forked from KolibriOS/kolibrios
edb28b33f3
git-svn-id: svn://kolibrios.org@3770 a494cfbc-eb01-0410-851d-a64ba20cac60
1296 lines
44 KiB
C
1296 lines
44 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright 2011 Marek Olšák <maraeo@gmail.com>
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* This module uploads user buffers and translates the vertex buffers which
|
|
* contain incompatible vertices (i.e. not supported by the driver/hardware)
|
|
* into compatible ones, based on the Gallium CAPs.
|
|
*
|
|
* It does not upload index buffers.
|
|
*
|
|
* The module heavily uses bitmasks to represent per-buffer and
|
|
* per-vertex-element flags to avoid looping over the list of buffers just
|
|
* to see if there's a non-zero stride, or user buffer, or unsupported format,
|
|
* etc.
|
|
*
|
|
* There are 3 categories of vertex elements, which are processed separately:
|
|
* - per-vertex attribs (stride != 0, instance_divisor == 0)
|
|
* - instanced attribs (stride != 0, instance_divisor > 0)
|
|
* - constant attribs (stride == 0)
|
|
*
|
|
* All needed uploads and translations are performed every draw command, but
|
|
* only the subset of vertices needed for that draw command is uploaded or
|
|
* translated. (the module never translates whole buffers)
|
|
*
|
|
*
|
|
* The module consists of two main parts:
|
|
*
|
|
*
|
|
* 1) Translate (u_vbuf_translate_begin/end)
|
|
*
|
|
* This is pretty much a vertex fetch fallback. It translates vertices from
|
|
* one vertex buffer to another in an unused vertex buffer slot. It does
|
|
* whatever is needed to make the vertices readable by the hardware (changes
|
|
* vertex formats and aligns offsets and strides). The translate module is
|
|
* used here.
|
|
*
|
|
* Each of the 3 categories is translated to a separate buffer.
|
|
* Only the [min_index, max_index] range is translated. For instanced attribs,
|
|
* the range is [start_instance, start_instance+instance_count]. For constant
|
|
* attribs, the range is [0, 1].
|
|
*
|
|
*
|
|
* 2) User buffer uploading (u_vbuf_upload_buffers)
|
|
*
|
|
* Only the [min_index, max_index] range is uploaded (just like Translate)
|
|
* with a single memcpy.
|
|
*
|
|
* This method works best for non-indexed draw operations or indexed draw
|
|
* operations where the [min_index, max_index] range is not being way bigger
|
|
* than the vertex count.
|
|
*
|
|
* If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
|
|
* the per-vertex attribs are uploaded via the translate module, all packed
|
|
* into one vertex buffer, and the indexed draw call is turned into
|
|
* a non-indexed one in the process. This adds additional complexity
|
|
* to the translate part, but it prevents bad apps from bringing your frame
|
|
* rate down.
|
|
*
|
|
*
|
|
* If there is nothing to do, it forwards every command to the driver.
|
|
* The module also has its own CSO cache of vertex element states.
|
|
*/
|
|
|
|
#include "util/u_vbuf.h"
|
|
|
|
#include "util/u_dump.h"
|
|
#include "util/u_format.h"
|
|
#include "util/u_inlines.h"
|
|
#include "util/u_memory.h"
|
|
#include "util/u_upload_mgr.h"
|
|
#include "translate/translate.h"
|
|
#include "translate/translate_cache.h"
|
|
#include "cso_cache/cso_cache.h"
|
|
#include "cso_cache/cso_hash.h"
|
|
|
|
struct u_vbuf_elements {
|
|
unsigned count;
|
|
struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
|
|
|
|
unsigned src_format_size[PIPE_MAX_ATTRIBS];
|
|
|
|
/* If (velem[i].src_format != native_format[i]), the vertex buffer
|
|
* referenced by the vertex element cannot be used for rendering and
|
|
* its vertex data must be translated to native_format[i]. */
|
|
enum pipe_format native_format[PIPE_MAX_ATTRIBS];
|
|
unsigned native_format_size[PIPE_MAX_ATTRIBS];
|
|
|
|
/* Which buffers are used by the vertex element state. */
|
|
uint32_t used_vb_mask;
|
|
/* This might mean two things:
|
|
* - src_format != native_format, as discussed above.
|
|
* - src_offset % 4 != 0 (if the caps don't allow such an offset). */
|
|
uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
|
|
/* Which buffer has at least one vertex element referencing it
|
|
* incompatible. */
|
|
uint32_t incompatible_vb_mask_any;
|
|
/* Which buffer has all vertex elements referencing it incompatible. */
|
|
uint32_t incompatible_vb_mask_all;
|
|
/* Which buffer has at least one vertex element referencing it
|
|
* compatible. */
|
|
uint32_t compatible_vb_mask_any;
|
|
/* Which buffer has all vertex elements referencing it compatible. */
|
|
uint32_t compatible_vb_mask_all;
|
|
|
|
/* Which buffer has at least one vertex element referencing it
|
|
* non-instanced. */
|
|
uint32_t noninstance_vb_mask_any;
|
|
|
|
void *driver_cso;
|
|
};
|
|
|
|
enum {
|
|
VB_VERTEX = 0,
|
|
VB_INSTANCE = 1,
|
|
VB_CONST = 2,
|
|
VB_NUM = 3
|
|
};
|
|
|
|
struct u_vbuf {
|
|
struct u_vbuf_caps caps;
|
|
|
|
struct pipe_context *pipe;
|
|
struct translate_cache *translate_cache;
|
|
struct cso_cache *cso_cache;
|
|
struct u_upload_mgr *uploader;
|
|
|
|
/* This is what was set in set_vertex_buffers.
|
|
* May contain user buffers. */
|
|
struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
|
|
uint32_t enabled_vb_mask;
|
|
|
|
/* Saved vertex buffer. */
|
|
unsigned aux_vertex_buffer_slot;
|
|
struct pipe_vertex_buffer aux_vertex_buffer_saved;
|
|
|
|
/* Vertex buffers for the driver.
|
|
* There are usually no user buffers. */
|
|
struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
|
|
uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
|
|
call of set_vertex_buffers */
|
|
|
|
/* The index buffer. */
|
|
struct pipe_index_buffer index_buffer;
|
|
|
|
/* Vertex elements. */
|
|
struct u_vbuf_elements *ve, *ve_saved;
|
|
|
|
/* Vertex elements used for the translate fallback. */
|
|
struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
|
|
/* If non-NULL, this is a vertex element state used for the translate
|
|
* fallback and therefore used for rendering too. */
|
|
boolean using_translate;
|
|
/* The vertex buffer slot index where translated vertices have been
|
|
* stored in. */
|
|
unsigned fallback_vbs[VB_NUM];
|
|
|
|
/* Which buffer is a user buffer. */
|
|
uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
|
|
/* Which buffer is incompatible (unaligned). */
|
|
uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
|
|
/* Which buffer has a non-zero stride. */
|
|
uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
|
|
};
|
|
|
|
static void *
|
|
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
|
|
const struct pipe_vertex_element *attribs);
|
|
static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
|
|
|
|
|
|
void u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
|
|
{
|
|
caps->format_fixed32 =
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R32_FIXED, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
caps->format_float16 =
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R16_FLOAT, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
caps->format_float64 =
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R64_FLOAT, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
caps->format_norm32 =
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R32_UNORM, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER) &&
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R32_SNORM, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
caps->format_scaled32 =
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R32_USCALED, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER) &&
|
|
screen->is_format_supported(screen, PIPE_FORMAT_R32_SSCALED, PIPE_BUFFER,
|
|
0, PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
caps->buffer_offset_unaligned =
|
|
!screen->get_param(screen,
|
|
PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
|
|
|
|
caps->buffer_stride_unaligned =
|
|
!screen->get_param(screen,
|
|
PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
|
|
|
|
caps->velem_src_offset_unaligned =
|
|
!screen->get_param(screen,
|
|
PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
|
|
|
|
caps->user_vertex_buffers =
|
|
screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
|
|
}
|
|
|
|
struct u_vbuf *
|
|
u_vbuf_create(struct pipe_context *pipe,
|
|
struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
|
|
{
|
|
struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
|
|
|
|
mgr->caps = *caps;
|
|
mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
|
|
mgr->pipe = pipe;
|
|
mgr->cso_cache = cso_cache_create();
|
|
mgr->translate_cache = translate_cache_create();
|
|
memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
|
|
|
|
mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
|
|
PIPE_BIND_VERTEX_BUFFER);
|
|
|
|
return mgr;
|
|
}
|
|
|
|
/* u_vbuf uses its own caching for vertex elements, because it needs to keep
|
|
* its own preprocessed state per vertex element CSO. */
|
|
static struct u_vbuf_elements *
|
|
u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
|
|
const struct pipe_vertex_element *states)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
unsigned key_size, hash_key;
|
|
struct cso_hash_iter iter;
|
|
struct u_vbuf_elements *ve;
|
|
struct cso_velems_state velems_state;
|
|
|
|
/* need to include the count into the stored state data too. */
|
|
key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
|
|
velems_state.count = count;
|
|
memcpy(velems_state.velems, states,
|
|
sizeof(struct pipe_vertex_element) * count);
|
|
hash_key = cso_construct_key((void*)&velems_state, key_size);
|
|
iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
|
|
(void*)&velems_state, key_size);
|
|
|
|
if (cso_hash_iter_is_null(iter)) {
|
|
struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
|
|
memcpy(&cso->state, &velems_state, key_size);
|
|
cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
|
|
cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
|
|
cso->context = (void*)mgr;
|
|
|
|
iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
|
|
ve = cso->data;
|
|
} else {
|
|
ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
|
|
}
|
|
|
|
assert(ve);
|
|
|
|
if (ve != mgr->ve)
|
|
pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
|
|
return ve;
|
|
}
|
|
|
|
void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
|
|
const struct pipe_vertex_element *states)
|
|
{
|
|
mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
|
|
}
|
|
|
|
void u_vbuf_destroy(struct u_vbuf *mgr)
|
|
{
|
|
struct pipe_screen *screen = mgr->pipe->screen;
|
|
unsigned i;
|
|
unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
|
|
PIPE_SHADER_CAP_MAX_INPUTS);
|
|
|
|
mgr->pipe->set_index_buffer(mgr->pipe, NULL);
|
|
pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
|
|
|
|
mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
|
|
|
|
for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
|
|
pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
|
|
}
|
|
for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
|
|
pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
|
|
}
|
|
pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
|
|
|
|
translate_cache_destroy(mgr->translate_cache);
|
|
u_upload_destroy(mgr->uploader);
|
|
cso_cache_delete(mgr->cso_cache);
|
|
FREE(mgr);
|
|
}
|
|
|
|
static enum pipe_error
|
|
u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
|
|
unsigned vb_mask, unsigned out_vb,
|
|
int start_vertex, unsigned num_vertices,
|
|
int start_index, unsigned num_indices, int min_index,
|
|
boolean unroll_indices)
|
|
{
|
|
struct translate *tr;
|
|
struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
|
|
struct pipe_resource *out_buffer = NULL;
|
|
uint8_t *out_map;
|
|
unsigned out_offset, mask;
|
|
enum pipe_error err;
|
|
|
|
/* Get a translate object. */
|
|
tr = translate_cache_find(mgr->translate_cache, key);
|
|
|
|
/* Map buffers we want to translate. */
|
|
mask = vb_mask;
|
|
while (mask) {
|
|
struct pipe_vertex_buffer *vb;
|
|
unsigned offset;
|
|
uint8_t *map;
|
|
unsigned i = u_bit_scan(&mask);
|
|
|
|
vb = &mgr->vertex_buffer[i];
|
|
offset = vb->buffer_offset + vb->stride * start_vertex;
|
|
|
|
if (vb->user_buffer) {
|
|
map = (uint8_t*)vb->user_buffer + offset;
|
|
} else {
|
|
unsigned size = vb->stride ? num_vertices * vb->stride
|
|
: sizeof(double)*4;
|
|
|
|
if (offset+size > vb->buffer->width0) {
|
|
size = vb->buffer->width0 - offset;
|
|
}
|
|
|
|
map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
|
|
PIPE_TRANSFER_READ, &vb_transfer[i]);
|
|
}
|
|
|
|
/* Subtract min_index so that indexing with the index buffer works. */
|
|
if (unroll_indices) {
|
|
map -= vb->stride * min_index;
|
|
}
|
|
|
|
tr->set_buffer(tr, i, map, vb->stride, ~0);
|
|
}
|
|
|
|
/* Translate. */
|
|
if (unroll_indices) {
|
|
struct pipe_index_buffer *ib = &mgr->index_buffer;
|
|
struct pipe_transfer *transfer = NULL;
|
|
unsigned offset = ib->offset + start_index * ib->index_size;
|
|
uint8_t *map;
|
|
|
|
assert((ib->buffer || ib->user_buffer) && ib->index_size);
|
|
|
|
/* Create and map the output buffer. */
|
|
err = u_upload_alloc(mgr->uploader, 0,
|
|
key->output_stride * num_indices,
|
|
&out_offset, &out_buffer,
|
|
(void**)&out_map);
|
|
if (err != PIPE_OK)
|
|
return err;
|
|
|
|
if (ib->user_buffer) {
|
|
map = (uint8_t*)ib->user_buffer + offset;
|
|
} else {
|
|
map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
|
|
num_indices * ib->index_size,
|
|
PIPE_TRANSFER_READ, &transfer);
|
|
}
|
|
|
|
switch (ib->index_size) {
|
|
case 4:
|
|
tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
|
|
break;
|
|
case 2:
|
|
tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
|
|
break;
|
|
case 1:
|
|
tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
|
|
break;
|
|
}
|
|
|
|
if (transfer) {
|
|
pipe_buffer_unmap(mgr->pipe, transfer);
|
|
}
|
|
} else {
|
|
/* Create and map the output buffer. */
|
|
err = u_upload_alloc(mgr->uploader,
|
|
key->output_stride * start_vertex,
|
|
key->output_stride * num_vertices,
|
|
&out_offset, &out_buffer,
|
|
(void**)&out_map);
|
|
if (err != PIPE_OK)
|
|
return err;
|
|
|
|
out_offset -= key->output_stride * start_vertex;
|
|
|
|
tr->run(tr, 0, num_vertices, 0, 0, out_map);
|
|
}
|
|
|
|
/* Unmap all buffers. */
|
|
mask = vb_mask;
|
|
while (mask) {
|
|
unsigned i = u_bit_scan(&mask);
|
|
|
|
if (vb_transfer[i]) {
|
|
pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
|
|
}
|
|
}
|
|
|
|
/* Setup the new vertex buffer. */
|
|
mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
|
|
mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
|
|
|
|
/* Move the buffer reference. */
|
|
pipe_resource_reference(
|
|
&mgr->real_vertex_buffer[out_vb].buffer, NULL);
|
|
mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
|
|
|
|
return PIPE_OK;
|
|
}
|
|
|
|
static boolean
|
|
u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
|
|
unsigned mask[VB_NUM])
|
|
{
|
|
unsigned type;
|
|
unsigned fallback_vbs[VB_NUM];
|
|
/* Set the bit for each buffer which is incompatible, or isn't set. */
|
|
uint32_t unused_vb_mask =
|
|
mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
|
|
~mgr->enabled_vb_mask;
|
|
|
|
memset(fallback_vbs, ~0, sizeof(fallback_vbs));
|
|
|
|
/* Find free slots for each type if needed. */
|
|
for (type = 0; type < VB_NUM; type++) {
|
|
if (mask[type]) {
|
|
uint32_t index;
|
|
|
|
if (!unused_vb_mask) {
|
|
return FALSE;
|
|
}
|
|
|
|
index = ffs(unused_vb_mask) - 1;
|
|
fallback_vbs[type] = index;
|
|
/*printf("found slot=%i for type=%i\n", index, type);*/
|
|
}
|
|
}
|
|
|
|
for (type = 0; type < VB_NUM; type++) {
|
|
if (mask[type]) {
|
|
mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
|
|
}
|
|
}
|
|
|
|
memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
|
|
return TRUE;
|
|
}
|
|
|
|
static boolean
|
|
u_vbuf_translate_begin(struct u_vbuf *mgr,
|
|
int start_vertex, unsigned num_vertices,
|
|
int start_instance, unsigned num_instances,
|
|
int start_index, unsigned num_indices, int min_index,
|
|
boolean unroll_indices)
|
|
{
|
|
unsigned mask[VB_NUM] = {0};
|
|
struct translate_key key[VB_NUM];
|
|
unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
|
|
unsigned i, type;
|
|
unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
|
|
mgr->ve->used_vb_mask;
|
|
|
|
int start[VB_NUM] = {
|
|
start_vertex, /* VERTEX */
|
|
start_instance, /* INSTANCE */
|
|
0 /* CONST */
|
|
};
|
|
|
|
unsigned num[VB_NUM] = {
|
|
num_vertices, /* VERTEX */
|
|
num_instances, /* INSTANCE */
|
|
1 /* CONST */
|
|
};
|
|
|
|
memset(key, 0, sizeof(key));
|
|
memset(elem_index, ~0, sizeof(elem_index));
|
|
|
|
/* See if there are vertex attribs of each type to translate and
|
|
* which ones. */
|
|
for (i = 0; i < mgr->ve->count; i++) {
|
|
unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
|
|
|
|
if (!mgr->vertex_buffer[vb_index].stride) {
|
|
if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
|
|
!(incompatible_vb_mask & (1 << vb_index))) {
|
|
continue;
|
|
}
|
|
mask[VB_CONST] |= 1 << vb_index;
|
|
} else if (mgr->ve->ve[i].instance_divisor) {
|
|
if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
|
|
!(incompatible_vb_mask & (1 << vb_index))) {
|
|
continue;
|
|
}
|
|
mask[VB_INSTANCE] |= 1 << vb_index;
|
|
} else {
|
|
if (!unroll_indices &&
|
|
!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
|
|
!(incompatible_vb_mask & (1 << vb_index))) {
|
|
continue;
|
|
}
|
|
mask[VB_VERTEX] |= 1 << vb_index;
|
|
}
|
|
}
|
|
|
|
assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
|
|
|
|
/* Find free vertex buffer slots. */
|
|
if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* Initialize the translate keys. */
|
|
for (i = 0; i < mgr->ve->count; i++) {
|
|
struct translate_key *k;
|
|
struct translate_element *te;
|
|
unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
|
|
bit = 1 << vb_index;
|
|
|
|
if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
|
|
!(incompatible_vb_mask & (1 << vb_index)) &&
|
|
(!unroll_indices || !(mask[VB_VERTEX] & bit))) {
|
|
continue;
|
|
}
|
|
|
|
/* Set type to what we will translate.
|
|
* Whether vertex, instance, or constant attribs. */
|
|
for (type = 0; type < VB_NUM; type++) {
|
|
if (mask[type] & bit) {
|
|
break;
|
|
}
|
|
}
|
|
assert(type < VB_NUM);
|
|
assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
|
|
/*printf("velem=%i type=%i\n", i, type);*/
|
|
|
|
/* Add the vertex element. */
|
|
k = &key[type];
|
|
elem_index[type][i] = k->nr_elements;
|
|
|
|
te = &k->element[k->nr_elements];
|
|
te->type = TRANSLATE_ELEMENT_NORMAL;
|
|
te->instance_divisor = 0;
|
|
te->input_buffer = vb_index;
|
|
te->input_format = mgr->ve->ve[i].src_format;
|
|
te->input_offset = mgr->ve->ve[i].src_offset;
|
|
te->output_format = mgr->ve->native_format[i];
|
|
te->output_offset = k->output_stride;
|
|
|
|
k->output_stride += mgr->ve->native_format_size[i];
|
|
k->nr_elements++;
|
|
}
|
|
|
|
/* Translate buffers. */
|
|
for (type = 0; type < VB_NUM; type++) {
|
|
if (key[type].nr_elements) {
|
|
enum pipe_error err;
|
|
err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
|
|
mgr->fallback_vbs[type],
|
|
start[type], num[type],
|
|
start_index, num_indices, min_index,
|
|
unroll_indices && type == VB_VERTEX);
|
|
if (err != PIPE_OK)
|
|
return FALSE;
|
|
|
|
/* Fixup the stride for constant attribs. */
|
|
if (type == VB_CONST) {
|
|
mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Setup new vertex elements. */
|
|
for (i = 0; i < mgr->ve->count; i++) {
|
|
for (type = 0; type < VB_NUM; type++) {
|
|
if (elem_index[type][i] < key[type].nr_elements) {
|
|
struct translate_element *te = &key[type].element[elem_index[type][i]];
|
|
mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
|
|
mgr->fallback_velems[i].src_format = te->output_format;
|
|
mgr->fallback_velems[i].src_offset = te->output_offset;
|
|
mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
|
|
|
|
/* elem_index[type][i] can only be set for one type. */
|
|
assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
|
|
assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
|
|
break;
|
|
}
|
|
}
|
|
/* No translating, just copy the original vertex element over. */
|
|
if (type == VB_NUM) {
|
|
memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
|
|
sizeof(struct pipe_vertex_element));
|
|
}
|
|
}
|
|
|
|
u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
|
|
mgr->fallback_velems);
|
|
mgr->using_translate = TRUE;
|
|
return TRUE;
|
|
}
|
|
|
|
static void u_vbuf_translate_end(struct u_vbuf *mgr)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Restore vertex elements. */
|
|
mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
|
|
mgr->using_translate = FALSE;
|
|
|
|
/* Unreference the now-unused VBOs. */
|
|
for (i = 0; i < VB_NUM; i++) {
|
|
unsigned vb = mgr->fallback_vbs[i];
|
|
if (vb != ~0) {
|
|
pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
|
|
mgr->fallback_vbs[i] = ~0;
|
|
|
|
/* This will cause the buffer to be unbound in the driver later. */
|
|
mgr->dirty_real_vb_mask |= 1 << vb;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define FORMAT_REPLACE(what, withwhat) \
|
|
case PIPE_FORMAT_##what: format = PIPE_FORMAT_##withwhat; break
|
|
|
|
static void *
|
|
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
|
|
const struct pipe_vertex_element *attribs)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
unsigned i;
|
|
struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
|
|
struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
|
|
uint32_t used_buffers = 0;
|
|
|
|
ve->count = count;
|
|
|
|
memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
|
|
memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
|
|
|
|
/* Set the best native format in case the original format is not
|
|
* supported. */
|
|
for (i = 0; i < count; i++) {
|
|
enum pipe_format format = ve->ve[i].src_format;
|
|
|
|
ve->src_format_size[i] = util_format_get_blocksize(format);
|
|
|
|
used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
|
|
|
|
if (!ve->ve[i].instance_divisor) {
|
|
ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
|
|
}
|
|
|
|
/* Choose a native format.
|
|
* For now we don't care about the alignment, that's going to
|
|
* be sorted out later. */
|
|
if (!mgr->caps.format_fixed32) {
|
|
switch (format) {
|
|
FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
|
|
FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
|
|
default:;
|
|
}
|
|
}
|
|
if (!mgr->caps.format_float16) {
|
|
switch (format) {
|
|
FORMAT_REPLACE(R16_FLOAT, R32_FLOAT);
|
|
FORMAT_REPLACE(R16G16_FLOAT, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R16G16B16_FLOAT, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R16G16B16A16_FLOAT, R32G32B32A32_FLOAT);
|
|
default:;
|
|
}
|
|
}
|
|
if (!mgr->caps.format_float64) {
|
|
switch (format) {
|
|
FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
|
|
FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
|
|
default:;
|
|
}
|
|
}
|
|
if (!mgr->caps.format_norm32) {
|
|
switch (format) {
|
|
FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
|
|
FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
|
|
FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
|
|
FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
|
|
default:;
|
|
}
|
|
}
|
|
if (!mgr->caps.format_scaled32) {
|
|
switch (format) {
|
|
FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
|
|
FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
|
|
FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
|
|
FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
|
|
FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
|
|
default:;
|
|
}
|
|
}
|
|
|
|
driver_attribs[i].src_format = format;
|
|
ve->native_format[i] = format;
|
|
ve->native_format_size[i] =
|
|
util_format_get_blocksize(ve->native_format[i]);
|
|
|
|
if (ve->ve[i].src_format != format ||
|
|
(!mgr->caps.velem_src_offset_unaligned &&
|
|
ve->ve[i].src_offset % 4 != 0)) {
|
|
ve->incompatible_elem_mask |= 1 << i;
|
|
ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
|
|
} else {
|
|
ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
|
|
}
|
|
}
|
|
|
|
ve->used_vb_mask = used_buffers;
|
|
ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
|
|
ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
|
|
|
|
/* Align the formats to the size of DWORD if needed. */
|
|
if (!mgr->caps.velem_src_offset_unaligned) {
|
|
for (i = 0; i < count; i++) {
|
|
ve->native_format_size[i] = align(ve->native_format_size[i], 4);
|
|
}
|
|
}
|
|
|
|
ve->driver_cso =
|
|
pipe->create_vertex_elements_state(pipe, count, driver_attribs);
|
|
return ve;
|
|
}
|
|
|
|
static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
struct u_vbuf_elements *ve = cso;
|
|
|
|
pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
|
|
FREE(ve);
|
|
}
|
|
|
|
void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
|
|
unsigned start_slot, unsigned count,
|
|
const struct pipe_vertex_buffer *bufs)
|
|
{
|
|
unsigned i;
|
|
/* which buffers are enabled */
|
|
uint32_t enabled_vb_mask = 0;
|
|
/* which buffers are in user memory */
|
|
uint32_t user_vb_mask = 0;
|
|
/* which buffers are incompatible with the driver */
|
|
uint32_t incompatible_vb_mask = 0;
|
|
/* which buffers have a non-zero stride */
|
|
uint32_t nonzero_stride_vb_mask = 0;
|
|
uint32_t mask = ~(((1ull << count) - 1) << start_slot);
|
|
|
|
/* Zero out the bits we are going to rewrite completely. */
|
|
mgr->user_vb_mask &= mask;
|
|
mgr->incompatible_vb_mask &= mask;
|
|
mgr->nonzero_stride_vb_mask &= mask;
|
|
mgr->enabled_vb_mask &= mask;
|
|
|
|
if (!bufs) {
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
/* Unbind. */
|
|
mgr->dirty_real_vb_mask &= mask;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
unsigned dst_index = start_slot + i;
|
|
|
|
pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
|
|
pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
|
|
NULL);
|
|
}
|
|
|
|
pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
unsigned dst_index = start_slot + i;
|
|
const struct pipe_vertex_buffer *vb = &bufs[i];
|
|
struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
|
|
struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
|
|
|
|
if (!vb->buffer && !vb->user_buffer) {
|
|
pipe_resource_reference(&orig_vb->buffer, NULL);
|
|
pipe_resource_reference(&real_vb->buffer, NULL);
|
|
real_vb->user_buffer = NULL;
|
|
continue;
|
|
}
|
|
|
|
pipe_resource_reference(&orig_vb->buffer, vb->buffer);
|
|
orig_vb->user_buffer = vb->user_buffer;
|
|
|
|
real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
|
|
real_vb->stride = orig_vb->stride = vb->stride;
|
|
|
|
if (vb->stride) {
|
|
nonzero_stride_vb_mask |= 1 << dst_index;
|
|
}
|
|
enabled_vb_mask |= 1 << dst_index;
|
|
|
|
if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
|
|
(!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
|
|
incompatible_vb_mask |= 1 << dst_index;
|
|
pipe_resource_reference(&real_vb->buffer, NULL);
|
|
continue;
|
|
}
|
|
|
|
if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
|
|
user_vb_mask |= 1 << dst_index;
|
|
pipe_resource_reference(&real_vb->buffer, NULL);
|
|
continue;
|
|
}
|
|
|
|
pipe_resource_reference(&real_vb->buffer, vb->buffer);
|
|
real_vb->user_buffer = vb->user_buffer;
|
|
}
|
|
|
|
mgr->user_vb_mask |= user_vb_mask;
|
|
mgr->incompatible_vb_mask |= incompatible_vb_mask;
|
|
mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
|
|
mgr->enabled_vb_mask |= enabled_vb_mask;
|
|
|
|
/* All changed buffers are marked as dirty, even the NULL ones,
|
|
* which will cause the NULL buffers to be unbound in the driver later. */
|
|
mgr->dirty_real_vb_mask |= ~mask;
|
|
}
|
|
|
|
void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
|
|
const struct pipe_index_buffer *ib)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
|
|
if (ib) {
|
|
assert(ib->offset % ib->index_size == 0);
|
|
pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
|
|
memcpy(&mgr->index_buffer, ib, sizeof(*ib));
|
|
} else {
|
|
pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
|
|
}
|
|
|
|
pipe->set_index_buffer(pipe, ib);
|
|
}
|
|
|
|
static enum pipe_error
|
|
u_vbuf_upload_buffers(struct u_vbuf *mgr,
|
|
int start_vertex, unsigned num_vertices,
|
|
int start_instance, unsigned num_instances)
|
|
{
|
|
unsigned i;
|
|
unsigned nr_velems = mgr->ve->count;
|
|
struct pipe_vertex_element *velems =
|
|
mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
|
|
unsigned start_offset[PIPE_MAX_ATTRIBS];
|
|
unsigned end_offset[PIPE_MAX_ATTRIBS];
|
|
uint32_t buffer_mask = 0;
|
|
|
|
/* Determine how much data needs to be uploaded. */
|
|
for (i = 0; i < nr_velems; i++) {
|
|
struct pipe_vertex_element *velem = &velems[i];
|
|
unsigned index = velem->vertex_buffer_index;
|
|
struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
|
|
unsigned instance_div, first, size, index_bit;
|
|
|
|
/* Skip the buffers generated by translate. */
|
|
if (index == mgr->fallback_vbs[VB_VERTEX] ||
|
|
index == mgr->fallback_vbs[VB_INSTANCE] ||
|
|
index == mgr->fallback_vbs[VB_CONST]) {
|
|
continue;
|
|
}
|
|
|
|
if (!vb->user_buffer) {
|
|
continue;
|
|
}
|
|
|
|
instance_div = velem->instance_divisor;
|
|
first = vb->buffer_offset + velem->src_offset;
|
|
|
|
if (!vb->stride) {
|
|
/* Constant attrib. */
|
|
size = mgr->ve->src_format_size[i];
|
|
} else if (instance_div) {
|
|
/* Per-instance attrib. */
|
|
unsigned count = (num_instances + instance_div - 1) / instance_div;
|
|
first += vb->stride * start_instance;
|
|
size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
|
|
} else {
|
|
/* Per-vertex attrib. */
|
|
first += vb->stride * start_vertex;
|
|
size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
|
|
}
|
|
|
|
index_bit = 1 << index;
|
|
|
|
/* Update offsets. */
|
|
if (!(buffer_mask & index_bit)) {
|
|
start_offset[index] = first;
|
|
end_offset[index] = first + size;
|
|
} else {
|
|
if (first < start_offset[index])
|
|
start_offset[index] = first;
|
|
if (first + size > end_offset[index])
|
|
end_offset[index] = first + size;
|
|
}
|
|
|
|
buffer_mask |= index_bit;
|
|
}
|
|
|
|
/* Upload buffers. */
|
|
while (buffer_mask) {
|
|
unsigned start, end;
|
|
struct pipe_vertex_buffer *real_vb;
|
|
const uint8_t *ptr;
|
|
enum pipe_error err;
|
|
|
|
i = u_bit_scan(&buffer_mask);
|
|
|
|
start = start_offset[i];
|
|
end = end_offset[i];
|
|
assert(start < end);
|
|
|
|
real_vb = &mgr->real_vertex_buffer[i];
|
|
ptr = mgr->vertex_buffer[i].user_buffer;
|
|
|
|
err = u_upload_data(mgr->uploader, start, end - start, ptr + start,
|
|
&real_vb->buffer_offset, &real_vb->buffer);
|
|
if (err != PIPE_OK)
|
|
return err;
|
|
|
|
real_vb->buffer_offset -= start;
|
|
}
|
|
|
|
return PIPE_OK;
|
|
}
|
|
|
|
static boolean u_vbuf_need_minmax_index(struct u_vbuf *mgr)
|
|
{
|
|
/* See if there are any per-vertex attribs which will be uploaded or
|
|
* translated. Use bitmasks to get the info instead of looping over vertex
|
|
* elements. */
|
|
return (mgr->ve->used_vb_mask &
|
|
((mgr->user_vb_mask | mgr->incompatible_vb_mask |
|
|
mgr->ve->incompatible_vb_mask_any) &
|
|
mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0;
|
|
}
|
|
|
|
static boolean u_vbuf_mapping_vertex_buffer_blocks(struct u_vbuf *mgr)
|
|
{
|
|
/* Return true if there are hw buffers which don't need to be translated.
|
|
*
|
|
* We could query whether each buffer is busy, but that would
|
|
* be way more costly than this. */
|
|
return (mgr->ve->used_vb_mask &
|
|
(~mgr->user_vb_mask & ~mgr->incompatible_vb_mask &
|
|
mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any &
|
|
mgr->nonzero_stride_vb_mask)) != 0;
|
|
}
|
|
|
|
static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
|
|
struct pipe_index_buffer *ib,
|
|
const struct pipe_draw_info *info,
|
|
int *out_min_index,
|
|
int *out_max_index)
|
|
{
|
|
struct pipe_transfer *transfer = NULL;
|
|
const void *indices;
|
|
unsigned i;
|
|
unsigned restart_index = info->restart_index;
|
|
|
|
if (ib->user_buffer) {
|
|
indices = (uint8_t*)ib->user_buffer +
|
|
ib->offset + info->start * ib->index_size;
|
|
} else {
|
|
indices = pipe_buffer_map_range(pipe, ib->buffer,
|
|
ib->offset + info->start * ib->index_size,
|
|
info->count * ib->index_size,
|
|
PIPE_TRANSFER_READ, &transfer);
|
|
}
|
|
|
|
switch (ib->index_size) {
|
|
case 4: {
|
|
const unsigned *ui_indices = (const unsigned*)indices;
|
|
unsigned max_ui = 0;
|
|
unsigned min_ui = ~0U;
|
|
if (info->primitive_restart) {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (ui_indices[i] != restart_index) {
|
|
if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
|
|
if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
|
|
if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
|
|
}
|
|
}
|
|
*out_min_index = min_ui;
|
|
*out_max_index = max_ui;
|
|
break;
|
|
}
|
|
case 2: {
|
|
const unsigned short *us_indices = (const unsigned short*)indices;
|
|
unsigned max_us = 0;
|
|
unsigned min_us = ~0U;
|
|
if (info->primitive_restart) {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (us_indices[i] != restart_index) {
|
|
if (us_indices[i] > max_us) max_us = us_indices[i];
|
|
if (us_indices[i] < min_us) min_us = us_indices[i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (us_indices[i] > max_us) max_us = us_indices[i];
|
|
if (us_indices[i] < min_us) min_us = us_indices[i];
|
|
}
|
|
}
|
|
*out_min_index = min_us;
|
|
*out_max_index = max_us;
|
|
break;
|
|
}
|
|
case 1: {
|
|
const unsigned char *ub_indices = (const unsigned char*)indices;
|
|
unsigned max_ub = 0;
|
|
unsigned min_ub = ~0U;
|
|
if (info->primitive_restart) {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (ub_indices[i] != restart_index) {
|
|
if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
|
|
if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < info->count; i++) {
|
|
if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
|
|
if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
|
|
}
|
|
}
|
|
*out_min_index = min_ub;
|
|
*out_max_index = max_ub;
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
*out_min_index = 0;
|
|
*out_max_index = 0;
|
|
}
|
|
|
|
if (transfer) {
|
|
pipe_buffer_unmap(pipe, transfer);
|
|
}
|
|
}
|
|
|
|
static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
unsigned start_slot, count;
|
|
|
|
start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
|
|
count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
|
|
|
|
pipe->set_vertex_buffers(pipe, start_slot, count,
|
|
mgr->real_vertex_buffer + start_slot);
|
|
mgr->dirty_real_vb_mask = 0;
|
|
}
|
|
|
|
void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
|
|
{
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
int start_vertex, min_index;
|
|
unsigned num_vertices;
|
|
boolean unroll_indices = FALSE;
|
|
uint32_t used_vb_mask = mgr->ve->used_vb_mask;
|
|
uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
|
|
uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
|
|
|
|
/* Normal draw. No fallback and no user buffers. */
|
|
if (!incompatible_vb_mask &&
|
|
!mgr->ve->incompatible_elem_mask &&
|
|
!user_vb_mask) {
|
|
|
|
/* Set vertex buffers if needed. */
|
|
if (mgr->dirty_real_vb_mask & used_vb_mask) {
|
|
u_vbuf_set_driver_vertex_buffers(mgr);
|
|
}
|
|
|
|
pipe->draw_vbo(pipe, info);
|
|
return;
|
|
}
|
|
|
|
if (info->indexed) {
|
|
/* See if anything needs to be done for per-vertex attribs. */
|
|
if (u_vbuf_need_minmax_index(mgr)) {
|
|
int max_index;
|
|
|
|
if (info->max_index != ~0) {
|
|
min_index = info->min_index;
|
|
max_index = info->max_index;
|
|
} else {
|
|
u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer, info,
|
|
&min_index, &max_index);
|
|
}
|
|
|
|
assert(min_index <= max_index);
|
|
|
|
start_vertex = min_index + info->index_bias;
|
|
num_vertices = max_index + 1 - min_index;
|
|
|
|
/* Primitive restart doesn't work when unrolling indices.
|
|
* We would have to break this drawing operation into several ones. */
|
|
/* Use some heuristic to see if unrolling indices improves
|
|
* performance. */
|
|
if (!info->primitive_restart &&
|
|
num_vertices > info->count*2 &&
|
|
num_vertices-info->count > 32 &&
|
|
!u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
|
|
/*printf("num_vertices=%i count=%i\n", num_vertices, info->count);*/
|
|
unroll_indices = TRUE;
|
|
user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
|
|
mgr->ve->noninstance_vb_mask_any);
|
|
}
|
|
} else {
|
|
/* Nothing to do for per-vertex attribs. */
|
|
start_vertex = 0;
|
|
num_vertices = 0;
|
|
min_index = 0;
|
|
}
|
|
} else {
|
|
start_vertex = info->start;
|
|
num_vertices = info->count;
|
|
min_index = 0;
|
|
}
|
|
|
|
/* Translate vertices with non-native layouts or formats. */
|
|
if (unroll_indices ||
|
|
incompatible_vb_mask ||
|
|
mgr->ve->incompatible_elem_mask) {
|
|
if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
|
|
info->start_instance, info->instance_count,
|
|
info->start, info->count, min_index,
|
|
unroll_indices)) {
|
|
debug_warn_once("u_vbuf_translate_begin() failed");
|
|
return;
|
|
}
|
|
|
|
user_vb_mask &= ~(incompatible_vb_mask |
|
|
mgr->ve->incompatible_vb_mask_all);
|
|
}
|
|
|
|
/* Upload user buffers. */
|
|
if (user_vb_mask) {
|
|
if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
|
|
info->start_instance,
|
|
info->instance_count) != PIPE_OK) {
|
|
debug_warn_once("u_vbuf_upload_buffers() failed");
|
|
return;
|
|
}
|
|
|
|
mgr->dirty_real_vb_mask |= user_vb_mask;
|
|
}
|
|
|
|
/*
|
|
if (unroll_indices) {
|
|
printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
|
|
start_vertex, num_vertices);
|
|
util_dump_draw_info(stdout, info);
|
|
printf("\n");
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < mgr->nr_vertex_buffers; i++) {
|
|
printf("input %i: ", i);
|
|
util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
|
|
printf("\n");
|
|
}
|
|
for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
|
|
printf("real %i: ", i);
|
|
util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
|
|
printf("\n");
|
|
}
|
|
*/
|
|
|
|
u_upload_unmap(mgr->uploader);
|
|
u_vbuf_set_driver_vertex_buffers(mgr);
|
|
|
|
if (unlikely(unroll_indices)) {
|
|
struct pipe_draw_info new_info = *info;
|
|
new_info.indexed = FALSE;
|
|
new_info.index_bias = 0;
|
|
new_info.min_index = 0;
|
|
new_info.max_index = info->count - 1;
|
|
new_info.start = 0;
|
|
|
|
pipe->draw_vbo(pipe, &new_info);
|
|
} else {
|
|
pipe->draw_vbo(pipe, info);
|
|
}
|
|
|
|
if (mgr->using_translate) {
|
|
u_vbuf_translate_end(mgr);
|
|
}
|
|
}
|
|
|
|
void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
|
|
{
|
|
assert(!mgr->ve_saved);
|
|
mgr->ve_saved = mgr->ve;
|
|
}
|
|
|
|
void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
|
|
{
|
|
if (mgr->ve != mgr->ve_saved) {
|
|
struct pipe_context *pipe = mgr->pipe;
|
|
|
|
mgr->ve = mgr->ve_saved;
|
|
pipe->bind_vertex_elements_state(pipe,
|
|
mgr->ve ? mgr->ve->driver_cso : NULL);
|
|
}
|
|
mgr->ve_saved = NULL;
|
|
}
|
|
|
|
void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
|
|
{
|
|
struct pipe_vertex_buffer *vb =
|
|
&mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];
|
|
|
|
pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
|
|
memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
|
|
}
|
|
|
|
void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
|
|
{
|
|
u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
|
|
&mgr->aux_vertex_buffer_saved);
|
|
pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
|
|
}
|