forked from KolibriOS/kolibrios
2336060a0c
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
254 lines
4.7 KiB
C
254 lines
4.7 KiB
C
/* lgamf()
|
|
*
|
|
* Natural logarithm of gamma function
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* float x, y, __lgammaf_r();
|
|
* int* sgngamf;
|
|
* y = __lgammaf_r( x, sgngamf );
|
|
*
|
|
* float x, y, lgammaf();
|
|
* y = lgammaf( x);
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the base e (2.718...) logarithm of the absolute
|
|
* value of the gamma function of the argument. In the reentrant
|
|
* version the sign (+1 or -1) of the gamma function is returned in
|
|
* variable referenced by sgngamf.
|
|
*
|
|
* For arguments greater than 6.5, the logarithm of the gamma
|
|
* function is approximated by the logarithmic version of
|
|
* Stirling's formula. Arguments between 0 and +6.5 are reduced by
|
|
* by recurrence to the interval [.75,1.25] or [1.5,2.5] of a rational
|
|
* approximation. The cosecant reflection formula is employed for
|
|
* arguments less than zero.
|
|
*
|
|
* Arguments greater than MAXLGM = 2.035093e36 return MAXNUM and an
|
|
* error message.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
*
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -100,+100 500,000 7.4e-7 6.8e-8
|
|
* The error criterion was relative when the function magnitude
|
|
* was greater than one but absolute when it was less than one.
|
|
* The routine has low relative error for positive arguments.
|
|
*
|
|
* The following test used the relative error criterion.
|
|
* IEEE -2, +3 100000 4.0e-7 5.6e-8
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
Cephes Math Library Release 2.7: July, 1998
|
|
Copyright 1984, 1987, 1989, 1992, 1998 by Stephen L. Moshier
|
|
*/
|
|
|
|
/*
|
|
26-11-2002 Modified for mingw.
|
|
Danny Smith <dannysmith@users.sourceforge.net>
|
|
*/
|
|
|
|
|
|
/* log gamma(x+2), -.5 < x < .5 */
|
|
static const float B[] = {
|
|
6.055172732649237E-004,
|
|
-1.311620815545743E-003,
|
|
2.863437556468661E-003,
|
|
-7.366775108654962E-003,
|
|
2.058355474821512E-002,
|
|
-6.735323259371034E-002,
|
|
3.224669577325661E-001,
|
|
4.227843421859038E-001
|
|
};
|
|
|
|
/* log gamma(x+1), -.25 < x < .25 */
|
|
static const float C[] = {
|
|
1.369488127325832E-001,
|
|
-1.590086327657347E-001,
|
|
1.692415923504637E-001,
|
|
-2.067882815621965E-001,
|
|
2.705806208275915E-001,
|
|
-4.006931650563372E-001,
|
|
8.224670749082976E-001,
|
|
-5.772156501719101E-001
|
|
};
|
|
|
|
/* log( sqrt( 2*pi ) ) */
|
|
static const float LS2PI = 0.91893853320467274178;
|
|
#define MAXLGM 2.035093e36
|
|
static const float PIINV = 0.318309886183790671538;
|
|
|
|
#ifndef __MINGW32__
|
|
#include "mconf.h"
|
|
float floorf(float);
|
|
float polevlf( float, float *, int );
|
|
float p1evlf( float, float *, int );
|
|
#else
|
|
#include "cephes_mconf.h"
|
|
#endif
|
|
|
|
/* Reentrant version */
|
|
/* Logarithm of gamma function */
|
|
|
|
float __lgammaf_r( float x, int* sgngamf )
|
|
{
|
|
float p, q, w, z;
|
|
float nx, tx;
|
|
int i, direction;
|
|
|
|
*sgngamf = 1;
|
|
#ifdef NANS
|
|
if( isnan(x) )
|
|
return(x);
|
|
#endif
|
|
|
|
#ifdef INFINITIES
|
|
if( !isfinite(x) )
|
|
return(x);
|
|
#endif
|
|
|
|
|
|
if( x < 0.0 )
|
|
{
|
|
q = -x;
|
|
w = __lgammaf_r(q, sgngamf); /* note this modifies sgngam! */
|
|
p = floorf(q);
|
|
if( p == q )
|
|
{
|
|
lgsing:
|
|
_SET_ERRNO(EDOM);
|
|
mtherr( "lgamf", SING );
|
|
#ifdef INFINITIES
|
|
return (INFINITYF);
|
|
#else
|
|
return( *sgngamf * MAXNUMF );
|
|
#endif
|
|
}
|
|
i = p;
|
|
if( (i & 1) == 0 )
|
|
*sgngamf = -1;
|
|
else
|
|
*sgngamf = 1;
|
|
z = q - p;
|
|
if( z > 0.5 )
|
|
{
|
|
p += 1.0;
|
|
z = p - q;
|
|
}
|
|
z = q * sinf( PIF * z );
|
|
if( z == 0.0 )
|
|
goto lgsing;
|
|
z = -logf( PIINV*z ) - w;
|
|
return( z );
|
|
}
|
|
|
|
if( x < 6.5 )
|
|
{
|
|
direction = 0;
|
|
z = 1.0;
|
|
tx = x;
|
|
nx = 0.0;
|
|
if( x >= 1.5 )
|
|
{
|
|
while( tx > 2.5 )
|
|
{
|
|
nx -= 1.0;
|
|
tx = x + nx;
|
|
z *=tx;
|
|
}
|
|
x += nx - 2.0;
|
|
iv1r5:
|
|
p = x * polevlf( x, B, 7 );
|
|
goto cont;
|
|
}
|
|
if( x >= 1.25 )
|
|
{
|
|
z *= x;
|
|
x -= 1.0; /* x + 1 - 2 */
|
|
direction = 1;
|
|
goto iv1r5;
|
|
}
|
|
if( x >= 0.75 )
|
|
{
|
|
x -= 1.0;
|
|
p = x * polevlf( x, C, 7 );
|
|
q = 0.0;
|
|
goto contz;
|
|
}
|
|
while( tx < 1.5 )
|
|
{
|
|
if( tx == 0.0 )
|
|
goto lgsing;
|
|
z *=tx;
|
|
nx += 1.0;
|
|
tx = x + nx;
|
|
}
|
|
direction = 1;
|
|
x += nx - 2.0;
|
|
p = x * polevlf( x, B, 7 );
|
|
|
|
cont:
|
|
if( z < 0.0 )
|
|
{
|
|
*sgngamf = -1;
|
|
z = -z;
|
|
}
|
|
else
|
|
{
|
|
*sgngamf = 1;
|
|
}
|
|
q = logf(z);
|
|
if( direction )
|
|
q = -q;
|
|
contz:
|
|
return( p + q );
|
|
}
|
|
|
|
if( x > MAXLGM )
|
|
{
|
|
_SET_ERRNO(ERANGE);
|
|
mtherr( "lgamf", OVERFLOW );
|
|
#ifdef INFINITIES
|
|
return( *sgngamf * INFINITYF );
|
|
#else
|
|
return( *sgngamf * MAXNUMF );
|
|
#endif
|
|
|
|
}
|
|
|
|
/* Note, though an asymptotic formula could be used for x >= 3,
|
|
* there is cancellation error in the following if x < 6.5. */
|
|
q = LS2PI - x;
|
|
q += ( x - 0.5 ) * logf(x);
|
|
|
|
if( x <= 1.0e4 )
|
|
{
|
|
z = 1.0/x;
|
|
p = z * z;
|
|
q += (( 6.789774945028216E-004 * p
|
|
- 2.769887652139868E-003 ) * p
|
|
+ 8.333316229807355E-002 ) * z;
|
|
}
|
|
return( q );
|
|
}
|
|
|
|
/* This is the C99 version */
|
|
|
|
float lgammaf(float x)
|
|
{
|
|
int local_sgngamf=0;
|
|
return (__lgammaf_r(x, &local_sgngamf));
|
|
}
|