forked from KolibriOS/kolibrios
2bf6bb3b5b
git-svn-id: svn://kolibrios.org@1769 a494cfbc-eb01-0410-851d-a64ba20cac60
90 lines
4.9 KiB
Plaintext
90 lines
4.9 KiB
Plaintext
#Life 1.05
|
|
#D Venetian blinds
|
|
#D This is a finite version of the infinite p2 oscillator in which
|
|
#D rows alternate full, full, empty, empty, full, full, ... Two types
|
|
#D of edges are shown, one perpendicular to the rows and one at a 45
|
|
#D degree angle. (It's easy to prove that there's no p2 edge parallel
|
|
#D to the rows.) Also shown are 3 type of corners where the edges
|
|
#D meet. This partly answers a question of John Conway's: What's the
|
|
#D maximum average density of an infinite p2 pattern, and can it be
|
|
#D obtained as a limit of finite p2 patterns? This shows that 1/2 is
|
|
#D a lower bound. Hartmut Holzwart showed that 8/13 is an upper bound.
|
|
#D Dean Hickerson, dean@ucdmath.ucdavis.edu 9/13/92
|
|
#N
|
|
#P -31 -36
|
|
..................*.**.**......*......**.**.*
|
|
..................**.*.*...**.*.*.**...*.*.**
|
|
.....................*...*..*.*.*.*..*...*
|
|
.....................*..***...*.*...***..*
|
|
....................**.*.....*.*.*.....*.**
|
|
.......................*..**.*...*.**..*
|
|
....................**..***..**.**..***..**
|
|
................**.*.**...**.*****.**...**.*.**
|
|
**.**...**......**.**....*...........*....**.**
|
|
.*.*...*.*.........*..**.*.*.......*.*.**..*
|
|
.*..*..*........**..***..**.*******.**..***..**
|
|
..*.*.*..*..**.*.**...**.*************.**...**.*.**
|
|
...*.**.**..**.**....*...................*....**.**
|
|
.....**........*..**.*.*...............*.*.**..*
|
|
....*.......**..***..**.***************.**..***..**
|
|
..***.*.**.*.**...**.*********************.**...**.*.**
|
|
.*...***.*.**....*...........................*....**.**
|
|
.***...*...*..**.*.*.......................*.*.**..*
|
|
....**...*..***..**.***********************.**..***..**
|
|
...*..*.***...**.*****************************.**...**.*.**..**
|
|
...*.**.*....*...................................*....**.**...*..*
|
|
....**.**.**.*.*...............................*.*.**..*......*.*.*
|
|
.........**..**.*******************************.**..***..**..**.*..*
|
|
....**..*.**.*************************************.**...**.*....**.*
|
|
....*..*.*...........................................*....**.**...**.**
|
|
......**.*.*.......................................*.*.**..*.*.**...*.*
|
|
..........*.***************************************.**..***..*.*.**.*
|
|
.........**.******************************************.**...****..*.*
|
|
....*.**.*.*.............................................*.......*..**
|
|
....**.*.*.............................................*.*.**....*.*..*
|
|
...........********************************************.**..*****..*.*
|
|
.........*...*********************************************.***..***.*
|
|
.............................................................*..*.*
|
|
........*.*.*..............................................*.*..*.*.*
|
|
....**.*...*.**********************************************.**.*...**
|
|
....*.**.*.***************************************************
|
|
........*.*
|
|
#P -31 1
|
|
........*.*
|
|
....*.**.*.***************************************************
|
|
....**.*...*.**********************************************.**.*...**
|
|
........*.*.*..............................................*.*..*.*.*
|
|
.............................................................*..*.*
|
|
.........*...*********************************************.***..***.*
|
|
...........********************************************.**..*****..*.*
|
|
....**.*.*.............................................*.*.**....*.*..*
|
|
....*.**.*.*.............................................*.......*..**
|
|
.........**.******************************************.**...****..*.*
|
|
..........*.***************************************.**..***..*.*.**.*
|
|
......**.*.*.......................................*.*.**..*.*.**...*.*
|
|
....*..*.*...........................................*....**.**...**.**
|
|
....**..*.**.*************************************.**...**.*....**.*
|
|
.........**..**.*******************************.**..***..**..**.*..*
|
|
....**.**.**.*.*...............................*.*.**..*......*.*.*
|
|
...*.**.*....*...................................*....**.**...*..*
|
|
...*..*.***...**.*****************************.**...**.*.**..**
|
|
....**...*..***..**.***********************.**..***..**
|
|
.***...*...*..**.*.*.......................*.*.**..*
|
|
.*...***.*.**....*...........................*....**.**
|
|
..***.*.**.*.**...**.*********************.**...**.*.**
|
|
....*.......**..***..**.***************.**..***..**
|
|
.....**........*..**.*.*...............*.*.**..*
|
|
...*.**.**..**.**....*...................*....**.**
|
|
..*.*.*..*..**.*.**...**.*************.**...**.*.**
|
|
.*..*..*........**..***..**.*******.**..***..**
|
|
.*.*...*.*.........*..**.*.*.......*.*.**..*
|
|
**.**...**......**.**....*...........*....**.**
|
|
................**.*.**...**.*****.**...**.*.**
|
|
....................**..***..**.**..***..**
|
|
.......................*..**.*...*.**..*
|
|
....................**.*.....*.*.*.....*.**
|
|
.....................*..***...*.*...***..*
|
|
.....................*...*..*.*.*.*..*...*
|
|
..................**.*.*...**.*.*.**...*.*.**
|
|
..................*.**.**......*......**.**.*
|