kolibrios/drivers/old/radeonhd/rhd.c
Sergey Semyonov (Serge) 7c0a5de1e7 move old ddx driver
git-svn-id: svn://kolibrios.org@1407 a494cfbc-eb01-0410-851d-a64ba20cac60
2010-02-12 17:43:39 +00:00

1165 lines
31 KiB
C

/*
* Copyright 2007 Luc Verhaegen <lverhaegen@novell.com>
* Copyright 2007 Matthias Hopf <mhopf@novell.com>
* Copyright 2007 Egbert Eich <eich@novell.com>
* Copyright 2007 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
//ld -T ld.x -s --shared --image-base 0 --file-alignment 32 -o test.exe test.obj core.lib
#include "common.h"
#include "rhd.h"
#include "edid.h"
#include "rhd_atombios.h"
#include "rhd_regs.h"
#include "rhd_mc.h"
#include "rhd_atombios.h"
#include "rhd_connector.h"
#include "rhd_output.h"
#include "rhd_biosscratch.h"
#include "rhd_card.h"
#include "rhd_vga.h"
#include "rhd_crtc.h"
#include "rhd_monitor.h"
#include "rhd_modes.h"
#include "rhd_pll.h"
#include "rhd_lut.h"
#include "rhd_i2c.h"
#define PG_SW 0x003
#define PG_NOCACHE 0x018
void sysSetScreen(int width, int height);
static void rhdModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode);
static void rhdSetMode(ScrnInfoPtr pScrn, DisplayModePtr mode);
static void RHDAdjustFrame(RHDPtr rhdPtr, int x, int y, int flags);
static Bool rhdMapFB(RHDPtr rhdPtr);
static void rhdGetIGPNorthBridgeInfo(RHDPtr rhdPtr);
Bool OldSetupConnectors(RHDPtr rhdPtr);
Bool OldConnectorsInit(RHDPtr rhdPtr);
int rhdInitHeap(RHDPtr rhdPtr);
static enum rhdCardType rhdGetCardType(RHDPtr rhdPtr);
static u32_t _PciApi(int cmd);
static int SupportedModes;
int __stdcall drvEntry(int)__asm__("_drvEntry");
typedef struct
{
unsigned handle;
unsigned io_code;
void *input;
int inp_size;
void *output;
int out_size;
}ioctl_t;
typedef int (_stdcall *srv_proc_t)(ioctl_t *);
int _stdcall srv_proc(ioctl_t *io);
extern PciChipset_t RHDPCIchipsets[];
extern struct rhdCard *RHDCardIdentify(RHDPtr rhdPtr);
static struct RHDRec rhd;
static struct _ScrnInfoRec Scrn;
void sysSetScreen(int width, int height)
{
asm __volatile__
(
"dec eax \n\t"
"dec edx \n\t"
"call [DWORD PTR __imp__SetScreen] \n\t"
:
:"a" (width),"d"(height)
:"memory","cc"
);
}
static int RegService(char *name, srv_proc_t proc)
{
int retval;
asm __volatile__
(
"push %[t] \n\t"
"push %[t1] \n\t"
"call [DWORD PTR __imp__RegService] \n\t"
:"=eax" (retval)
:[t] "g" (proc),[t1] "g" (name)
:"memory", "ebx"
);
return retval;
};
static u32_t _PciApi(int cmd)
{
u32_t retval;
asm __volatile__
(
"call [DWORD PTR __imp__PciApi]"
:"=eax" (retval)
:"a" (cmd)
:"memory"
);
return retval;
};
const PciChipset_t *PciDevMatch(CARD16 dev,const PciChipset_t *list)
{
while(list->device)
{
if(dev==list->device)
return list;
list++;
}
return 0;
}
const char *
xf86TokenToString(SymTabPtr table, int token)
{
int i;
for (i = 0; table[i].token >= 0 && table[i].token != token; i++){};
if (table[i].token < 0)
return NULL;
else
return(table[i].name);
}
int FindPciDevice()
{
const PciChipset_t *dev;
u32_t bus, last_bus;
if( (last_bus = _PciApi(1))==-1)
return 0;
for(bus=0;bus<=last_bus;bus++)
{
u32_t devfn;
for(devfn=0;devfn<256;devfn++)
{
u32_t id;
id = PciRead32(bus,devfn, 0);
if( (CARD16)id != VENDOR_ATI)
continue;
if( (dev=PciDevMatch(id>>16,RHDPCIchipsets))!=0)
{
rhd.PciDeviceID = (id>>16);
rhd.bus = bus;
rhd.pci.bus = bus;
rhd.devfn = devfn;
rhd.pci.devfn = devfn;
rhd.PciTag = pciTag(bus,(devfn>>3)&0x1F,devfn&0x7);
rhd.ChipSet = dev->family;
// rhd.IsMobility = dev->mobility;
// rhd.IsIGP = dev->igp;
// rhd.HasCRTC2 = !dev->nocrtc2;
// rhd.HasSingleDAC = dev->singledac;
// rhd.InternalTVOut = !dev->nointtvout;
pciGetInfo(&rhd.pci);
rhd.subvendor_id = rhd.pci.subsysVendor;
rhd.subdevice_id = rhd.pci.subsysCard;
//rhd.chipset = (char*)xf86TokenToString(RADEONChipsets, rhd.device_id);
return 1;
};
};
};
dbgprintf("Device not found\n");
return 0;
}
static Bool
rhdMapMMIO()
{
rhd.MMIOMapSize = 1 << rhd.pci.size[RHD_MMIO_BAR];
rhd.MMIOBase = MapIoMem(rhd.pci.memBase[RHD_MMIO_BAR],
rhd.MMIOMapSize,PG_SW+PG_NOCACHE);
if( !rhd.MMIOBase)
return 0;
DBG(dbgprintf("Mapped IO at %x (size %x)\n", rhd.MMIOBase, rhd.MMIOMapSize));
return 1;
}
#define RADEON_NB_TOM 0x15c
static CARD32
rhdGetVideoRamSize(RHDPtr rhdPtr)
{
CARD32 RamSize, BARSize;
if (rhdPtr->ChipSet == RHD_RS690)
RamSize = (_RHDRegRead(rhdPtr, R5XX_CONFIG_MEMSIZE))>>10;
else
if (rhdPtr->IsIGP)
{
CARD32 tom = _RHDRegRead(rhdPtr, RADEON_NB_TOM);
RamSize = (((tom >> 16) - (tom & 0xffff) + 1) << 6);
_RHDRegWrite(rhdPtr,R5XX_CONFIG_MEMSIZE, RamSize<<10);
}
else
{
if (rhdPtr->ChipSet < RHD_R600)
{
RamSize = (_RHDRegRead(rhdPtr, R5XX_CONFIG_MEMSIZE)) >> 10;
if(RamSize==0) RamSize=8192;
}
else
RamSize = (_RHDRegRead(rhdPtr, R6XX_CONFIG_MEMSIZE)) >> 10;
};
BARSize = 1 << (rhdPtr->pci.size[RHD_FB_BAR] - 10);
if(BARSize==0)
BARSize = 0x20000;
if (RamSize > BARSize) {
DBG(dbgprintf("The detected amount of videoram"
" exceeds the PCI BAR aperture.\n"));
DBG(dbgprintf("Using only %dkB of the total "
"%dkB.\n", (int) BARSize, (int) RamSize));
return BARSize;
}
else return RamSize;
}
Bool RHDScalePolicy(struct rhdMonitor *Monitor, struct rhdConnector *Connector)
{
if (!Monitor || !Monitor->UseFixedModes || !Monitor->NativeMode)
return FALSE;
if (Connector->Type != RHD_CONNECTOR_PANEL)
return FALSE;
return TRUE;
}
static void
rhdOutputConnectorCheck(struct rhdConnector *Connector)
{
struct rhdOutput *Output;
int i;
/* First, try to sense */
for (i = 0; i < 2; i++) {
Output = Connector->Output[i];
if (Output && Output->Sense) {
/*
* This is ugly and needs to change when the TV support patches are in.
* The problem here is that the Output struct can be used for two connectors
* and thus two different devices
*/
if (Output->SensedType == RHD_SENSED_NONE) {
/* Do this before sensing as AtomBIOS sense needs this info */
if ((Output->SensedType = Output->Sense(Output, Connector)) != RHD_SENSED_NONE) {
RHDOutputPrintSensedType(Output);
Output->Connector = Connector;
break;
}
}
}
}
if (i == 2) {
/* now just enable the ones without sensing */
for (i = 0; i < 2; i++) {
Output = Connector->Output[i];
if (Output && !Output->Sense) {
Output->Connector = Connector;
break;
}
}
}
}
/*
*
*/
static Bool
rhdModeLayoutSelect(RHDPtr rhdPtr)
{
struct rhdOutput *Output;
struct rhdConnector *Connector;
Bool Found = FALSE;
char *ignore = NULL;
Bool ConnectorIsDMS59 = FALSE;
int i = 0;
RHDFUNC(rhdPtr);
/* housekeeping */
rhdPtr->Crtc[0]->PLL = rhdPtr->PLLs[0];
rhdPtr->Crtc[0]->LUT = rhdPtr->LUT[0];
rhdPtr->Crtc[1]->PLL = rhdPtr->PLLs[1];
rhdPtr->Crtc[1]->LUT = rhdPtr->LUT[1];
/* start layout afresh */
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
{
Output->Active = FALSE;
Output->Crtc = NULL;
Output->Connector = NULL;
}
/* quick and dirty option so that some output choice exists */
// ignore = xf86GetOptValString(rhdPtr->Options, OPTION_IGNORECONNECTOR);
/* handle cards with DMS-59 connectors appropriately. The DMS-59 to VGA
adapter does not raise HPD at all, so we need a fallback there. */
if (rhdPtr->Card)
{
ConnectorIsDMS59 = rhdPtr->Card->flags & RHD_CARD_FLAG_DMS59;
if (ConnectorIsDMS59)
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO, "Card %s has a DMS-59"
" connector.\n", rhdPtr->Card->name);
}
/* Check on the basis of Connector->HPD */
for (i = 0; i < RHD_CONNECTORS_MAX; i++)
{
Connector = rhdPtr->Connector[i];
if (!Connector)
continue;
if (Connector->HPDCheck) {
if (Connector->HPDCheck(Connector)) {
Connector->HPDAttached = TRUE;
rhdOutputConnectorCheck(Connector);
} else {
Connector->HPDAttached = FALSE;
if (ConnectorIsDMS59)
rhdOutputConnectorCheck(Connector);
}
} else
rhdOutputConnectorCheck(Connector);
}
i = 0; /* counter for CRTCs */
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
if (Output->Connector) {
struct rhdMonitor *Monitor = NULL;
Connector = Output->Connector;
Monitor = RHDMonitorInit(Connector);
if (!Monitor && (Connector->Type == RHD_CONNECTOR_PANEL)) {
xf86DrvMsg(rhdPtr->scrnIndex, X_WARNING, "Unable to attach a"
" monitor to connector \"%s\"\n", Connector->Name);
Output->Active = FALSE;
} else if (!Output->AllocFree || Output->AllocFree(Output, RHD_OUTPUT_ALLOC)){
Connector->Monitor = Monitor;
Output->Active = TRUE;
Output->Crtc = rhdPtr->Crtc[i & 1]; /* ;) */
i++;
Output->Crtc->Active = TRUE;
if (RHDScalePolicy(Monitor, Connector)) {
Output->Crtc->ScaledToMode = RHDModeCopy(Monitor->NativeMode);
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO,
"Crtc[%i]: found native mode from Monitor[%s]: ",
Output->Crtc->Id, Monitor->Name);
RHDPrintModeline(Output->Crtc->ScaledToMode);
}
Found = TRUE;
if (Monitor) {
/* If this is a DVI attached monitor, enable reduced blanking.
* TODO: iiyama vm pro 453: CRT with DVI-D == No reduced.
*/
if ((Output->Id == RHD_OUTPUT_TMDSA) ||
(Output->Id == RHD_OUTPUT_LVTMA) ||
(Output->Id == RHD_OUTPUT_KLDSKP_LVTMA) ||
(Output->Id == RHD_OUTPUT_UNIPHYA) ||
(Output->Id == RHD_OUTPUT_UNIPHYB))
Monitor->ReducedAllowed = TRUE;
/* allow user to override settings globally */
if (rhdPtr->forceReduced.set)
Monitor->ReducedAllowed = rhdPtr->forceReduced.val.bool;
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO,
"Connector \"%s\" uses Monitor \"%s\":\n",
Connector->Name, Monitor->Name);
RHDMonitorPrint(Monitor);
} else
xf86DrvMsg(rhdPtr->scrnIndex, X_WARNING,
"Connector \"%s\": Failed to retrieve Monitor"
" information.\n", Connector->Name);
}
}
/* Now validate the scaled modes attached to crtcs */
for (i = 0; i < 2; i++) {
struct rhdCrtc *crtc = rhdPtr->Crtc[i];
if (crtc->ScaledToMode && RHDValidateScaledToMode(crtc, crtc->ScaledToMode) != MODE_OK) {
xf86DrvMsg(rhdPtr->scrnIndex, X_ERROR, "Crtc[%i]: scaled mode invalid.\n", crtc->Id);
xfree(crtc->ScaledToMode);
crtc->ScaledToMode = NULL;
}
}
return Found;
}
/*
*
*/
static void
rhdModeLayoutPrint(RHDPtr rhdPtr)
{
struct rhdCrtc *Crtc;
struct rhdOutput *Output;
Bool Found;
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO, "Listing modesetting layout:\n\n");
/* CRTC 1 */
Crtc = rhdPtr->Crtc[0];
if (Crtc->Active) {
xf86Msg(X_NONE, "\t%s: tied to %s and %s:\n",
Crtc->Name, Crtc->PLL->Name, Crtc->LUT->Name);
Found = FALSE;
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
if (Output->Active && (Output->Crtc == Crtc)) {
if (!Found) {
xf86Msg(X_NONE, "\t\tOutputs: %s (%s)",
Output->Name, Output->Connector->Name);
Found = TRUE;
} else
xf86Msg(X_NONE, ", %s (%s)", Output->Name,
Output->Connector->Name);
}
if (!Found)
xf86DrvMsg(rhdPtr->scrnIndex, X_ERROR,
"%s is active without outputs\n", Crtc->Name);
else
xf86Msg(X_NONE, "\n");
} else
xf86Msg(X_NONE, "\t%s: unused\n", Crtc->Name);
xf86Msg(X_NONE, "\n");
/* CRTC 2 */
Crtc = rhdPtr->Crtc[1];
if (Crtc->Active) {
xf86Msg(X_NONE, "\t%s: tied to %s and %s:\n",
Crtc->Name, Crtc->PLL->Name, Crtc->LUT->Name);
Found = FALSE;
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
if (Output->Active && (Output->Crtc == Crtc)) {
if (!Found) {
xf86Msg(X_NONE, "\t\tOutputs: %s (%s)",
Output->Name, Output->Connector->Name);
Found = TRUE;
} else
xf86Msg(X_NONE, ", %s (%s)", Output->Name,
Output->Connector->Name);
}
if (!Found)
xf86DrvMsg(rhdPtr->scrnIndex, X_ERROR,
"%s is active without outputs\n", Crtc->Name);
else
xf86Msg(X_NONE, "\n");
} else
xf86Msg(X_NONE, "\t%s: unused\n", Crtc->Name);
xf86Msg(X_NONE, "\n");
/* Print out unused Outputs */
Found = FALSE;
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
if (!Output->Active) {
if (!Found) {
xf86Msg(X_NONE, "\t\tUnused Outputs: %s", Output->Name);
Found = TRUE;
} else
xf86Msg(X_NONE, ", %s", Output->Name);
}
if (Found)
xf86Msg(X_NONE, "\n");
xf86Msg(X_NONE, "\n");
}
DisplayModePtr
rhdCreateModesListAndValidate(ScrnInfoPtr pScrn, Bool Silent);
void RHDPrintModeline(DisplayModePtr mode);
int RHDPreInit()
{
RHDI2CDataArg i2cArg;
RHDPtr rhdPtr = &rhd;
/* We need access to IO space already */
if (!rhdMapMMIO()) {
dbgprintf("Failed to map MMIO.\n");
return 0;
};
if (RHDIsIGP(rhd.ChipSet))
rhdGetIGPNorthBridgeInfo(&rhd);
rhd.Card = RHDCardIdentify(&rhd);
if (rhd.Card)
dbgprintf("Detected an %s on a %s\n", rhd.chipset_name, rhd.Card->name);
else
dbgprintf("Detected an %s on an unidentified card\n", rhd.chipset_name);
if (rhdPtr->Card && rhdPtr->Card->flags & RHD_CARD_FLAG_HPDSWAP &&
rhdPtr->hpdUsage == RHD_HPD_USAGE_AUTO)
rhdPtr->hpdUsage = RHD_HPD_USAGE_AUTO_SWAP;
if (rhdPtr->Card && rhdPtr->Card->flags & RHD_CARD_FLAG_HPDOFF &&
rhdPtr->hpdUsage == RHD_HPD_USAGE_AUTO)
rhdPtr->hpdUsage = RHD_HPD_USAGE_AUTO_OFF;
rhdPtr->cardType = rhdGetCardType(rhdPtr);
{
AtomBiosArgRec atomBiosArg;
rhd.UseAtomFlags = (RHD_ATOMBIOS_ON << RHD_ATOMBIOS_CRTC) |
(RHD_ATOMBIOS_ON << RHD_ATOMBIOS_OUTPUT) |
(RHD_ATOMBIOS_ON << RHD_ATOMBIOS_PLL);
// rhd.UseAtomFlags = 0;
if (RHDAtomBiosFunc(&rhd, NULL, ATOMBIOS_INIT, &atomBiosArg) == ATOM_SUCCESS)
{
rhd.atomBIOS = atomBiosArg.atomhandle;
}
}
rhd.videoRam = rhdGetVideoRamSize(&rhd);
if (!rhd.videoRam)
{
dbgprintf("No Video RAM detected.\n");
goto error1;
}
dbgprintf("VideoRAM: %d kByte\n",rhd.videoRam);
if (rhd.atomBIOS) /* for testing functions */
{
AtomBiosArgRec atomBiosArg;
atomBiosArg.fb.start = rhd.FbFreeStart;
atomBiosArg.fb.size = rhd.FbFreeSize;
if (RHDAtomBiosFunc(&rhd, rhd.atomBIOS, ATOMBIOS_ALLOCATE_FB_SCRATCH,
&atomBiosArg) == ATOM_SUCCESS)
{
rhd.FbFreeStart = atomBiosArg.fb.start;
rhd.FbFreeSize = atomBiosArg.fb.size;
};
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_DEFAULT_ENGINE_CLOCK, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_DEFAULT_MEMORY_CLOCK, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_MAX_PIXEL_CLOCK_PLL_OUTPUT, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_MIN_PIXEL_CLOCK_PLL_OUTPUT, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_MAX_PIXEL_CLOCK_PLL_INPUT, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_MIN_PIXEL_CLOCK_PLL_INPUT, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_MAX_PIXEL_CLK, &atomBiosArg);
RHDAtomBiosFunc(&rhd, rhd.atomBIOS, GET_REF_CLOCK, &atomBiosArg);
}
rhd.FbFreeStart = 0;
rhd.FbFreeSize = rhd.videoRam << 10;
if (RHDI2CFunc((int)&rhd, NULL, RHD_I2C_INIT, &i2cArg) == RHD_I2C_SUCCESS)
rhd.I2C = i2cArg.I2CBusList;
else
{
dbgprintf("I2C init failed\n");
goto error1;
};
if (!rhd.atomBIOS)
{
dbgprintf("No ATOMBIOS detected. Done.\n");
return 0;
}
// rhdMapFB(&rhd);
Scrn.rhdPtr = &rhd;
Scrn.driverName = "Radeon HD driver";
Scrn.bitsPerPixel = 32;
Scrn.depth = 32;
Scrn.virtualX = 1280;
Scrn.virtualY = 1024;
Scrn.displayWidth = 1280;
rhd.pScrn = &Scrn;
rhd.FbScanoutStart = 0;
rhd.FbScanoutSize = 8*1024*1024;
rhd.FbFreeStart = 8*1024*1024;
rhd.FbFreeSize = rhd.FbMapSize - 8*1024*1024;
rhdInitHeap(&rhd);
RHDVGAInit(&rhd);
RHDMCInit(&rhd);
if (!RHDCrtcsInit(&rhd))
RHDAtomCrtcsInit(&rhd);
if (!RHDPLLsInit(&rhd))
RHDAtomPLLsInit(&rhd);
RHDLUTsInit(&rhd);
if (!RHDConnectorsInit(&rhd, rhd.Card))
{
dbgprintf("Card information has invalid connector information\n");
goto error1;
}
{
struct rhdAtomOutputDeviceList *OutputDeviceList = NULL;
if (rhdPtr->Card
&& rhdPtr->Card->ConnectorInfo[0].Type != RHD_CONNECTOR_NONE
&& (rhdPtr->Card->DeviceInfo[0][0] != atomNone
|| rhdPtr->Card->DeviceInfo[0][1] != atomNone))
{
int i, k = 0;
for (i = 0; i < RHD_CONNECTORS_MAX; i++)
{
int j;
if (rhdPtr->Card->ConnectorInfo[i].Type == RHD_CONNECTOR_NONE)
break;
for (j = 0; j < MAX_OUTPUTS_PER_CONNECTOR; j++)
{
if (rhdPtr->Card->ConnectorInfo[i].Output[j] != RHD_OUTPUT_NONE)
{
if (!(OutputDeviceList =
(struct rhdAtomOutputDeviceList *)
xrealloc(OutputDeviceList,
sizeof (struct rhdAtomOutputDeviceList) * (k + 1))))
break;
OutputDeviceList[k].ConnectorType = rhdPtr->Card->ConnectorInfo[i].Type;
OutputDeviceList[k].DeviceId = rhdPtr->Card->DeviceInfo[i][j];
OutputDeviceList[k].OutputType = rhdPtr->Card->ConnectorInfo[i].Output[j];
dbgprintf("OutputDevice: C: 0x%2.2x O: 0x%2.2x DevID: 0x%2.2x\n",
OutputDeviceList[k].ConnectorType,
OutputDeviceList[k].OutputType,
OutputDeviceList[k].DeviceId);
k++;
}
}
}
}
else
{
AtomBiosArgRec data;
data.chipset = rhdPtr->ChipSet;
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOMBIOS_GET_OUTPUT_DEVICE_LIST, &data) == ATOM_SUCCESS)
OutputDeviceList = data.OutputDeviceList;
}
if (OutputDeviceList)
{
struct rhdOutput *Output;
for (Output = rhdPtr->Outputs; Output; Output = Output->Next)
RHDAtomSetupOutputDriverPrivate(OutputDeviceList, Output);
xfree(OutputDeviceList);
}
}
if (!rhdModeLayoutSelect(&rhd))
{
dbgprintf("Failed to detect a connected monitor\n");
goto error1;
}
RHDConfigMonitorSet(&rhd, FALSE);
rhdModeLayoutPrint(&rhd);
{
DisplayModePtr Modes, tmp;
Modes = RHDModesPoolCreate(&Scrn, FALSE);
Scrn.modePool = Modes;
tmp = Modes;
SupportedModes=0;
while(tmp)
{
dbgprintf("%dx%d@%3.1fHz\n",tmp->CrtcHDisplay,
tmp->CrtcVDisplay,tmp->VRefresh);
tmp=tmp->next;
SupportedModes++;
};
// rhdModeInit(&Scrn,Modes);
//RHDAdjustFrame(&rhd,0,0,0);
};
dbgprintf("All done\n");
return 1;
error1:
return 0;
};
int __stdcall drvEntry(int action)
{
int i;
if(action != 1)
return 0;
if(!dbg_open("/rd/1/drivers/ati.txt"))
{
printf("Can't open /rd/1/drivers/ati.txt\nExit\n");
return 0;
}
if(!FindPciDevice())
return 0;
rhd.scrnIndex = (int)&rhd;
for(i=0;i<6;i++)
{
if(rhd.pci.memBase[i])
dbgprintf("Memory base_%d 0x%x size 0x%x\n",
i,rhd.pci.memBase[i],(1<<rhd.pci.size[i]));
};
for(i=0;i<6;i++)
{
if(rhd.pci.ioBase[i])
dbgprintf("Io base_%d 0x%x size 0x%x\n",
i,rhd.pci.ioBase[i],(1<<rhd.pci.size[i]));
};
if(RHDPreInit()==0)
return 0;
return RegService("RHD", srv_proc);
};
void usleep(u32_t delay)
{
if(!delay) delay++;
delay*=1000;
asm(
"1:\n\t"
"xor eax, eax \n\t"
"cpuid \n\t"
"dec edi \n\t"
"jnz 1b"
:
:"D"(delay)
:"eax","ebx","ecx","edx"
);
}
//git://anongit.freedesktop.org/git/xorg/xserver
//git://anongit.freedesktop.org/git/xorg/lib/libpciaccess
int KernelFree(void *p)
{
return 0;
}
static void
rhdPrepareMode(RHDPtr rhdPtr)
{
RHDFUNC(rhdPtr);
/* no active outputs == no mess */
RHDOutputsPower(rhdPtr, RHD_POWER_RESET);
}
/*
* */static void
rhdModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode)
{
RHDPtr rhdPtr = pScrn->rhdPtr;
RHDFUNC(rhdPtr);
rhdSetMode(pScrn, mode);
}
/* * */static void
rhdSetMode(ScrnInfoPtr pScrn, DisplayModePtr mode)
{
RHDPtr rhdPtr = RHDPTR(pScrn);
int i;
RHDFUNC(rhdPtr);
xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Setting up \"%s\" (%dx%d@%3.1fHz)\n",
mode->name, mode->CrtcHDisplay, mode->CrtcVDisplay,
mode->VRefresh);
/* Set up D1/D2 and appendages */
for (i = 0; i < 2; i++) {
struct rhdCrtc *Crtc;
Crtc = rhdPtr->Crtc[i];
if (Crtc->Active) {
Crtc->FBSet(Crtc, pScrn->displayWidth, pScrn->virtualX, pScrn->virtualY,
pScrn->depth, rhdPtr->FbScanoutStart);
if (Crtc->ScaledToMode) {
Crtc->ModeSet(Crtc, Crtc->ScaledToMode);
if (Crtc->ScaleSet)
Crtc->ScaleSet(Crtc, Crtc->ScaleType, mode, Crtc->ScaledToMode);
} else {
Crtc->ModeSet(Crtc, mode);
if (Crtc->ScaleSet)
Crtc->ScaleSet(Crtc, RHD_CRTC_SCALE_TYPE_NONE, mode, NULL);
}
RHDPLLSet(Crtc->PLL, mode->Clock);
Crtc->LUTSelect(Crtc, Crtc->LUT);
RHDOutputsMode(rhdPtr, Crtc, Crtc->ScaledToMode
? Crtc->ScaledToMode : mode);
}
}
/* shut down that what we don't use */
RHDPLLsShutdownInactive(rhdPtr);
RHDOutputsShutdownInactive(rhdPtr);
if (rhdPtr->Crtc[0]->Active)
rhdPtr->Crtc[0]->Power(rhdPtr->Crtc[0], RHD_POWER_ON);
else
rhdPtr->Crtc[0]->Power(rhdPtr->Crtc[0], RHD_POWER_SHUTDOWN);
if (rhdPtr->Crtc[1]->Active)
rhdPtr->Crtc[1]->Power(rhdPtr->Crtc[1], RHD_POWER_ON);
else
rhdPtr->Crtc[1]->Power(rhdPtr->Crtc[1], RHD_POWER_SHUTDOWN);
RHDOutputsPower(rhdPtr, RHD_POWER_ON);
}
static void
RHDAdjustFrame(RHDPtr rhdPtr, int x, int y, int flags)
{
// ScrnInfoPtr pScrn = xf86Screens[scrnIndex];
// RHDPtr rhdPtr = RHDPTR(pScrn);
struct rhdCrtc *Crtc;
Crtc = rhdPtr->Crtc[0];
if (Crtc->Active)
Crtc->FrameSet(Crtc, x, y);
Crtc = rhdPtr->Crtc[1];
if ( Crtc->Active)
Crtc->FrameSet(Crtc, x, y);
}
static Bool
rhdMapFB(RHDPtr rhdPtr)
{
CARD32 membase;
RHDFUNC(rhdPtr);
rhdPtr->FbMapSize = 1 << rhdPtr->pci.size[RHD_FB_BAR];
membase = rhdPtr->pci.memBase[RHD_FB_BAR];
rhdPtr->FbBase = MapIoMem(membase, rhdPtr->FbMapSize,PG_SW+PG_NOCACHE);
if (!rhdPtr->FbBase)
return FALSE;
/* These devices have an internal address reference, which some other
* address registers in there also use. This can be different from the
* address in the BAR */
if (rhdPtr->ChipSet < RHD_R600)
rhdPtr->FbIntAddress = _RHDRegRead(rhdPtr, HDP_FB_LOCATION)<< 16;
else
rhdPtr->FbIntAddress = _RHDRegRead(rhdPtr, R6XX_CONFIG_FB_BASE);
if (rhdPtr->FbIntAddress != membase)
dbgprintf("PCI FB Address (BAR) is at "
"0x%08X while card Internal Address is 0x%08X\n",
(unsigned int) membase,rhdPtr->FbIntAddress);
dbgprintf("Mapped FB at %p (size 0x%08X)\n",rhdPtr->FbBase, rhdPtr->FbMapSize);
return TRUE;
}
#define ERR_PARAM -1
#pragma pack (push,1)
typedef struct
{
short width;
short height;
short bpp;
short freq;
}mode_t;
#pragma pack (pop)
int get_modes(mode_t *mode, int count)
{
if(count==0)
count = SupportedModes;
else
{
DisplayModePtr tmp;
int i;
if(count>SupportedModes)
count = SupportedModes;
for(i=0,tmp = Scrn.modePool;i<count;i++,tmp=tmp->next,mode++)
{
mode->width = tmp->CrtcHDisplay;
mode->height = tmp->CrtcVDisplay;
mode->bpp = 32;
mode->freq = (short)__builtin_ceilf(tmp->VRefresh);
}
}
return count;
}
int set_mode(mode_t *mode)
{
DisplayModePtr tmp;
int i;
for(i=0,tmp = Scrn.modePool;i<SupportedModes;i++,tmp=tmp->next)
{
if( (mode->width == tmp->CrtcHDisplay) &&
(mode->height == tmp->CrtcVDisplay) &&
(mode->freq == (short)__builtin_ceilf(tmp->VRefresh)))
{
Scrn.virtualX = mode->width ;
Scrn.virtualY = mode->height;
Scrn.displayWidth = mode->width;
rhdModeInit(&Scrn,tmp);
sysSetScreen(mode->width,mode->height);
dbgprintf("set_mode OK\n");
return 1;
};
}
return 0;
};
#define API_VERSION 0x01000100
#define SRV_GETVERSION 0
#define SRV_ENUM_MODES 1
#define SRV_SET_MODE 2
int _stdcall srv_proc(ioctl_t *io)
{
u32_t *inp;
u32_t *outp;
inp = io->input;
outp = io->output;
switch(io->io_code)
{
case SRV_GETVERSION:
if(io->out_size==4)
{
*(u32_t*)io->output = API_VERSION;
return 0;
}
break;
case SRV_ENUM_MODES:
if(io->inp_size==8)
{
int count;
count = get_modes((mode_t*)(*inp),(int)*(inp+1));
if(io->out_size==4)
{
*outp = count;
return 0;
}
};
break;
case SRV_SET_MODE:
if(io->inp_size==8)
{
int err;
err = set_mode((mode_t*)inp);
if(io->out_size==4)
{
*outp = err;
return 0;
}
};
break;
};
return -1;
}
CARD32
_RHDReadMC(int scrnIndex, CARD32 addr)
{
RHDPtr rhdPtr = (RHDPtr)scrnIndex;
CARD32 ret;
if (rhdPtr->ChipSet < RHD_RS600) {
_RHDRegWrite(rhdPtr, MC_IND_INDEX, addr);
ret = _RHDRegRead(rhdPtr, MC_IND_DATA);
} else if (rhdPtr->ChipSet == RHD_RS600) {
_RHDRegWrite(rhdPtr, RS60_MC_NB_MC_INDEX, addr);
ret = _RHDRegRead(rhdPtr, RS60_MC_NB_MC_DATA);
} else if (rhdPtr->ChipSet == RHD_RS690 || rhdPtr->ChipSet == RHD_RS740) {
pciWriteLong(rhdPtr->NBPciTag, RS69_MC_INDEX, addr & ~RS69_MC_IND_WR_EN);
ret = pciReadLong(rhdPtr->NBPciTag, RS69_MC_DATA);
} else {
pciWriteLong(rhdPtr->NBPciTag, RS78_NB_MC_IND_INDEX, (addr & ~RS78_MC_IND_WR_EN));
ret = pciReadLong(rhdPtr->NBPciTag, RS78_NB_MC_IND_DATA);
}
RHDDebug(scrnIndex,"%s(0x%08X) = 0x%08X\n",__func__,(unsigned int)addr,
(unsigned int)ret);
return ret;
}
void
_RHDWriteMC(int scrnIndex, CARD32 addr, CARD32 data)
{
RHDPtr rhdPtr = (RHDPtr)scrnIndex;
RHDDebug(scrnIndex,"%s(0x%08X, 0x%08X)\n",__func__,(unsigned int)addr,
(unsigned int)data);
if (rhdPtr->ChipSet < RHD_RS600) {
_RHDRegWrite(rhdPtr, MC_IND_INDEX, addr | MC_IND_WR_EN);
_RHDRegWrite(rhdPtr, MC_IND_DATA, data);
} else if (rhdPtr->ChipSet == RHD_RS600) {
_RHDRegWrite(rhdPtr, RS60_MC_NB_MC_INDEX, addr | RS60_NB_MC_IND_WR_EN);
_RHDRegWrite(rhdPtr, RS60_MC_NB_MC_DATA, data);
} else if (rhdPtr->ChipSet == RHD_RS690 || rhdPtr->ChipSet == RHD_RS740) {
pciWriteLong(rhdPtr->NBPciTag, RS69_MC_INDEX, addr | RS69_MC_IND_WR_EN);
pciWriteLong(rhdPtr->NBPciTag, RS69_MC_DATA, data);
} else {
pciWriteLong(rhdPtr->NBPciTag, RS78_NB_MC_IND_INDEX, addr | RS78_MC_IND_WR_EN);
pciWriteLong(rhdPtr->NBPciTag, RS78_NB_MC_IND_DATA, data);
}
}
/*
*
*/
static void
rhdGetIGPNorthBridgeInfo(RHDPtr rhdPtr)
{
switch (rhdPtr->ChipSet)
{
case RHD_RS600:
break;
case RHD_RS690:
case RHD_RS740:
case RHD_RS780:
rhdPtr->NBPciTag = pciTag(0,0,0);
break;
default:
break;
}
}
static enum rhdCardType
rhdGetCardType(RHDPtr rhdPtr)
{
CARD32 cmd_stat;
if (rhdPtr->ChipSet == RHD_RS780)
return RHD_CARD_PCIE;
cmd_stat = pciReadLong(rhdPtr->PciTag, PCI_CMD_STAT_REG);
if (cmd_stat & 0x100000) {
CARD32 cap_ptr, cap_id;
cap_ptr = pciReadLong(rhdPtr->PciTag, 0x34);
cap_ptr &= 0xfc;
while (cap_ptr)
{
cap_id = pciReadLong(rhdPtr->PciTag, cap_ptr);
switch (cap_id & 0xff) {
case RHD_PCI_CAPID_AGP:
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO, "AGP Card Detected\n");
return RHD_CARD_AGP;
case RHD_PCI_CAPID_PCIE:
xf86DrvMsg(rhdPtr->scrnIndex, X_INFO, "PCIE Card Detected\n");
return RHD_CARD_PCIE;
}
cap_ptr = (cap_id >> 8) & 0xff;
}
}
return RHD_CARD_NONE;
}