kolibrios/programs/develop/libraries/libmpg123/layer2.c
Sergey Semyonov (Serge) a316fa7c9d libmpg123 1.9.0
git-svn-id: svn://kolibrios.org@1905 a494cfbc-eb01-0410-851d-a64ba20cac60
2011-03-11 10:57:03 +00:00

370 lines
9.4 KiB
C

/*
layer2.c: the layer 2 decoder, root of mpg123
copyright 1994-2008 by the mpg123 project - free software under the terms of the LGPL 2.1
see COPYING and AUTHORS files in distribution or http://mpg123.org
initially written by Michael Hipp
mpg123 started as mp2 decoder a long time ago...
part of this file is required for layer 1, too.
*/
#include "mpg123lib_intern.h"
#ifndef NO_LAYER2
#include "l2tables.h"
#endif
#include "getbits.h"
#ifndef NO_LAYER12 /* Stuff needed for layer I and II. */
static int grp_3tab[32 * 3] = { 0, }; /* used: 27 */
static int grp_5tab[128 * 3] = { 0, }; /* used: 125 */
static int grp_9tab[1024 * 3] = { 0, }; /* used: 729 */
#if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES)
#include "l12_integer_tables.h"
#else
static const double mulmul[27] =
{
0.0 , -2.0/3.0 , 2.0/3.0 ,
2.0/7.0 , 2.0/15.0 , 2.0/31.0, 2.0/63.0 , 2.0/127.0 , 2.0/255.0 ,
2.0/511.0 , 2.0/1023.0 , 2.0/2047.0 , 2.0/4095.0 , 2.0/8191.0 ,
2.0/16383.0 , 2.0/32767.0 , 2.0/65535.0 ,
-4.0/5.0 , -2.0/5.0 , 2.0/5.0, 4.0/5.0 ,
-8.0/9.0 , -4.0/9.0 , -2.0/9.0 , 2.0/9.0 , 4.0/9.0 , 8.0/9.0
};
#endif
void init_layer12(void)
{
const int base[3][9] =
{
{ 1 , 0, 2 , } ,
{ 17, 18, 0 , 19, 20 , } ,
{ 21, 1, 22, 23, 0, 24, 25, 2, 26 }
};
int i,j,k,l,len;
const int tablen[3] = { 3 , 5 , 9 };
int *itable;
int *tables[3] = { grp_3tab , grp_5tab , grp_9tab };
for(i=0;i<3;i++)
{
itable = tables[i];
len = tablen[i];
for(j=0;j<len;j++)
for(k=0;k<len;k++)
for(l=0;l<len;l++)
{
*itable++ = base[i][l];
*itable++ = base[i][k];
*itable++ = base[i][j];
}
}
}
void init_layer12_stuff(mpg123_handle *fr, real* (*init_table)(mpg123_handle *fr, real *table, int m))
{
int k;
real *table;
for(k=0;k<27;k++)
{
table = init_table(fr, fr->muls[k], k);
*table++ = 0.0;
}
}
real* init_layer12_table(mpg123_handle *fr, real *table, int m)
{
#if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES)
int i;
for(i=0;i<63;i++)
*table++ = layer12_table[m][i];
#else
int i,j;
for(j=3,i=0;i<63;i++,j--)
*table++ = DOUBLE_TO_REAL_SCALE_LAYER12(mulmul[m] * pow(2.0,(double) j / 3.0));
#endif
return table;
}
#ifdef OPT_MMXORSSE
real* init_layer12_table_mmx(mpg123_handle *fr, real *table, int m)
{
int i,j;
if(!fr->p.down_sample)
{
for(j=3,i=0;i<63;i++,j--)
*table++ = DOUBLE_TO_REAL(16384 * mulmul[m] * pow(2.0,(double) j / 3.0));
}
else
{
for(j=3,i=0;i<63;i++,j--)
*table++ = DOUBLE_TO_REAL(mulmul[m] * pow(2.0,(double) j / 3.0));
}
return table;
}
#endif
#endif /* NO_LAYER12 */
/* The rest is the actual decoding of layer II data. */
#ifndef NO_LAYER2
void II_step_one(unsigned int *bit_alloc,int *scale,mpg123_handle *fr)
{
int stereo = fr->stereo-1;
int sblimit = fr->II_sblimit;
int jsbound = fr->jsbound;
int sblimit2 = fr->II_sblimit<<stereo;
const struct al_table *alloc1 = fr->alloc;
int i;
unsigned int scfsi_buf[64];
unsigned int *scfsi,*bita;
int sc,step;
bita = bit_alloc;
if(stereo)
{
for(i=jsbound;i;i--,alloc1+=(1<<step))
{
step=alloc1->bits;
*bita++ = (char) getbits(fr, step);
*bita++ = (char) getbits(fr, step);
}
for(i=sblimit-jsbound;i;i--,alloc1+=(1<<step))
{
step=alloc1->bits;
bita[0] = (char) getbits(fr, step);
bita[1] = bita[0];
bita+=2;
}
bita = bit_alloc;
scfsi=scfsi_buf;
for(i=sblimit2;i;i--)
if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2);
}
else /* mono */
{
for(i=sblimit;i;i--,alloc1+=(1<<step))
{
step=alloc1->bits;
*bita++ = (char) getbits(fr, step);
}
bita = bit_alloc;
scfsi=scfsi_buf;
for(i=sblimit;i;i--)
if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2);
}
bita = bit_alloc;
scfsi=scfsi_buf;
for(i=sblimit2;i;i--)
if(*bita++)
switch(*scfsi++)
{
case 0:
*scale++ = getbits_fast(fr, 6);
*scale++ = getbits_fast(fr, 6);
*scale++ = getbits_fast(fr, 6);
break;
case 1 :
*scale++ = sc = getbits_fast(fr, 6);
*scale++ = sc;
*scale++ = getbits_fast(fr, 6);
break;
case 2:
*scale++ = sc = getbits_fast(fr, 6);
*scale++ = sc;
*scale++ = sc;
break;
default: /* case 3 */
*scale++ = getbits_fast(fr, 6);
*scale++ = sc = getbits_fast(fr, 6);
*scale++ = sc;
break;
}
}
void II_step_two(unsigned int *bit_alloc,real fraction[2][4][SBLIMIT],int *scale,mpg123_handle *fr,int x1)
{
int i,j,k,ba;
int stereo = fr->stereo;
int sblimit = fr->II_sblimit;
int jsbound = fr->jsbound;
const struct al_table *alloc2,*alloc1 = fr->alloc;
unsigned int *bita=bit_alloc;
int d1,step;
for(i=0;i<jsbound;i++,alloc1+=(1<<step))
{
step = alloc1->bits;
for(j=0;j<stereo;j++)
{
if( (ba=*bita++) )
{
k=(alloc2 = alloc1+ba)->bits;
if( (d1=alloc2->d) < 0)
{
real cm=fr->muls[k][scale[x1]];
fraction[j][0][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
fraction[j][1][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
fraction[j][2][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
}
else
{
const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
unsigned int idx,*tab,m=scale[x1];
idx = (unsigned int) getbits(fr, k);
tab = (unsigned int *) (table[d1] + idx + idx + idx);
fraction[j][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]);
fraction[j][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]);
fraction[j][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m]);
}
scale+=3;
}
else
fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = DOUBLE_TO_REAL(0.0);
}
}
for(i=jsbound;i<sblimit;i++,alloc1+=(1<<step))
{
step = alloc1->bits;
bita++; /* channel 1 and channel 2 bitalloc are the same */
if( (ba=*bita++) )
{
k=(alloc2 = alloc1+ba)->bits;
if( (d1=alloc2->d) < 0)
{
real cm;
cm=fr->muls[k][scale[x1+3]];
fraction[0][0][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
fraction[0][1][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
fraction[0][2][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
fraction[1][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm);
fraction[1][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm);
fraction[1][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm);
cm=fr->muls[k][scale[x1]];
fraction[0][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm);
fraction[0][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm);
fraction[0][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm);
}
else
{
const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
unsigned int idx,*tab,m1,m2;
m1 = scale[x1]; m2 = scale[x1+3];
idx = (unsigned int) getbits(fr, k);
tab = (unsigned int *) (table[d1] + idx + idx + idx);
fraction[0][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]);
fraction[0][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]);
fraction[0][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m2]);
}
scale+=6;
}
else
{
fraction[0][0][i] = fraction[0][1][i] = fraction[0][2][i] =
fraction[1][0][i] = fraction[1][1][i] = fraction[1][2][i] = DOUBLE_TO_REAL(0.0);
}
/*
Historic comment...
should we use individual scalefac for channel 2 or
is the current way the right one , where we just copy channel 1 to
channel 2 ??
The current 'strange' thing is, that we throw away the scalefac
values for the second channel ...!!
-> changed .. now we use the scalefac values of channel one !!
*/
}
if(sblimit > (fr->down_sample_sblimit) )
sblimit = fr->down_sample_sblimit;
for(i=sblimit;i<SBLIMIT;i++)
for (j=0;j<stereo;j++)
fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = DOUBLE_TO_REAL(0.0);
}
static void II_select_table(mpg123_handle *fr)
{
const int translate[3][2][16] =
{
{
{ 0,2,2,2,2,2,2,0,0,0,1,1,1,1,1,0 },
{ 0,2,2,0,0,0,1,1,1,1,1,1,1,1,1,0 }
},
{
{ 0,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0 },
{ 0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0 }
},
{
{ 0,3,3,3,3,3,3,0,0,0,1,1,1,1,1,0 },
{ 0,3,3,0,0,0,1,1,1,1,1,1,1,1,1,0 }
}
};
int table,sblim;
const struct al_table *tables[5] = { alloc_0, alloc_1, alloc_2, alloc_3 , alloc_4 };
const int sblims[5] = { 27 , 30 , 8, 12 , 30 };
if(fr->sampling_frequency >= 3) /* Or equivalent: (fr->lsf == 1) */
table = 4;
else
table = translate[fr->sampling_frequency][2-fr->stereo][fr->bitrate_index];
sblim = sblims[table];
fr->alloc = tables[table];
fr->II_sblimit = sblim;
}
int do_layer2(mpg123_handle *fr)
{
int clip=0;
int i,j;
int stereo = fr->stereo;
ALIGNED(16) real fraction[2][4][SBLIMIT]; /* pick_table clears unused subbands */
unsigned int bit_alloc[64];
int scale[192];
int single = fr->single;
II_select_table(fr);
fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ? (fr->mode_ext<<2)+4 : fr->II_sblimit;
if(fr->jsbound > fr->II_sblimit)
{
// fprintf(stderr, "Truncating stereo boundary to sideband limit.\n");
fr->jsbound=fr->II_sblimit;
}
/* TODO: What happens with mono mixing, actually? */
if(stereo == 1 || single == SINGLE_MIX) /* also, mix not really handled */
single = SINGLE_LEFT;
II_step_one(bit_alloc, scale, fr);
for(i=0;i<SCALE_BLOCK;i++)
{
II_step_two(bit_alloc,fraction,scale,fr,i>>2);
for(j=0;j<3;j++)
{
if(single != SINGLE_STEREO)
clip += (fr->synth_mono)(fraction[single][j], fr);
else
clip += (fr->synth_stereo)(fraction[0][j], fraction[1][j], fr);
}
}
return clip;
}
#endif /* NO_LAYER2 */