|
|
stroker->has_bounds = TRUE;
|
|
_cairo_boxes_get_extents (boxes, num_boxes, &stroker->bounds);
|
|
|
|
/* Extend the bounds in each direction to account for the maximum area
|
|
* we might generate trapezoids, to capture line segments that are outside
|
|
* of the bounds but which might generate rendering that's within bounds.
|
|
*/
|
|
|
|
_cairo_stroke_style_max_distance_from_path (&stroker->style, stroker->ctm,
|
|
&dx, &dy);
|
|
|
|
fdx = _cairo_fixed_from_double (dx);
|
|
fdy = _cairo_fixed_from_double (dy);
|
|
|
|
stroker->bounds.p1.x -= fdx;
|
|
stroker->bounds.p2.x += fdx;
|
|
|
|
stroker->bounds.p1.y -= fdy;
|
|
stroker->bounds.p2.y += fdy;
|
|
}
|
|
|
|
static void
|
|
_cairo_stroker_fini (cairo_stroker_t *stroker)
|
|
{
|
|
_cairo_pen_fini (&stroker->pen);
|
|
}
|
|
|
|
static void
|
|
_translate_point (cairo_point_t *point, const cairo_point_t *offset)
|
|
{
|
|
point->x += offset->x;
|
|
point->y += offset->y;
|
|
}
|
|
|
|
static int
|
|
_cairo_stroker_join_is_clockwise (const cairo_stroke_face_t *in,
|
|
const cairo_stroke_face_t *out)
|
|
{
|
|
cairo_slope_t in_slope, out_slope;
|
|
|
|
_cairo_slope_init (&in_slope, &in->point, &in->cw);
|
|
_cairo_slope_init (&out_slope, &out->point, &out->cw);
|
|
|
|
return _cairo_slope_compare (&in_slope, &out_slope) < 0;
|
|
}
|
|
|
|
/**
|
|
* _cairo_slope_compare_sgn
|
|
*
|
|
* Return -1, 0 or 1 depending on the relative slopes of
|
|
* two lines.
|
|
*/
|
|
static int
|
|
_cairo_slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
|
|
{
|
|
double c = (dx1 * dy2 - dx2 * dy1);
|
|
|
|
if (c > 0) return 1;
|
|
if (c < 0) return -1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
_range_step (int i, int step, int max)
|
|
{
|
|
i += step;
|
|
if (i < 0)
|
|
i = max - 1;
|
|
if (i >= max)
|
|
i = 0;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Construct a fan around the midpoint using the vertices from pen between
|
|
* inpt and outpt.
|
|
*/
|
|
static cairo_status_t
|
|
_tessellate_fan (cairo_stroker_t *stroker,
|
|
const cairo_slope_t *in_vector,
|
|
const cairo_slope_t *out_vector,
|
|
const cairo_point_t *midpt,
|
|
const cairo_point_t *inpt,
|
|
const cairo_point_t *outpt,
|
|
cairo_bool_t clockwise)
|
|
{
|
|
cairo_point_t stack_points[64], *points = stack_points;
|
|
int start, stop, step, i, npoints;
|
|
cairo_status_t status;
|
|
|
|
if (clockwise) {
|
|
step = -1;
|
|
|
|
start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
|
|
in_vector);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
|
|
in_vector) < 0)
|
|
start = _range_step (start, -1, stroker->pen.num_vertices);
|
|
|
|
stop = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
|
|
out_vector);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
|
|
out_vector) > 0)
|
|
{
|
|
stop = _range_step (stop, 1, stroker->pen.num_vertices);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
|
|
in_vector) < 0)
|
|
{
|
|
goto BEVEL;
|
|
}
|
|
}
|
|
|
|
npoints = start - stop;
|
|
} else {
|
|
step = 1;
|
|
|
|
start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
|
|
in_vector);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
|
|
in_vector) < 0)
|
|
start = _range_step (start, 1, stroker->pen.num_vertices);
|
|
|
|
stop = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
|
|
out_vector);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
|
|
out_vector) > 0)
|
|
{
|
|
stop = _range_step (stop, -1, stroker->pen.num_vertices);
|
|
if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
|
|
in_vector) < 0)
|
|
{
|
|
goto BEVEL;
|
|
}
|
|
}
|
|
|
|
npoints = stop - start;
|
|
}
|
|
stop = _range_step (stop, step, stroker->pen.num_vertices);
|
|
|
|
if (npoints < 0)
|
|
npoints += stroker->pen.num_vertices;
|
|
npoints += 3;
|
|
|
|
if (npoints <= 1)
|
|
goto BEVEL;
|
|
|
|
if (npoints > ARRAY_LENGTH (stack_points)) {
|
|
points = _cairo_malloc_ab (npoints, sizeof (cairo_point_t));
|
|
if (unlikely (points == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
|
|
/* Construct the fan. */
|
|
npoints = 0;
|
|
points[npoints++] = *inpt;
|
|
for (i = start;
|
|
i != stop;
|
|
i = _range_step (i, step, stroker->pen.num_vertices))
|
|
{
|
|
points[npoints] = *midpt;
|
|
_translate_point (&points[npoints], &stroker->pen.vertices[i].point);
|
|
npoints++;
|
|
}
|
|
points[npoints++] = *outpt;
|
|
|
|
if (stroker->add_external_edge != NULL) {
|
|
for (i = 0; i < npoints - 1; i++) {
|
|
if (clockwise) {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&points[i], &points[i+1]);
|
|
} else {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&points[i+1], &points[i]);
|
|
}
|
|
if (unlikely (status))
|
|
break;
|
|
}
|
|
} else {
|
|
status = stroker->add_triangle_fan (stroker->closure,
|
|
midpt, points, npoints);
|
|
}
|
|
|
|
if (points != stack_points)
|
|
free (points);
|
|
|
|
return status;
|
|
|
|
BEVEL:
|
|
/* Ensure a leak free connection... */
|
|
if (stroker->add_external_edge != NULL) {
|
|
if (clockwise)
|
|
return stroker->add_external_edge (stroker->closure, inpt, outpt);
|
|
else
|
|
return stroker->add_external_edge (stroker->closure, outpt, inpt);
|
|
} else {
|
|
stack_points[0] = *midpt;
|
|
stack_points[1] = *inpt;
|
|
stack_points[2] = *outpt;
|
|
return stroker->add_triangle (stroker->closure, stack_points);
|
|
}
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_join (cairo_stroker_t *stroker,
|
|
const cairo_stroke_face_t *in,
|
|
const cairo_stroke_face_t *out)
|
|
{
|
|
int clockwise = _cairo_stroker_join_is_clockwise (out, in);
|
|
const cairo_point_t *inpt, *outpt;
|
|
cairo_point_t points[4];
|
|
cairo_status_t status;
|
|
|
|
if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
|
|
in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
|
|
{
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
if (clockwise) {
|
|
if (stroker->add_external_edge != NULL) {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&out->cw, &in->point);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&in->point, &in->cw);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
inpt = &in->ccw;
|
|
outpt = &out->ccw;
|
|
} else {
|
|
if (stroker->add_external_edge != NULL) {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&in->ccw, &in->point);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&in->point, &out->ccw);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
inpt = &in->cw;
|
|
outpt = &out->cw;
|
|
}
|
|
|
|
switch (stroker->style.line_join) {
|
|
case CAIRO_LINE_JOIN_ROUND:
|
|
/* construct a fan around the common midpoint */
|
|
return _tessellate_fan (stroker,
|
|
&in->dev_vector,
|
|
&out->dev_vector,
|
|
&in->point, inpt, outpt,
|
|
clockwise);
|
|
|
|
case CAIRO_LINE_JOIN_MITER:
|
|
default: {
|
|
/* dot product of incoming slope vector with outgoing slope vector */
|
|
double in_dot_out = -in->usr_vector.x * out->usr_vector.x +
|
|
-in->usr_vector.y * out->usr_vector.y;
|
|
double ml = stroker->style.miter_limit;
|
|
|
|
/* Check the miter limit -- lines meeting at an acute angle
|
|
* can generate long miters, the limit converts them to bevel
|
|
*
|
|
* Consider the miter join formed when two line segments
|
|
* meet at an angle psi:
|
|
*
|
|
* /.\
|
|
* /. .\
|
|
* /./ \.\
|
|
* /./psi\.\
|
|
*
|
|
* We can zoom in on the right half of that to see:
|
|
*
|
|
* |\
|
|
* | \ psi/2
|
|
* | \
|
|
* | \
|
|
* | \
|
|
* | \
|
|
* miter \
|
|
* length \
|
|
* | \
|
|
* | .\
|
|
* | . \
|
|
* |. line \
|
|
* \ width \
|
|
* \ \
|
|
*
|
|
*
|
|
* The right triangle in that figure, (the line-width side is
|
|
* shown faintly with three '.' characters), gives us the
|
|
* following expression relating miter length, angle and line
|
|
* width:
|
|
*
|
|
* 1 /sin (psi/2) = miter_length / line_width
|
|
*
|
|
* The right-hand side of this relationship is the same ratio
|
|
* in which the miter limit (ml) is expressed. We want to know
|
|
* when the miter length is within the miter limit. That is
|
|
* when the following condition holds:
|
|
*
|
|
* 1/sin(psi/2) <= ml
|
|
* 1 <= ml sin(psi/2)
|
|
* 1 <= ml² sin²(psi/2)
|
|
* 2 <= ml² 2 sin²(psi/2)
|
|
* 2·sin²(psi/2) = 1-cos(psi)
|
|
* 2 <= ml² (1-cos(psi))
|
|
*
|
|
* in · out = |in| |out| cos (psi)
|
|
*
|
|
* in and out are both unit vectors, so:
|
|
*
|
|
* in · out = cos (psi)
|
|
*
|
|
* 2 <= ml² (1 - in · out)
|
|
*
|
|
*/
|
|
if (2 <= ml * ml * (1 - in_dot_out)) {
|
|
double x1, y1, x2, y2;
|
|
double mx, my;
|
|
double dx1, dx2, dy1, dy2;
|
|
double ix, iy;
|
|
double fdx1, fdy1, fdx2, fdy2;
|
|
double mdx, mdy;
|
|
|
|
/*
|
|
* we've got the points already transformed to device
|
|
* space, but need to do some computation with them and
|
|
* also need to transform the slope from user space to
|
|
* device space
|
|
*/
|
|
/* outer point of incoming line face */
|
|
x1 = _cairo_fixed_to_double (inpt->x);
|
|
y1 = _cairo_fixed_to_double (inpt->y);
|
|
dx1 = in->usr_vector.x;
|
|
dy1 = in->usr_vector.y;
|
|
cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
|
|
|
|
/* outer point of outgoing line face */
|
|
x2 = _cairo_fixed_to_double (outpt->x);
|
|
y2 = _cairo_fixed_to_double (outpt->y);
|
|
dx2 = out->usr_vector.x;
|
|
dy2 = out->usr_vector.y;
|
|
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
|
|
|
|
/*
|
|
* Compute the location of the outer corner of the miter.
|
|
* That's pretty easy -- just the intersection of the two
|
|
* outer edges. We've got slopes and points on each
|
|
* of those edges. Compute my directly, then compute
|
|
* mx by using the edge with the larger dy; that avoids
|
|
* dividing by values close to zero.
|
|
*/
|
|
my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
|
|
(dx1 * dy2 - dx2 * dy1));
|
|
if (fabs (dy1) >= fabs (dy2))
|
|
mx = (my - y1) * dx1 / dy1 + x1;
|
|
else
|
|
mx = (my - y2) * dx2 / dy2 + x2;
|
|
|
|
/*
|
|
* When the two outer edges are nearly parallel, slight
|
|
* perturbations in the position of the outer points of the lines
|
|
* caused by representing them in fixed point form can cause the
|
|
* intersection point of the miter to move a large amount. If
|
|
* that moves the miter intersection from between the two faces,
|
|
* then draw a bevel instead.
|
|
*/
|
|
|
|
ix = _cairo_fixed_to_double (in->point.x);
|
|
iy = _cairo_fixed_to_double (in->point.y);
|
|
|
|
/* slope of one face */
|
|
fdx1 = x1 - ix; fdy1 = y1 - iy;
|
|
|
|
/* slope of the other face */
|
|
fdx2 = x2 - ix; fdy2 = y2 - iy;
|
|
|
|
/* slope from the intersection to the miter point */
|
|
mdx = mx - ix; mdy = my - iy;
|
|
|
|
/*
|
|
* Make sure the miter point line lies between the two
|
|
* faces by comparing the slopes
|
|
*/
|
|
if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
|
|
_cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy))
|
|
{
|
|
if (stroker->add_external_edge != NULL) {
|
|
points[0].x = _cairo_fixed_from_double (mx);
|
|
points[0].y = _cairo_fixed_from_double (my);
|
|
|
|
if (clockwise) {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
inpt, &points[0]);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&points[0], outpt);
|
|
if (unlikely (status))
|
|
return status;
|
|
} else {
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
outpt, &points[0]);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&points[0], inpt);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
} else {
|
|
points[0] = in->point;
|
|
points[1] = *inpt;
|
|
points[2].x = _cairo_fixed_from_double (mx);
|
|
points[2].y = _cairo_fixed_from_double (my);
|
|
points[3] = *outpt;
|
|
|
|
return stroker->add_convex_quad (stroker->closure, points);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* fall through ... */
|
|
|
|
case CAIRO_LINE_JOIN_BEVEL:
|
|
if (stroker->add_external_edge != NULL) {
|
|
if (clockwise) {
|
|
return stroker->add_external_edge (stroker->closure,
|
|
inpt, outpt);
|
|
} else {
|
|
return stroker->add_external_edge (stroker->closure,
|
|
outpt, inpt);
|
|
}
|
|
} else {
|
|
points[0] = in->point;
|
|
points[1] = *inpt;
|
|
points[2] = *outpt;
|
|
|
|
return stroker->add_triangle (stroker->closure, points);
|
|
}
|
|
}
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_add_cap (cairo_stroker_t *stroker,
|
|
const cairo_stroke_face_t *f)
|
|
{
|
|
switch (stroker->style.line_cap) {
|
|
case CAIRO_LINE_CAP_ROUND: {
|
|
cairo_slope_t slope;
|
|
|
|
slope.dx = -f->dev_vector.dx;
|
|
slope.dy = -f->dev_vector.dy;
|
|
|
|
return _tessellate_fan (stroker,
|
|
&f->dev_vector,
|
|
&slope,
|
|
&f->point, &f->cw, &f->ccw,
|
|
FALSE);
|
|
|
|
}
|
|
|
|
case CAIRO_LINE_CAP_SQUARE: {
|
|
double dx, dy;
|
|
cairo_slope_t fvector;
|
|
cairo_point_t quad[4];
|
|
|
|
dx = f->usr_vector.x;
|
|
dy = f->usr_vector.y;
|
|
dx *= stroker->style.line_width / 2.0;
|
|
dy *= stroker->style.line_width / 2.0;
|
|
cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
|
|
fvector.dx = _cairo_fixed_from_double (dx);
|
|
fvector.dy = _cairo_fixed_from_double (dy);
|
|
|
|
quad[0] = f->ccw;
|
|
quad[1].x = f->ccw.x + fvector.dx;
|
|
quad[1].y = f->ccw.y + fvector.dy;
|
|
quad[2].x = f->cw.x + fvector.dx;
|
|
quad[2].y = f->cw.y + fvector.dy;
|
|
quad[3] = f->cw;
|
|
|
|
if (stroker->add_external_edge != NULL) {
|
|
cairo_status_t status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&quad[0], &quad[1]);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&quad[1], &quad[2]);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&quad[2], &quad[3]);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
} else {
|
|
return stroker->add_convex_quad (stroker->closure, quad);
|
|
}
|
|
}
|
|
|
|
case CAIRO_LINE_CAP_BUTT:
|
|
default:
|
|
if (stroker->add_external_edge != NULL) {
|
|
return stroker->add_external_edge (stroker->closure,
|
|
&f->ccw, &f->cw);
|
|
} else {
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_add_leading_cap (cairo_stroker_t *stroker,
|
|
const cairo_stroke_face_t *face)
|
|
{
|
|
cairo_stroke_face_t reversed;
|
|
cairo_point_t t;
|
|
|
|
reversed = *face;
|
|
|
|
/* The initial cap needs an outward facing vector. Reverse everything */
|
|
reversed.usr_vector.x = -reversed.usr_vector.x;
|
|
reversed.usr_vector.y = -reversed.usr_vector.y;
|
|
reversed.dev_vector.dx = -reversed.dev_vector.dx;
|
|
reversed.dev_vector.dy = -reversed.dev_vector.dy;
|
|
t = reversed.cw;
|
|
reversed.cw = reversed.ccw;
|
|
reversed.ccw = t;
|
|
|
|
return _cairo_stroker_add_cap (stroker, &reversed);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker,
|
|
const cairo_stroke_face_t *face)
|
|
{
|
|
return _cairo_stroker_add_cap (stroker, face);
|
|
}
|
|
|
|
static inline cairo_bool_t
|
|
_compute_normalized_device_slope (double *dx, double *dy,
|
|
const cairo_matrix_t *ctm_inverse,
|
|
double *mag_out)
|
|
{
|
|
double dx0 = *dx, dy0 = *dy;
|
|
double mag;
|
|
|
|
cairo_matrix_transform_distance (ctm_inverse, &dx0, &dy0);
|
|
|
|
if (dx0 == 0.0 && dy0 == 0.0) {
|
|
if (mag_out)
|
|
*mag_out = 0.0;
|
|
return FALSE;
|
|
}
|
|
|
|
if (dx0 == 0.0) {
|
|
*dx = 0.0;
|
|
if (dy0 > 0.0) {
|
|
mag = dy0;
|
|
*dy = 1.0;
|
|
} else {
|
|
mag = -dy0;
|
|
*dy = -1.0;
|
|
}
|
|
} else if (dy0 == 0.0) {
|
|
*dy = 0.0;
|
|
if (dx0 > 0.0) {
|
|
mag = dx0;
|
|
*dx = 1.0;
|
|
} else {
|
|
mag = -dx0;
|
|
*dx = -1.0;
|
|
}
|
|
} else {
|
|
mag = hypot (dx0, dy0);
|
|
*dx = dx0 / mag;
|
|
*dy = dy0 / mag;
|
|
}
|
|
|
|
if (mag_out)
|
|
*mag_out = mag;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
_compute_face (const cairo_point_t *point, cairo_slope_t *dev_slope,
|
|
double slope_dx, double slope_dy,
|
|
cairo_stroker_t *stroker, cairo_stroke_face_t *face)
|
|
{
|
|
double face_dx, face_dy;
|
|
cairo_point_t offset_ccw, offset_cw;
|
|
|
|
/*
|
|
* rotate to get a line_width/2 vector along the face, note that
|
|
* the vector must be rotated the right direction in device space,
|
|
* but by 90° in user space. So, the rotation depends on
|
|
* whether the ctm reflects or not, and that can be determined
|
|
* by looking at the determinant of the matrix.
|
|
*/
|
|
if (stroker->ctm_det_positive)
|
|
{
|
|
face_dx = - slope_dy * (stroker->style.line_width / 2.0);
|
|
face_dy = slope_dx * (stroker->style.line_width / 2.0);
|
|
}
|
|
else
|
|
{
|
|
face_dx = slope_dy * (stroker->style.line_width / 2.0);
|
|
face_dy = - slope_dx * (stroker->style.line_width / 2.0);
|
|
}
|
|
|
|
/* back to device space */
|
|
cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
|
|
|
|
offset_ccw.x = _cairo_fixed_from_double (face_dx);
|
|
offset_ccw.y = _cairo_fixed_from_double (face_dy);
|
|
offset_cw.x = -offset_ccw.x;
|
|
offset_cw.y = -offset_ccw.y;
|
|
|
|
face->ccw = *point;
|
|
_translate_point (&face->ccw, &offset_ccw);
|
|
|
|
face->point = *point;
|
|
|
|
face->cw = *point;
|
|
_translate_point (&face->cw, &offset_cw);
|
|
|
|
face->usr_vector.x = slope_dx;
|
|
face->usr_vector.y = slope_dy;
|
|
|
|
face->dev_vector = *dev_slope;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_add_caps (cairo_stroker_t *stroker)
|
|
{
|
|
cairo_status_t status;
|
|
|
|
/* check for a degenerative sub_path */
|
|
if (stroker->has_initial_sub_path
|
|
&& ! stroker->has_first_face
|
|
&& ! stroker->has_current_face
|
|
&& stroker->style.line_cap == CAIRO_LINE_JOIN_ROUND)
|
|
{
|
|
/* pick an arbitrary slope to use */
|
|
double dx = 1.0, dy = 0.0;
|
|
cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
|
|
cairo_stroke_face_t face;
|
|
|
|
_compute_normalized_device_slope (&dx, &dy,
|
|
stroker->ctm_inverse, NULL);
|
|
|
|
/* arbitrarily choose first_point
|
|
* first_point and current_point should be the same */
|
|
_compute_face (&stroker->first_point, &slope, dx, dy, stroker, &face);
|
|
|
|
status = _cairo_stroker_add_leading_cap (stroker, &face);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = _cairo_stroker_add_trailing_cap (stroker, &face);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if (stroker->has_first_face) {
|
|
status = _cairo_stroker_add_leading_cap (stroker,
|
|
&stroker->first_face);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if (stroker->has_current_face) {
|
|
status = _cairo_stroker_add_trailing_cap (stroker,
|
|
&stroker->current_face);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_add_sub_edge (cairo_stroker_t *stroker,
|
|
const cairo_point_t *p1,
|
|
const cairo_point_t *p2,
|
|
cairo_slope_t *dev_slope,
|
|
double slope_dx, double slope_dy,
|
|
cairo_stroke_face_t *start,
|
|
cairo_stroke_face_t *end)
|
|
{
|
|
_compute_face (p1, dev_slope, slope_dx, slope_dy, stroker, start);
|
|
*end = *start;
|
|
|
|
if (p1->x == p2->x && p1->y == p2->y)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
end->point = *p2;
|
|
end->ccw.x += p2->x - p1->x;
|
|
end->ccw.y += p2->y - p1->y;
|
|
end->cw.x += p2->x - p1->x;
|
|
end->cw.y += p2->y - p1->y;
|
|
|
|
if (stroker->add_external_edge != NULL) {
|
|
cairo_status_t status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&end->cw, &start->cw);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = stroker->add_external_edge (stroker->closure,
|
|
&start->ccw, &end->ccw);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
} else {
|
|
cairo_point_t quad[4];
|
|
|
|
quad[0] = start->cw;
|
|
quad[1] = end->cw;
|
|
quad[2] = end->ccw;
|
|
quad[3] = start->ccw;
|
|
|
|
return stroker->add_convex_quad (stroker->closure, quad);
|
|
}
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_move_to (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_stroker_t *stroker = closure;
|
|
cairo_status_t status;
|
|
|
|
/* reset the dash pattern for new sub paths */
|
|
_cairo_stroker_dash_start (&stroker->dash);
|
|
|
|
/* Cap the start and end of the previous sub path as needed */
|
|
status = _cairo_stroker_add_caps (stroker);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->first_point = *point;
|
|
stroker->current_point = *point;
|
|
|
|
stroker->has_first_face = FALSE;
|
|
stroker->has_current_face = FALSE;
|
|
stroker->has_initial_sub_path = FALSE;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_line_to (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_stroker_t *stroker = closure;
|
|
cairo_stroke_face_t start, end;
|
|
cairo_point_t *p1 = &stroker->current_point;
|
|
cairo_slope_t dev_slope;
|
|
double slope_dx, slope_dy;
|
|
cairo_status_t status;
|
|
|
|
stroker->has_initial_sub_path = TRUE;
|
|
|
|
if (p1->x == point->x && p1->y == point->y)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
_cairo_slope_init (&dev_slope, p1, point);
|
|
slope_dx = _cairo_fixed_to_double (point->x - p1->x);
|
|
slope_dy = _cairo_fixed_to_double (point->y - p1->y);
|
|
_compute_normalized_device_slope (&slope_dx, &slope_dy,
|
|
stroker->ctm_inverse, NULL);
|
|
|
|
status = _cairo_stroker_add_sub_edge (stroker,
|
|
p1, point,
|
|
&dev_slope,
|
|
slope_dx, slope_dy,
|
|
&start, &end);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
if (stroker->has_current_face) {
|
|
/* Join with final face from previous segment */
|
|
status = _cairo_stroker_join (stroker,
|
|
&stroker->current_face,
|
|
&start);
|
|
if (unlikely (status))
|
|
return status;
|
|
} else if (! stroker->has_first_face) {
|
|
/* Save sub path's first face in case needed for closing join */
|
|
stroker->first_face = start;
|
|
stroker->has_first_face = TRUE;
|
|
}
|
|
stroker->current_face = end;
|
|
stroker->has_current_face = TRUE;
|
|
|
|
stroker->current_point = *point;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Dashed lines. Cap each dash end, join around turns when on
|
|
*/
|
|
static cairo_status_t
|
|
_cairo_stroker_line_to_dashed (void *closure,
|
|
const cairo_point_t *p2)
|
|
{
|
|
cairo_stroker_t *stroker = closure;
|
|
double mag, remain, step_length = 0;
|
|
double slope_dx, slope_dy;
|
|
double dx2, dy2;
|
|
cairo_stroke_face_t sub_start, sub_end;
|
|
cairo_point_t *p1 = &stroker->current_point;
|
|
cairo_slope_t dev_slope;
|
|
cairo_line_t segment;
|
|
cairo_bool_t fully_in_bounds;
|
|
cairo_status_t status;
|
|
|
|
stroker->has_initial_sub_path = stroker->dash.dash_starts_on;
|
|
|
|
if (p1->x == p2->x && p1->y == p2->y)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
fully_in_bounds = TRUE;
|
|
if (stroker->has_bounds &&
|
|
(! _cairo_box_contains_point (&stroker->bounds, p1) ||
|
|
! _cairo_box_contains_point (&stroker->bounds, p2)))
|
|
{
|
|
fully_in_bounds = FALSE;
|
|
}
|
|
|
|
_cairo_slope_init (&dev_slope, p1, p2);
|
|
|
|
slope_dx = _cairo_fixed_to_double (p2->x - p1->x);
|
|
slope_dy = _cairo_fixed_to_double (p2->y - p1->y);
|
|
|
|
if (! _compute_normalized_device_slope (&slope_dx, &slope_dy,
|
|
stroker->ctm_inverse, &mag))
|
|
{
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
remain = mag;
|
|
segment.p1 = *p1;
|
|
while (remain) {
|
|
step_length = MIN (stroker->dash.dash_remain, remain);
|
|
remain -= step_length;
|
|
dx2 = slope_dx * (mag - remain);
|
|
dy2 = slope_dy * (mag - remain);
|
|
cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
|
|
segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x;
|
|
segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y;
|
|
|
|
if (stroker->dash.dash_on &&
|
|
(fully_in_bounds ||
|
|
(! stroker->has_first_face && stroker->dash.dash_starts_on) ||
|
|
_cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
|
|
{
|
|
status = _cairo_stroker_add_sub_edge (stroker,
|
|
&segment.p1, &segment.p2,
|
|
&dev_slope,
|
|
slope_dx, slope_dy,
|
|
&sub_start, &sub_end);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
if (stroker->has_current_face)
|
|
{
|
|
/* Join with final face from previous segment */
|
|
status = _cairo_stroker_join (stroker,
|
|
&stroker->current_face,
|
|
&sub_start);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->has_current_face = FALSE;
|
|
}
|
|
else if (! stroker->has_first_face &&
|
|
stroker->dash.dash_starts_on)
|
|
{
|
|
/* Save sub path's first face in case needed for closing join */
|
|
stroker->first_face = sub_start;
|
|
stroker->has_first_face = TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Cap dash start if not connecting to a previous segment */
|
|
status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if (remain) {
|
|
/* Cap dash end if not at end of segment */
|
|
status = _cairo_stroker_add_trailing_cap (stroker, &sub_end);
|
|
if (unlikely (status))
|
|
return status;
|
|
} else {
|
|
stroker->current_face = sub_end;
|
|
stroker->has_current_face = TRUE;
|
|
}
|
|
} else {
|
|
if (stroker->has_current_face) {
|
|
/* Cap final face from previous segment */
|
|
status = _cairo_stroker_add_trailing_cap (stroker,
|
|
&stroker->current_face);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->has_current_face = FALSE;
|
|
}
|
|
}
|
|
|
|
_cairo_stroker_dash_step (&stroker->dash, step_length);
|
|
segment.p1 = segment.p2;
|
|
}
|
|
|
|
if (stroker->dash.dash_on && ! stroker->has_current_face) {
|
|
/* This segment ends on a transition to dash_on, compute a new face
|
|
* and add cap for the beginning of the next dash_on step.
|
|
*
|
|
* Note: this will create a degenerate cap if this is not the last line
|
|
* in the path. Whether this behaviour is desirable or not is debatable.
|
|
* On one side these degenerate caps can not be reproduced with regular
|
|
* path stroking.
|
|
* On the other hand, Acroread 7 also produces the degenerate caps.
|
|
*/
|
|
_compute_face (p2, &dev_slope,
|
|
slope_dx, slope_dy,
|
|
stroker,
|
|
&stroker->current_face);
|
|
|
|
status = _cairo_stroker_add_leading_cap (stroker,
|
|
&stroker->current_face);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->has_current_face = TRUE;
|
|
}
|
|
|
|
stroker->current_point = *p2;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_curve_to (void *closure,
|
|
const cairo_point_t *b,
|
|
const cairo_point_t *c,
|
|
const cairo_point_t *d)
|
|
{
|
|
cairo_stroker_t *stroker = closure;
|
|
cairo_spline_t spline;
|
|
cairo_line_join_t line_join_save;
|
|
cairo_stroke_face_t face;
|
|
double slope_dx, slope_dy;
|
|
cairo_path_fixed_line_to_func_t *line_to;
|
|
cairo_status_t status = CAIRO_STATUS_SUCCESS;
|
|
|
|
line_to = stroker->dash.dashed ?
|
|
_cairo_stroker_line_to_dashed :
|
|
_cairo_stroker_line_to;
|
|
|
|
if (! _cairo_spline_init (&spline,
|
|
line_to, stroker,
|
|
&stroker->current_point, b, c, d))
|
|
{
|
|
return line_to (closure, d);
|
|
}
|
|
|
|
/* If the line width is so small that the pen is reduced to a
|
|
single point, then we have nothing to do. */
|
|
if (stroker->pen.num_vertices <= 1)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Compute the initial face */
|
|
if (! stroker->dash.dashed || stroker->dash.dash_on) {
|
|
slope_dx = _cairo_fixed_to_double (spline.initial_slope.dx);
|
|
slope_dy = _cairo_fixed_to_double (spline.initial_slope.dy);
|
|
if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
|
|
stroker->ctm_inverse, NULL))
|
|
{
|
|
_compute_face (&stroker->current_point,
|
|
&spline.initial_slope,
|
|
slope_dx, slope_dy,
|
|
stroker, &face);
|
|
}
|
|
if (stroker->has_current_face) {
|
|
status = _cairo_stroker_join (stroker,
|
|
&stroker->current_face, &face);
|
|
if (unlikely (status))
|
|
return status;
|
|
} else if (! stroker->has_first_face) {
|
|
stroker->first_face = face;
|
|
stroker->has_first_face = TRUE;
|
|
}
|
|
|
|
stroker->current_face = face;
|
|
stroker->has_current_face = TRUE;
|
|
}
|
|
|
|
/* Temporarily modify the stroker to use round joins to guarantee
|
|
* smooth stroked curves. */
|
|
line_join_save = stroker->style.line_join;
|
|
stroker->style.line_join = CAIRO_LINE_JOIN_ROUND;
|
|
|
|
status = _cairo_spline_decompose (&spline, stroker->tolerance);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
/* And join the final face */
|
|
if (! stroker->dash.dashed || stroker->dash.dash_on) {
|
|
slope_dx = _cairo_fixed_to_double (spline.final_slope.dx);
|
|
slope_dy = _cairo_fixed_to_double (spline.final_slope.dy);
|
|
if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
|
|
stroker->ctm_inverse, NULL))
|
|
{
|
|
_compute_face (&stroker->current_point,
|
|
&spline.final_slope,
|
|
slope_dx, slope_dy,
|
|
stroker, &face);
|
|
}
|
|
|
|
status = _cairo_stroker_join (stroker, &stroker->current_face, &face);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->current_face = face;
|
|
}
|
|
|
|
stroker->style.line_join = line_join_save;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_stroker_close_path (void *closure)
|
|
{
|
|
cairo_stroker_t *stroker = closure;
|
|
cairo_status_t status;
|
|
|
|
if (stroker->dash.dashed)
|
|
status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point);
|
|
else
|
|
status = _cairo_stroker_line_to (stroker, &stroker->first_point);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
if (stroker->has_first_face && stroker->has_current_face) {
|
|
/* Join first and final faces of sub path */
|
|
status = _cairo_stroker_join (stroker,
|
|
&stroker->current_face,
|
|
&stroker->first_face);
|
|
if (unlikely (status))
|
|
return status;
|
|
} else {
|
|
/* Cap the start and end of the sub path as needed */
|
|
status = _cairo_stroker_add_caps (stroker);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
stroker->has_initial_sub_path = FALSE;
|
|
stroker->has_first_face = FALSE;
|
|
stroker->has_current_face = FALSE;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_stroke_to_shaper (cairo_path_fixed_t *path,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
const cairo_matrix_t *ctm_inverse,
|
|
double tolerance,
|
|
cairo_status_t (*add_triangle) (void *closure,
|
|
const cairo_point_t triangle[3]),
|
|
cairo_status_t (*add_triangle_fan) (void *closure,
|
|
const cairo_point_t *midpt,
|
|
const cairo_point_t *points,
|
|
int npoints),
|
|
cairo_status_t (*add_convex_quad) (void *closure,
|
|
const cairo_point_t quad[4]),
|
|
void *closure)
|
|
{
|
|
cairo_stroker_t stroker;
|
|
cairo_status_t status;
|
|
|
|
status = _cairo_stroker_init (&stroker, stroke_style,
|
|
ctm, ctm_inverse, tolerance);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker.add_triangle = add_triangle;
|
|
stroker.add_triangle_fan = add_triangle_fan;
|
|
stroker.add_convex_quad = add_convex_quad;
|
|
stroker.closure = closure;
|
|
|
|
status = _cairo_path_fixed_interpret (path,
|
|
CAIRO_DIRECTION_FORWARD,
|
|
_cairo_stroker_move_to,
|
|
stroker.dash.dashed ?
|
|
_cairo_stroker_line_to_dashed :
|
|
_cairo_stroker_line_to,
|
|
_cairo_stroker_curve_to,
|
|
_cairo_stroker_close_path,
|
|
&stroker);
|
|
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
/* Cap the start and end of the final sub path as needed */
|
|
status = _cairo_stroker_add_caps (&stroker);
|
|
|
|
BAIL:
|
|
_cairo_stroker_fini (&stroker);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_stroke_to_polygon (const cairo_path_fixed_t *path,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
const cairo_matrix_t *ctm_inverse,
|
|
double tolerance,
|
|
cairo_polygon_t *polygon)
|
|
{
|
|
cairo_stroker_t stroker;
|
|
cairo_status_t status;
|
|
|
|
status = _cairo_stroker_init (&stroker, stroke_style,
|
|
ctm, ctm_inverse, tolerance);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker.add_external_edge = _cairo_polygon_add_external_edge,
|
|
stroker.closure = polygon;
|
|
|
|
if (polygon->num_limits)
|
|
_cairo_stroker_limit (&stroker, polygon->limits, polygon->num_limits);
|
|
|
|
status = _cairo_path_fixed_interpret (path,
|
|
CAIRO_DIRECTION_FORWARD,
|
|
_cairo_stroker_move_to,
|
|
stroker.dash.dashed ?
|
|
_cairo_stroker_line_to_dashed :
|
|
_cairo_stroker_line_to,
|
|
_cairo_stroker_curve_to,
|
|
_cairo_stroker_close_path,
|
|
&stroker);
|
|
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
/* Cap the start and end of the final sub path as needed */
|
|
status = _cairo_stroker_add_caps (&stroker);
|
|
|
|
BAIL:
|
|
_cairo_stroker_fini (&stroker);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_stroke_to_traps (const cairo_path_fixed_t *path,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
const cairo_matrix_t *ctm_inverse,
|
|
double tolerance,
|
|
cairo_traps_t *traps)
|
|
{
|
|
cairo_status_t status;
|
|
cairo_polygon_t polygon;
|
|
|
|
/* Before we do anything else, we attempt the rectilinear
|
|
* stroker. It's careful to generate trapezoids that align to
|
|
* device-pixel boundaries when possible. Many backends can render
|
|
* those much faster than non-aligned trapezoids, (by using clip
|
|
* regions, etc.) */
|
|
if (path->is_rectilinear) {
|
|
status = _cairo_path_fixed_stroke_rectilinear_to_traps (path,
|
|
stroke_style,
|
|
ctm,
|
|
traps);
|
|
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
|
|
return status;
|
|
}
|
|
|
|
_cairo_polygon_init (&polygon);
|
|
if (traps->num_limits)
|
|
_cairo_polygon_limit (&polygon, traps->limits, traps->num_limits);
|
|
|
|
status = _cairo_path_fixed_stroke_to_polygon (path,
|
|
stroke_style,
|
|
ctm,
|
|
ctm_inverse,
|
|
tolerance,
|
|
&polygon);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
status = _cairo_polygon_status (&polygon);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
status = _cairo_bentley_ottmann_tessellate_polygon (traps, &polygon,
|
|
CAIRO_FILL_RULE_WINDING);
|
|
|
|
BAIL:
|
|
_cairo_polygon_fini (&polygon);
|
|
|
|
return status;
|
|
}
|
|
|
|
typedef struct _segment_t {
|
|
cairo_point_t p1, p2;
|
|
cairo_bool_t is_horizontal;
|
|
cairo_bool_t has_join;
|
|
} segment_t;
|
|
|
|
typedef struct _cairo_rectilinear_stroker {
|
|
const cairo_stroke_style_t *stroke_style;
|
|
const cairo_matrix_t *ctm;
|
|
|
|
cairo_fixed_t half_line_width;
|
|
cairo_bool_t do_traps;
|
|
void *container;
|
|
cairo_point_t current_point;
|
|
cairo_point_t first_point;
|
|
cairo_bool_t open_sub_path;
|
|
|
|
cairo_stroker_dash_t dash;
|
|
|
|
cairo_bool_t has_bounds;
|
|
cairo_box_t bounds;
|
|
|
|
int num_segments;
|
|
int segments_size;
|
|
segment_t *segments;
|
|
segment_t segments_embedded[8]; /* common case is a single rectangle */
|
|
} cairo_rectilinear_stroker_t;
|
|
|
|
static void
|
|
_cairo_rectilinear_stroker_limit (cairo_rectilinear_stroker_t *stroker,
|
|
const cairo_box_t *boxes,
|
|
int num_boxes)
|
|
{
|
|
stroker->has_bounds = TRUE;
|
|
_cairo_boxes_get_extents (boxes, num_boxes, &stroker->bounds);
|
|
|
|
stroker->bounds.p1.x -= stroker->half_line_width;
|
|
stroker->bounds.p2.x += stroker->half_line_width;
|
|
|
|
stroker->bounds.p1.y -= stroker->half_line_width;
|
|
stroker->bounds.p2.y += stroker->half_line_width;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_cairo_rectilinear_stroker_init (cairo_rectilinear_stroker_t *stroker,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
cairo_bool_t do_traps,
|
|
void *container)
|
|
{
|
|
/* This special-case rectilinear stroker only supports
|
|
* miter-joined lines (not curves) and a translation-only matrix
|
|
* (though it could probably be extended to support a matrix with
|
|
* uniform, integer scaling).
|
|
*
|
|
* It also only supports horizontal and vertical line_to
|
|
* elements. But we don't catch that here, but instead return
|
|
* UNSUPPORTED from _cairo_rectilinear_stroker_line_to if any
|
|
* non-rectilinear line_to is encountered.
|
|
*/
|
|
if (stroke_style->line_join != CAIRO_LINE_JOIN_MITER)
|
|
return FALSE;
|
|
|
|
/* If the miter limit turns right angles into bevels, then we
|
|
* can't use this optimization. Remember, the ratio is
|
|
* 1/sin(ɸ/2). So the cutoff is 1/sin(π/4.0) or ⎷2,
|
|
* which we round for safety. */
|
|
if (stroke_style->miter_limit < M_SQRT2)
|
|
return FALSE;
|
|
|
|
if (! (stroke_style->line_cap == CAIRO_LINE_CAP_BUTT ||
|
|
stroke_style->line_cap == CAIRO_LINE_CAP_SQUARE))
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
if (! _cairo_matrix_has_unity_scale (ctm))
|
|
return FALSE;
|
|
|
|
stroker->stroke_style = stroke_style;
|
|
stroker->ctm = ctm;
|
|
|
|
stroker->half_line_width =
|
|
_cairo_fixed_from_double (stroke_style->line_width / 2.0);
|
|
stroker->open_sub_path = FALSE;
|
|
stroker->segments = stroker->segments_embedded;
|
|
stroker->segments_size = ARRAY_LENGTH (stroker->segments_embedded);
|
|
stroker->num_segments = 0;
|
|
|
|
_cairo_stroker_dash_init (&stroker->dash, stroke_style);
|
|
|
|
stroker->has_bounds = FALSE;
|
|
|
|
stroker->do_traps = do_traps;
|
|
stroker->container = container;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
_cairo_rectilinear_stroker_fini (cairo_rectilinear_stroker_t *stroker)
|
|
{
|
|
if (stroker->segments != stroker->segments_embedded)
|
|
free (stroker->segments);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_add_segment (cairo_rectilinear_stroker_t *stroker,
|
|
const cairo_point_t *p1,
|
|
const cairo_point_t *p2,
|
|
cairo_bool_t is_horizontal,
|
|
cairo_bool_t has_join)
|
|
{
|
|
if (CAIRO_INJECT_FAULT ())
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
if (stroker->num_segments == stroker->segments_size) {
|
|
int new_size = stroker->segments_size * 2;
|
|
segment_t *new_segments;
|
|
|
|
if (stroker->segments == stroker->segments_embedded) {
|
|
new_segments = _cairo_malloc_ab (new_size, sizeof (segment_t));
|
|
if (unlikely (new_segments == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
memcpy (new_segments, stroker->segments,
|
|
stroker->num_segments * sizeof (segment_t));
|
|
} else {
|
|
new_segments = _cairo_realloc_ab (stroker->segments,
|
|
new_size, sizeof (segment_t));
|
|
if (unlikely (new_segments == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
stroker->segments_size = new_size;
|
|
stroker->segments = new_segments;
|
|
}
|
|
|
|
stroker->segments[stroker->num_segments].p1 = *p1;
|
|
stroker->segments[stroker->num_segments].p2 = *p2;
|
|
stroker->segments[stroker->num_segments].has_join = has_join;
|
|
stroker->segments[stroker->num_segments].is_horizontal = is_horizontal;
|
|
stroker->num_segments++;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_emit_segments (cairo_rectilinear_stroker_t *stroker)
|
|
{
|
|
cairo_status_t status;
|
|
cairo_line_cap_t line_cap = stroker->stroke_style->line_cap;
|
|
cairo_fixed_t half_line_width = stroker->half_line_width;
|
|
int i;
|
|
|
|
for (i = 0; i < stroker->num_segments; i++) {
|
|
cairo_point_t *a, *b;
|
|
cairo_bool_t lengthen_initial, shorten_final, lengthen_final;
|
|
|
|
a = &stroker->segments[i].p1;
|
|
b = &stroker->segments[i].p2;
|
|
|
|
/* For each segment we generate a single rectangular
|
|
* trapezoid. This rectangle is based on a perpendicular
|
|
* extension (by half the line width) of the segment endpoints
|
|
* after some adjustments of the endpoints to account for caps
|
|
* and joins.
|
|
*/
|
|
|
|
/* We adjust the initial point of the segment to extend the
|
|
* rectangle to include the previous cap or join, (this
|
|
* adjustment applies to all segments except for the first
|
|
* segment of open, butt-capped paths).
|
|
*/
|
|
lengthen_initial = TRUE;
|
|
if (i == 0 && stroker->open_sub_path && line_cap == CAIRO_LINE_CAP_BUTT)
|
|
lengthen_initial = FALSE;
|
|
|
|
/* The adjustment of the final point is trickier. For all but
|
|
* the last segment we shorten the segment at the final
|
|
* endpoint to not overlap with the subsequent join. For the
|
|
* last segment we do the same shortening if the path is
|
|
* closed. If the path is open and butt-capped we do no
|
|
* adjustment, while if it's open and square-capped we do a
|
|
* lengthening adjustment instead to include the cap.
|
|
*/
|
|
shorten_final = TRUE;
|
|
lengthen_final = FALSE;
|
|
if (i == stroker->num_segments - 1 && stroker->open_sub_path) {
|
|
shorten_final = FALSE;
|
|
if (line_cap == CAIRO_LINE_CAP_SQUARE)
|
|
lengthen_final = TRUE;
|
|
}
|
|
|
|
/* Perform the adjustments of the endpoints. */
|
|
if (a->y == b->y) {
|
|
if (a->x < b->x) {
|
|
if (lengthen_initial)
|
|
a->x -= half_line_width;
|
|
if (shorten_final)
|
|
b->x -= half_line_width;
|
|
else if (lengthen_final)
|
|
b->x += half_line_width;
|
|
} else {
|
|
if (lengthen_initial)
|
|
a->x += half_line_width;
|
|
if (shorten_final)
|
|
b->x += half_line_width;
|
|
else if (lengthen_final)
|
|
b->x -= half_line_width;
|
|
}
|
|
|
|
if (a->x > b->x) {
|
|
cairo_point_t *t;
|
|
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
} else {
|
|
if (a->y < b->y) {
|
|
if (lengthen_initial)
|
|
a->y -= half_line_width;
|
|
if (shorten_final)
|
|
b->y -= half_line_width;
|
|
else if (lengthen_final)
|
|
b->y += half_line_width;
|
|
} else {
|
|
if (lengthen_initial)
|
|
a->y += half_line_width;
|
|
if (shorten_final)
|
|
b->y += half_line_width;
|
|
else if (lengthen_final)
|
|
b->y -= half_line_width;
|
|
}
|
|
|
|
if (a->y > b->y) {
|
|
cairo_point_t *t;
|
|
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
}
|
|
|
|
/* Form the rectangle by expanding by half the line width in
|
|
* either perpendicular direction. */
|
|
if (a->y == b->y) {
|
|
a->y -= half_line_width;
|
|
b->y += half_line_width;
|
|
} else {
|
|
a->x -= half_line_width;
|
|
b->x += half_line_width;
|
|
}
|
|
|
|
if (stroker->do_traps) {
|
|
status = _cairo_traps_tessellate_rectangle (stroker->container, a, b);
|
|
} else {
|
|
cairo_box_t box;
|
|
|
|
box.p1 = *a;
|
|
box.p2 = *b;
|
|
|
|
status = _cairo_boxes_add (stroker->container, &box);
|
|
}
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
stroker->num_segments = 0;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_emit_segments_dashed (cairo_rectilinear_stroker_t *stroker)
|
|
{
|
|
cairo_status_t status;
|
|
cairo_line_cap_t line_cap = stroker->stroke_style->line_cap;
|
|
cairo_fixed_t half_line_width = stroker->half_line_width;
|
|
int i;
|
|
|
|
for (i = 0; i < stroker->num_segments; i++) {
|
|
cairo_point_t *a, *b;
|
|
cairo_bool_t is_horizontal;
|
|
|
|
a = &stroker->segments[i].p1;
|
|
b = &stroker->segments[i].p2;
|
|
|
|
is_horizontal = stroker->segments[i].is_horizontal;
|
|
|
|
/* Handle the joins for a potentially degenerate segment. */
|
|
if (line_cap == CAIRO_LINE_CAP_BUTT &&
|
|
stroker->segments[i].has_join &&
|
|
(i != stroker->num_segments - 1 ||
|
|
(! stroker->open_sub_path && stroker->dash.dash_starts_on)))
|
|
{
|
|
cairo_point_t p1 = stroker->segments[i].p1;
|
|
cairo_point_t p2 = stroker->segments[i].p2;
|
|
cairo_slope_t out_slope;
|
|
int j = (i + 1) % stroker->num_segments;
|
|
|
|
_cairo_slope_init (&out_slope,
|
|
&stroker->segments[j].p1,
|
|
&stroker->segments[j].p2);
|
|
|
|
if (is_horizontal) {
|
|
if (p1.x <= p2.x) {
|
|
p1.x = p2.x;
|
|
p2.x += half_line_width;
|
|
} else {
|
|
p1.x = p2.x - half_line_width;
|
|
}
|
|
if (out_slope.dy >= 0)
|
|
p1.y -= half_line_width;
|
|
if (out_slope.dy <= 0)
|
|
p2.y += half_line_width;
|
|
} else {
|
|
if (p1.y <= p2.y) {
|
|
p1.y = p2.y;
|
|
p2.y += half_line_width;
|
|
} else {
|
|
p1.y = p2.y - half_line_width;
|
|
}
|
|
if (out_slope.dx >= 0)
|
|
p1.x -= half_line_width;
|
|
if (out_slope.dx <= 0)
|
|
p2.x += half_line_width;
|
|
}
|
|
|
|
if (stroker->do_traps) {
|
|
status = _cairo_traps_tessellate_rectangle (stroker->container, &p1, &p2);
|
|
} else {
|
|
cairo_box_t box;
|
|
|
|
box.p1 = p1;
|
|
box.p2 = p2;
|
|
|
|
status = _cairo_boxes_add (stroker->container, &box);
|
|
}
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
/* Perform the adjustments of the endpoints. */
|
|
if (is_horizontal) {
|
|
if (line_cap == CAIRO_LINE_CAP_SQUARE) {
|
|
if (a->x <= b->x) {
|
|
a->x -= half_line_width;
|
|
b->x += half_line_width;
|
|
} else {
|
|
a->x += half_line_width;
|
|
b->x -= half_line_width;
|
|
}
|
|
}
|
|
|
|
if (a->x > b->x) {
|
|
cairo_point_t *t;
|
|
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
|
|
a->y -= half_line_width;
|
|
b->y += half_line_width;
|
|
} else {
|
|
if (line_cap == CAIRO_LINE_CAP_SQUARE) {
|
|
if (a->y <= b->y) {
|
|
a->y -= half_line_width;
|
|
b->y += half_line_width;
|
|
} else {
|
|
a->y += half_line_width;
|
|
b->y -= half_line_width;
|
|
}
|
|
}
|
|
|
|
if (a->y > b->y) {
|
|
cairo_point_t *t;
|
|
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
|
|
a->x -= half_line_width;
|
|
b->x += half_line_width;
|
|
}
|
|
|
|
if (a->x == b->x && a->y == b->y)
|
|
continue;
|
|
|
|
if (stroker->do_traps) {
|
|
status = _cairo_traps_tessellate_rectangle (stroker->container, a, b);
|
|
} else {
|
|
cairo_box_t box;
|
|
|
|
box.p1 = *a;
|
|
box.p2 = *b;
|
|
|
|
status = _cairo_boxes_add (stroker->container, &box);
|
|
}
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
stroker->num_segments = 0;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_move_to (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_rectilinear_stroker_t *stroker = closure;
|
|
cairo_status_t status;
|
|
|
|
if (stroker->dash.dashed)
|
|
status = _cairo_rectilinear_stroker_emit_segments_dashed (stroker);
|
|
else
|
|
status = _cairo_rectilinear_stroker_emit_segments (stroker);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
/* reset the dash pattern for new sub paths */
|
|
_cairo_stroker_dash_start (&stroker->dash);
|
|
|
|
stroker->current_point = *point;
|
|
stroker->first_point = *point;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_line_to (void *closure,
|
|
const cairo_point_t *b)
|
|
{
|
|
cairo_rectilinear_stroker_t *stroker = closure;
|
|
cairo_point_t *a = &stroker->current_point;
|
|
cairo_status_t status;
|
|
|
|
/* We only support horizontal or vertical elements. */
|
|
assert (a->x == b->x || a->y == b->y);
|
|
|
|
/* We don't draw anything for degenerate paths. */
|
|
if (a->x == b->x && a->y == b->y)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
status = _cairo_rectilinear_stroker_add_segment (stroker, a, b,
|
|
a->y == b->y,
|
|
TRUE);
|
|
|
|
stroker->current_point = *b;
|
|
stroker->open_sub_path = TRUE;
|
|
|
|
return status;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_line_to_dashed (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_rectilinear_stroker_t *stroker = closure;
|
|
const cairo_point_t *a = &stroker->current_point;
|
|
const cairo_point_t *b = point;
|
|
cairo_bool_t fully_in_bounds;
|
|
double sign, remain;
|
|
cairo_fixed_t mag;
|
|
cairo_status_t status;
|
|
cairo_line_t segment;
|
|
cairo_bool_t dash_on = FALSE;
|
|
cairo_bool_t is_horizontal;
|
|
|
|
/* We don't draw anything for degenerate paths. */
|
|
if (a->x == b->x && a->y == b->y)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
/* We only support horizontal or vertical elements. */
|
|
assert (a->x == b->x || a->y == b->y);
|
|
|
|
fully_in_bounds = TRUE;
|
|
if (stroker->has_bounds &&
|
|
(! _cairo_box_contains_point (&stroker->bounds, a) ||
|
|
! _cairo_box_contains_point (&stroker->bounds, b)))
|
|
{
|
|
fully_in_bounds = FALSE;
|
|
}
|
|
|
|
is_horizontal = a->y == b->y;
|
|
if (is_horizontal)
|
|
mag = b->x - a->x;
|
|
else
|
|
mag = b->y - a->y;
|
|
if (mag < 0) {
|
|
remain = _cairo_fixed_to_double (-mag);
|
|
sign = 1.;
|
|
} else {
|
|
remain = _cairo_fixed_to_double (mag);
|
|
sign = -1.;
|
|
}
|
|
|
|
segment.p2 = segment.p1 = *a;
|
|
while (remain > 0.) {
|
|
double step_length;
|
|
|
|
step_length = MIN (stroker->dash.dash_remain, remain);
|
|
remain -= step_length;
|
|
|
|
mag = _cairo_fixed_from_double (sign*remain);
|
|
if (is_horizontal)
|
|
segment.p2.x = b->x + mag;
|
|
else
|
|
segment.p2.y = b->y + mag;
|
|
|
|
if (stroker->dash.dash_on &&
|
|
(fully_in_bounds ||
|
|
_cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
|
|
{
|
|
status = _cairo_rectilinear_stroker_add_segment (stroker,
|
|
&segment.p1,
|
|
&segment.p2,
|
|
is_horizontal,
|
|
remain <= 0.);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
dash_on = TRUE;
|
|
}
|
|
else
|
|
{
|
|
dash_on = FALSE;
|
|
}
|
|
|
|
_cairo_stroker_dash_step (&stroker->dash, step_length);
|
|
segment.p1 = segment.p2;
|
|
}
|
|
|
|
if (stroker->dash.dash_on && ! dash_on &&
|
|
(fully_in_bounds ||
|
|
_cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
|
|
{
|
|
|
|
/* This segment ends on a transition to dash_on, compute a new face
|
|
* and add cap for the beginning of the next dash_on step.
|
|
*/
|
|
|
|
status = _cairo_rectilinear_stroker_add_segment (stroker,
|
|
&segment.p1,
|
|
&segment.p1,
|
|
is_horizontal,
|
|
TRUE);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
stroker->current_point = *point;
|
|
stroker->open_sub_path = TRUE;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_rectilinear_stroker_close_path (void *closure)
|
|
{
|
|
cairo_rectilinear_stroker_t *stroker = closure;
|
|
cairo_status_t status;
|
|
|
|
/* We don't draw anything for degenerate paths. */
|
|
if (! stroker->open_sub_path)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
if (stroker->dash.dashed) {
|
|
status = _cairo_rectilinear_stroker_line_to_dashed (stroker,
|
|
&stroker->first_point);
|
|
} else {
|
|
status = _cairo_rectilinear_stroker_line_to (stroker,
|
|
&stroker->first_point);
|
|
}
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
stroker->open_sub_path = FALSE;
|
|
|
|
if (stroker->dash.dashed)
|
|
status = _cairo_rectilinear_stroker_emit_segments_dashed (stroker);
|
|
else
|
|
status = _cairo_rectilinear_stroker_emit_segments (stroker);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
cairo_int_status_t
|
|
_cairo_path_fixed_stroke_rectilinear_to_traps (const cairo_path_fixed_t *path,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
cairo_traps_t *traps)
|
|
{
|
|
cairo_rectilinear_stroker_t rectilinear_stroker;
|
|
cairo_int_status_t status;
|
|
|
|
assert (path->is_rectilinear);
|
|
|
|
if (! _cairo_rectilinear_stroker_init (&rectilinear_stroker,
|
|
stroke_style, ctm,
|
|
TRUE, traps))
|
|
{
|
|
return CAIRO_INT_STATUS_UNSUPPORTED;
|
|
}
|
|
|
|
if (traps->num_limits) {
|
|
_cairo_rectilinear_stroker_limit (&rectilinear_stroker,
|
|
traps->limits,
|
|
traps->num_limits);
|
|
}
|
|
|
|
status = _cairo_path_fixed_interpret (path,
|
|
CAIRO_DIRECTION_FORWARD,
|
|
_cairo_rectilinear_stroker_move_to,
|
|
rectilinear_stroker.dash.dashed ?
|
|
_cairo_rectilinear_stroker_line_to_dashed :
|
|
_cairo_rectilinear_stroker_line_to,
|
|
NULL,
|
|
_cairo_rectilinear_stroker_close_path,
|
|
&rectilinear_stroker);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
if (rectilinear_stroker.dash.dashed)
|
|
status = _cairo_rectilinear_stroker_emit_segments_dashed (&rectilinear_stroker);
|
|
else
|
|
status = _cairo_rectilinear_stroker_emit_segments (&rectilinear_stroker);
|
|
|
|
traps->is_rectilinear = 1;
|
|
traps->is_rectangular = 1;
|
|
/* As we incrementally tessellate, we do not eliminate self-intersections */
|
|
traps->has_intersections = traps->num_traps > 1;
|
|
BAIL:
|
|
_cairo_rectilinear_stroker_fini (&rectilinear_stroker);
|
|
|
|
if (unlikely (status))
|
|
_cairo_traps_clear (traps);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_int_status_t
|
|
_cairo_path_fixed_stroke_rectilinear_to_boxes (const cairo_path_fixed_t *path,
|
|
const cairo_stroke_style_t *stroke_style,
|
|
const cairo_matrix_t *ctm,
|
|
cairo_boxes_t *boxes)
|
|
{
|
|
cairo_rectilinear_stroker_t rectilinear_stroker;
|
|
cairo_int_status_t status;
|
|
|
|
assert (path->is_rectilinear);
|
|
|
|
if (! _cairo_rectilinear_stroker_init (&rectilinear_stroker,
|
|
stroke_style, ctm,
|
|
FALSE, boxes))
|
|
{
|
|
return CAIRO_INT_STATUS_UNSUPPORTED;
|
|
}
|
|
|
|
if (boxes->num_limits) {
|
|
_cairo_rectilinear_stroker_limit (&rectilinear_stroker,
|
|
boxes->limits,
|
|
boxes->num_limits);
|
|
}
|
|
|
|
status = _cairo_path_fixed_interpret (path,
|
|
CAIRO_DIRECTION_FORWARD,
|
|
_cairo_rectilinear_stroker_move_to,
|
|
rectilinear_stroker.dash.dashed ?
|
|
_cairo_rectilinear_stroker_line_to_dashed :
|
|
_cairo_rectilinear_stroker_line_to,
|
|
NULL,
|
|
_cairo_rectilinear_stroker_close_path,
|
|
&rectilinear_stroker);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
if (rectilinear_stroker.dash.dashed)
|
|
status = _cairo_rectilinear_stroker_emit_segments_dashed (&rectilinear_stroker);
|
|
else
|
|
status = _cairo_rectilinear_stroker_emit_segments (&rectilinear_stroker);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
/* As we incrementally tessellate, we do not eliminate self-intersections */
|
|
status = _cairo_bentley_ottmann_tessellate_boxes (boxes,
|
|
CAIRO_FILL_RULE_WINDING,
|
|
boxes);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
_cairo_rectilinear_stroker_fini (&rectilinear_stroker);
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
BAIL:
|
|
_cairo_rectilinear_stroker_fini (&rectilinear_stroker);
|
|
_cairo_boxes_clear (boxes);
|
|
return status;
|
|
}
|