forked from KolibriOS/kolibrios
611 lines
21 KiB
PHP
611 lines
21 KiB
PHP
|
; Module management, non-PE-specific code.
|
||
|
; Works in conjuction with peloader.inc for PE-specific code.
|
||
|
|
||
|
; void* dlopen(const char* filename, int mode)
|
||
|
; Opens the module named filename and maps it in; returns a handle that can be
|
||
|
; passed to dlsym to get symbol values from it.
|
||
|
;
|
||
|
; If filename starts with '/', it is treated as an absolute file name.
|
||
|
; Otherwise, dlopen searches for filename in predefined locations:
|
||
|
; /rd/1/lib, /kolibrios/lib, directory of the executable file.
|
||
|
; The current directory is *not* searched.
|
||
|
;
|
||
|
; If the same module is loaded again with dlopen(), the same
|
||
|
; handle is returned. The loader maintains reference
|
||
|
; counts for loaded modules, so a dynamically loaded module is
|
||
|
; not deallocated until dlclose() has been called on it as many times
|
||
|
; as dlopen() has succeeded on it. Any initialization functions
|
||
|
; are called just once.
|
||
|
;
|
||
|
; If dlopen() fails for any reason, it returns NULL.
|
||
|
;
|
||
|
; mode is reserved and should be zero.
|
||
|
proc dlopen stdcall uses esi edi, file, mode
|
||
|
; find_module_by_name and load_module do all the work.
|
||
|
; We just need to acquire/release the mutex and adjust input/output.
|
||
|
cmp [mode], 0
|
||
|
jnz .invalid_mode
|
||
|
mutex_lock modules_mutex
|
||
|
mov edi, [file]
|
||
|
call find_module_by_name
|
||
|
test esi, esi
|
||
|
jnz .inc_refcount
|
||
|
call load_module
|
||
|
xor edi, edi
|
||
|
test eax, eax
|
||
|
jz .unlock_return
|
||
|
; The handle returned on success is module base address.
|
||
|
; Unlike pointer to MODULE struct, it can be actually useful
|
||
|
; for the caller as is.
|
||
|
mov edi, [eax+MODULE.base]
|
||
|
jmp .unlock_return
|
||
|
.inc_refcount:
|
||
|
inc [esi+MODULE.refcount]
|
||
|
mov edi, [esi+MODULE.base]
|
||
|
.unlock_return:
|
||
|
mutex_unlock modules_mutex
|
||
|
mov eax, edi
|
||
|
ret
|
||
|
.invalid_mode:
|
||
|
xor eax, eax
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; int dlclose(void* handle)
|
||
|
; Decrements the reference count on the dynamically loaded module
|
||
|
; referred to by handle. If the reference count drops to zero,
|
||
|
; then the module is unloaded. All modules that were automatically loaded
|
||
|
; when dlopen() was invoked on the module referred to by handle are
|
||
|
; recursively closed in the same manner.
|
||
|
;
|
||
|
; A successful return from dlclose() does not guarantee that the
|
||
|
; module has been actually removed from the caller's address space.
|
||
|
; In addition to references resulting from explicit dlopen() calls,
|
||
|
; a module may have been implicitly loaded (and reference counted)
|
||
|
; because of dependencies in other shared objects.
|
||
|
; Only when all references have been released can the module be removed
|
||
|
; from the address space.
|
||
|
; On success, dlclose() returns 0; on error, it returns a nonzero value.
|
||
|
proc dlclose stdcall uses esi, handle
|
||
|
; This function uses two worker functions:
|
||
|
; find_module_by_addr to map handle -> MODULE,
|
||
|
; dereference_module for the main work.
|
||
|
; Aside of calling these, we should only acquire/release the mutex.
|
||
|
mutex_lock modules_mutex
|
||
|
mov ecx, [handle]
|
||
|
call find_module_by_addr
|
||
|
test esi, esi
|
||
|
jz .invalid_handle
|
||
|
call dereference_module
|
||
|
mutex_unlock modules_mutex
|
||
|
xor eax, eax
|
||
|
ret
|
||
|
.invalid_handle:
|
||
|
mutex_unlock modules_mutex
|
||
|
xor eax, eax
|
||
|
inc eax
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; void* dlsym(void* handle, const char* symbol)
|
||
|
; Obtains address of a symbol in a module.
|
||
|
; On failure, returns NULL.
|
||
|
;
|
||
|
; symbol can also be a number between 0 and 0xFFFF;
|
||
|
; it is interpreted as an ordinal of a symbol.
|
||
|
; Low 64K of address space are blocked for the allocation,
|
||
|
; so a valid pointer cannot be less than 0x10000.
|
||
|
;
|
||
|
; handle is not validated. Passing an invalid handle can result in a crash.
|
||
|
proc dlsym stdcall, handle, symbol
|
||
|
locals
|
||
|
export_base dd ?
|
||
|
export_ptr dd ?
|
||
|
export_size dd ?
|
||
|
import_module dd 0
|
||
|
endl
|
||
|
; Again, helper functions do all the work.
|
||
|
; We don't need to browse list of MODULEs,
|
||
|
; so we don't need to acquire/release the mutex.
|
||
|
; Unless the function is forwarded or module name is required for error message,
|
||
|
; but this should be processed by get_exported_function_*.
|
||
|
mov eax, [handle]
|
||
|
call prepare_import_from_module
|
||
|
mov ecx, [symbol]
|
||
|
cmp ecx, 0x10000
|
||
|
jb .ordinal
|
||
|
mov edx, -1 ; no hint for lookup in name table
|
||
|
call get_exported_function_by_name
|
||
|
ret
|
||
|
.ordinal:
|
||
|
call get_exported_function_by_ordinal
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Errors happen.
|
||
|
; Some errors should be reported to the user. Some errors are normal.
|
||
|
; After the process has been initialized, we don't know what an error
|
||
|
; should mean - is the failed DLL absolutely required or unimportant enhancement?
|
||
|
; So we report an error to the caller and let it decide how to handle it.
|
||
|
; However, when the process is initializing, there is no one to report to,
|
||
|
; so we must inform the user ourselves.
|
||
|
; In any case, write to the debug board - it is *debug* board, after all.
|
||
|
;
|
||
|
; This function is called whenever an error occurs in the loader.
|
||
|
; Except errors in malloc/realloc - they shouldn't happen anyway,
|
||
|
; and if they happened after all, we are screwed and likely will fail anyway,
|
||
|
; so don't bother.
|
||
|
; Variable number of arguments: strings to be concatenated, end with NULL.
|
||
|
proc loader_say_error c uses ebx esi, first_msg, ...
|
||
|
; 1. Concatenate all given strings to the final error message.
|
||
|
; 1a. Calculate the total length.
|
||
|
xor ebx, ebx
|
||
|
lea edx, [first_msg]
|
||
|
.get_length:
|
||
|
mov ecx, [edx]
|
||
|
test ecx, ecx
|
||
|
jz .length_done
|
||
|
@@:
|
||
|
inc ebx
|
||
|
inc ecx
|
||
|
cmp byte [ecx-1], 0
|
||
|
jnz @b
|
||
|
dec ebx
|
||
|
add edx, 4
|
||
|
jmp .get_length
|
||
|
.length_done:
|
||
|
inc ebx ; terminating zero
|
||
|
; 1b. Allocate memory. Exit if failed.
|
||
|
stdcall malloc, ebx
|
||
|
test eax, eax
|
||
|
jz .nothing
|
||
|
mov esi, eax
|
||
|
; 1c. Copy data.
|
||
|
lea edx, [first_msg]
|
||
|
.copy_data:
|
||
|
mov ecx, [edx]
|
||
|
test ecx, ecx
|
||
|
jz .data_done
|
||
|
@@:
|
||
|
mov bl, [ecx]
|
||
|
test bl, bl
|
||
|
jz @f
|
||
|
mov [eax], bl
|
||
|
inc ecx
|
||
|
inc eax
|
||
|
jmp @b
|
||
|
@@:
|
||
|
add edx, 4
|
||
|
jmp .copy_data
|
||
|
.data_done:
|
||
|
mov byte [eax], 0 ; terminating zero
|
||
|
; 2. Print to the debug board.
|
||
|
mov ecx, loader_debugboard_prefix
|
||
|
call sys_msg_board_str
|
||
|
mov ecx, esi
|
||
|
call sys_msg_board_str
|
||
|
mov ecx, msg_newline
|
||
|
call sys_msg_board_str
|
||
|
; 3. If the initialization is in process, report to the user.
|
||
|
xor eax, eax
|
||
|
cmp [process_initialized], al
|
||
|
jnz .no_report
|
||
|
; Use @notify. Create structure for function 70.7 on the stack.
|
||
|
push eax ; to be rewritten with part of path
|
||
|
push eax ; to be rewritten with part of path
|
||
|
push eax ; reserved
|
||
|
push eax ; reserved
|
||
|
push esi ; command line
|
||
|
push eax ; flags: none
|
||
|
push 7
|
||
|
mov eax, 70
|
||
|
mov ebx, esp
|
||
|
mov dword [ebx+21], notify_program
|
||
|
call FS_SYSCALL_PTR
|
||
|
add esp, 28
|
||
|
; Ignore any errors. We can't do anything with them anyway.
|
||
|
.no_report:
|
||
|
stdcall free, esi
|
||
|
.nothing:
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; When the loader is initializing the process, errors can happen.
|
||
|
; They should be reported to the user.
|
||
|
; The main executable cannot do this, it is not initialized yet.
|
||
|
; So we should do it ourselves.
|
||
|
; However, after the process has been initialized, the main
|
||
|
;
|
||
|
; Helper function that is called whenever an error is occured.
|
||
|
|
||
|
; For now, we don't expect many modules in one process.
|
||
|
; So, all modules are linked into a single list,
|
||
|
; and lookup functions simply walk the entire list.
|
||
|
; This should be revisited if dozens of modules would be typical.
|
||
|
|
||
|
; This structure describes one loaded PE module.
|
||
|
; malloc'd from the default heap,
|
||
|
; includes variable-sized module path in the end.
|
||
|
struct MODULE
|
||
|
; All modules are linked in the global list with head at modules_list.
|
||
|
next dd ?
|
||
|
prev dd ?
|
||
|
base dd ? ; base address
|
||
|
size dd ? ; size in memory
|
||
|
refcount dd ? ; reference counter
|
||
|
timestamp dd ? ; for bound imports
|
||
|
basedelta dd ? ; base address - preferred address, for bound imports
|
||
|
num_imports dd ? ; size of imports array
|
||
|
imports dd ?
|
||
|
; Pointer to array of pointers to MODULEs containing imported functions.
|
||
|
; Used to unload all dependencies when the module is unloaded.
|
||
|
; Contains all modules referenced by import table;
|
||
|
; if the module forwards some export to another module,
|
||
|
; then forward target is added to this array when forward source is requested.
|
||
|
filename dd ? ; pointer inside path array after dirname
|
||
|
filenamelen dd ? ; strlen(filename) + 1
|
||
|
path rb 0
|
||
|
ends
|
||
|
|
||
|
; Fills some fields in a new MODULE struct based on given PE image.
|
||
|
; Assumes that MODULE.path has been filled during the allocation,
|
||
|
; does not insert the structure in the common list, fills everything else.
|
||
|
; in: eax -> MODULE
|
||
|
; in: esi = module base
|
||
|
proc init_module_struct
|
||
|
; Straightforward initialization of all non-PE-specific fields.
|
||
|
lea edx, [eax+MODULE.path]
|
||
|
mov [eax+MODULE.filename], edx
|
||
|
@@:
|
||
|
inc edx
|
||
|
cmp byte [edx-1], 0
|
||
|
jz @f
|
||
|
cmp byte [edx-1], '/'
|
||
|
jnz @b
|
||
|
mov [eax+MODULE.filename], edx
|
||
|
jmp @b
|
||
|
@@:
|
||
|
sub edx, [eax+MODULE.filename]
|
||
|
mov [eax+MODULE.filenamelen], edx
|
||
|
xor edx, edx
|
||
|
mov [eax+MODULE.base], esi
|
||
|
mov [eax+MODULE.refcount], 1
|
||
|
mov [eax+MODULE.num_imports], edx
|
||
|
mov [eax+MODULE.imports], edx
|
||
|
; Let the PE-specific part do its job.
|
||
|
init_module_struct_pe_specific
|
||
|
endp
|
||
|
|
||
|
; Helper function for dlclose and resolving forwarded exports from dlsym.
|
||
|
; in: ecx = module base address
|
||
|
; out: esi -> MODULE or esi = NULL
|
||
|
; modules_mutex should be locked
|
||
|
proc find_module_by_addr
|
||
|
; Simple linear lookup in the list.
|
||
|
mov esi, [modules_list + MODULE.next]
|
||
|
.scan:
|
||
|
cmp esi, modules_list
|
||
|
jz .notfound
|
||
|
cmp ecx, [esi+MODULE.base]
|
||
|
jz .found
|
||
|
mov esi, [esi+MODULE.next]
|
||
|
jmp .scan
|
||
|
.notfound:
|
||
|
xor esi, esi
|
||
|
.found:
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Helper function for whenever we have a module name
|
||
|
; and want to check whether it is already loaded.
|
||
|
; in: edi -> name with or without a path
|
||
|
; out: esi -> MODULE or esi = NULL
|
||
|
; modules_mutex should be locked
|
||
|
proc find_module_by_name uses edi
|
||
|
; 1. Skip the path, if it is present.
|
||
|
; eax = current pointer,
|
||
|
; edi is updated whenever the previous character is '/'
|
||
|
mov eax, edi
|
||
|
.find_basename:
|
||
|
cmp byte [eax], 0
|
||
|
jz .found_basename
|
||
|
inc eax
|
||
|
cmp byte [eax-1], '/'
|
||
|
jnz .find_basename
|
||
|
mov edi, eax
|
||
|
jmp .find_basename
|
||
|
.found_basename:
|
||
|
; 2. Simple linear lookup in the list.
|
||
|
mov eax, [modules_list + MODULE.next]
|
||
|
.scan:
|
||
|
cmp eax, modules_list
|
||
|
jz .notfound
|
||
|
; For every module, compare base names ignoring paths.
|
||
|
push edi
|
||
|
mov esi, [eax+MODULE.filename]
|
||
|
mov ecx, [eax+MODULE.filenamelen]
|
||
|
repz cmpsb
|
||
|
pop edi
|
||
|
jz .found
|
||
|
mov eax, [eax+MODULE.next]
|
||
|
jmp .scan
|
||
|
.found:
|
||
|
mov esi, eax
|
||
|
ret
|
||
|
.notfound:
|
||
|
xor esi, esi
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Called when some module is implicitly loaded by another module,
|
||
|
; either due to a record in import table,
|
||
|
; or because some exported function forwards to another module.
|
||
|
; Checks whether the target module has already been referenced
|
||
|
; by the source module. The first reference is passed down
|
||
|
; to load_module increasing refcount of the target and possibly
|
||
|
; loading it if not yet, subsequent references just return
|
||
|
; without modifying refcount.
|
||
|
; We don't actually need to deduplicate DLLs from import table
|
||
|
; as long as we decrement refcount on unload the same number of times
|
||
|
; that we have incremented it on load.
|
||
|
; However, we need to keep track of references to forward targets,
|
||
|
; and we don't want to scan the entire export table and load all forward
|
||
|
; targets just in case some of those would be useful,
|
||
|
; so load them on-demand first time and ignore subsequential references.
|
||
|
; To be consistent, do the same for import table too.
|
||
|
;
|
||
|
; in: esi -> source MODULE struct
|
||
|
; in: edi -> target module name
|
||
|
; out: eax -> imported MODULE, 0 on error
|
||
|
; modules_mutex should be locked
|
||
|
proc load_imported_module uses edi
|
||
|
; 1. Find the target module in the loaded modules list.
|
||
|
; If not found, go to 5.
|
||
|
push esi
|
||
|
call find_module_by_name
|
||
|
test esi, esi
|
||
|
mov eax, esi
|
||
|
pop esi
|
||
|
jz .load
|
||
|
; 2. The module has been already loaded.
|
||
|
; Now check whether it is already stored in imports array.
|
||
|
; If yes, just return without doing anything.
|
||
|
mov edi, [esi+MODULE.imports]
|
||
|
mov ecx, [esi+MODULE.num_imports]
|
||
|
test ecx, ecx
|
||
|
jz .newref
|
||
|
repnz scasd
|
||
|
jz .nothing
|
||
|
.newref:
|
||
|
; The module is loaded, but not by us.
|
||
|
; 3. Increment the reference counter of the target.
|
||
|
inc [eax+MODULE.refcount]
|
||
|
.add_to_imports:
|
||
|
; 4. Add the new pointer to the imports array.
|
||
|
; 4a. Check whether there is place in the array.
|
||
|
; If so, go to 4c.
|
||
|
; We don't want to reallocate too often, since reallocation
|
||
|
; may involve copying our data to a new place.
|
||
|
; We always reserve space that is a power of two; in this way,
|
||
|
; the wasted space is never greater than the used space,
|
||
|
; and total time of copying the data is O(number of modules).
|
||
|
; The last fact is not really important right now,
|
||
|
; since the current implementation of step 2 makes everything
|
||
|
; quadratic and the number of modules is very small anyway,
|
||
|
; but since this enhancement costs only a few instructions, why not?
|
||
|
mov edi, eax
|
||
|
; X is a power of two or zero if and only if (X and (X - 1)) is zero
|
||
|
mov ecx, [esi+MODULE.num_imports]
|
||
|
lea edx, [ecx-1]
|
||
|
test ecx, edx
|
||
|
jnz .has_space
|
||
|
; 4b. Reallocate the imports array:
|
||
|
; if the current size is zero, allocate 1 item,
|
||
|
; otherwise double number of items.
|
||
|
; Item size is 4 bytes.
|
||
|
lea ecx, [ecx*8]
|
||
|
test ecx, ecx
|
||
|
jnz @f
|
||
|
mov ecx, 4
|
||
|
@@:
|
||
|
stdcall realloc, [esi+MODULE.imports], ecx
|
||
|
test eax, eax
|
||
|
jz .realloc_failed
|
||
|
mov [esi+MODULE.imports], eax
|
||
|
mov ecx, [esi+MODULE.num_imports]
|
||
|
.has_space:
|
||
|
; 4c. Append pointer to the target MODULE to imports array.
|
||
|
mov eax, [esi+MODULE.imports]
|
||
|
mov [eax+ecx*4], edi
|
||
|
inc [esi+MODULE.num_imports]
|
||
|
mov eax, edi
|
||
|
.nothing:
|
||
|
ret
|
||
|
.load:
|
||
|
; 5. This is a totally new module. Load it.
|
||
|
call load_module
|
||
|
; On error, return it to the caller. On success, go to 4.
|
||
|
test eax, eax
|
||
|
jz .nothing
|
||
|
jmp .add_to_imports
|
||
|
.realloc_failed:
|
||
|
; Out of memory for a couple of dwords? Should not happen.
|
||
|
; Dereference the target referenced by step 3 or 5
|
||
|
; and return error to the caller.
|
||
|
push esi
|
||
|
mov esi, edi
|
||
|
call dereference_module
|
||
|
pop esi
|
||
|
xor eax, eax
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Helper procedure for load_module.
|
||
|
; Allocates MODULE structure for (given path) + (module name),
|
||
|
; calls the kernel to map it,
|
||
|
; on success, fills the MODULE structure.
|
||
|
; in: edi -> module name
|
||
|
; in: ebx = strlen(filename) + 1
|
||
|
proc try_map_module uses ebx esi, path_ptr, path_len
|
||
|
; 1. Allocate MODULE structure.
|
||
|
mov eax, [path_len]
|
||
|
lea eax, [eax+ebx+MODULE.path]
|
||
|
stdcall malloc, eax
|
||
|
test eax, eax
|
||
|
jz .nothing
|
||
|
; 2. Create the full name of module in MODULE structure:
|
||
|
; concatenate module path, if given, and module name.
|
||
|
mov ecx, [path_len]
|
||
|
mov esi, [path_ptr]
|
||
|
push edi
|
||
|
lea edi, [eax+MODULE.path]
|
||
|
rep movsb
|
||
|
mov ecx, ebx
|
||
|
mov esi, [esp]
|
||
|
rep movsb
|
||
|
pop edi
|
||
|
mov esi, eax
|
||
|
; 3. Call the kernel to map the module.
|
||
|
lea ecx, [eax+MODULE.path]
|
||
|
mov eax, 68
|
||
|
mov ebx, 28
|
||
|
call FS_SYSCALL_PTR
|
||
|
cmp eax, -0x1000
|
||
|
ja .failed
|
||
|
; 4. On success, fill the rest of MODULE structure and return it.
|
||
|
xchg eax, esi
|
||
|
call init_module_struct
|
||
|
ret
|
||
|
.failed:
|
||
|
; On failure, undo allocation at step 1 and return zero.
|
||
|
stdcall free, esi
|
||
|
xor eax, eax
|
||
|
.nothing:
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Worker procedure for loading a new module.
|
||
|
; Does not check whether the module has been already loaded;
|
||
|
; find_module_by_name should be called beforehand.
|
||
|
; in: edi -> filename
|
||
|
; out: eax -> MODULE or 0
|
||
|
; modules_mutex should be locked
|
||
|
proc load_module uses ebx esi ebp
|
||
|
; 1. Map the module.
|
||
|
; 1a. Prepare for try_map_module: calculate length of the name.
|
||
|
mov ebx, edi
|
||
|
@@:
|
||
|
inc ebx
|
||
|
cmp byte [ebx-1], 0
|
||
|
jnz @b
|
||
|
sub ebx, edi
|
||
|
; 1b. Check whether the given path is absolute.
|
||
|
; If so, proceed to 1c. If not, go to 1d.
|
||
|
cmp byte [edi], '/'
|
||
|
jnz .relative
|
||
|
; 1c. The given path is absolute. Use it as is. Don't try any other paths.
|
||
|
stdcall try_map_module, 0, 0
|
||
|
test eax, eax
|
||
|
jnz .loaded_ok
|
||
|
ccall loader_say_error, msg_cannot_open, edi, 0
|
||
|
jmp .load_failed
|
||
|
.relative:
|
||
|
; 1d. The given path is relative.
|
||
|
; Try /rd/1/lib/, /kolibrios/lib/ and path to executable
|
||
|
; in this order.
|
||
|
stdcall try_map_module, module_path1, module_path1.size
|
||
|
test eax, eax
|
||
|
jnz .loaded_ok
|
||
|
stdcall try_map_module, module_path2, module_path2.size
|
||
|
test eax, eax
|
||
|
jnz .loaded_ok
|
||
|
; Note: we assume that the executable is always the first module in the list.
|
||
|
mov eax, [modules_list + MODULE.next]
|
||
|
mov ecx, [eax+MODULE.filename]
|
||
|
add eax, MODULE.path
|
||
|
mov esi, eax
|
||
|
sub ecx, eax
|
||
|
stdcall try_map_module, eax, ecx
|
||
|
test eax, eax
|
||
|
jnz .loaded_ok
|
||
|
mov ebx, dword [esi+MODULE.filename-MODULE.path]
|
||
|
movzx eax, byte [ebx]
|
||
|
mov byte [ebx], 0
|
||
|
push eax
|
||
|
ccall loader_say_error, msg_cannot_open, edi, msg_paths_begin, esi, 0
|
||
|
pop eax
|
||
|
mov byte [ebx], al
|
||
|
.load_failed:
|
||
|
xor eax, eax
|
||
|
ret
|
||
|
.loaded_ok:
|
||
|
; Module has been mapped.
|
||
|
; MODULE structure has been initialized, but not yet inserted in the common list.
|
||
|
; 2. Insert the MODULE structure in the end of the common list.
|
||
|
mov esi, eax
|
||
|
mov eax, [modules_list+MODULE.prev]
|
||
|
mov [eax+MODULE.next], esi
|
||
|
mov [esi+MODULE.prev], eax
|
||
|
mov [modules_list+MODULE.prev], esi
|
||
|
mov [esi+MODULE.next], modules_list
|
||
|
; 3. Call PE-specific code to initialize the mapped module.
|
||
|
push esi
|
||
|
push edi ; for messages in fixup_pe_relocations
|
||
|
mov esi, [esi+MODULE.base]
|
||
|
call fixup_pe_relocations
|
||
|
pop ecx
|
||
|
pop esi
|
||
|
jc .fail_unload
|
||
|
call resolve_pe_imports
|
||
|
test eax, eax
|
||
|
jnz .fail_unload
|
||
|
mov eax, esi
|
||
|
ret
|
||
|
.fail_unload:
|
||
|
call dereference_module
|
||
|
xor eax, eax
|
||
|
ret
|
||
|
endp
|
||
|
|
||
|
; Worker procedure for unloading a module.
|
||
|
; Drops one reference to the module; if it was the last one,
|
||
|
; unloads the module and all referenced modules recursively.
|
||
|
; in: esi -> MODULE struct
|
||
|
; modules_mutex should be locked
|
||
|
proc dereference_module
|
||
|
; 1. Decrement reference counter.
|
||
|
; If the decremented value is nonzero, exit.
|
||
|
dec [esi+MODULE.refcount]
|
||
|
jnz .nothing
|
||
|
; 2. Remove the module from the common list.
|
||
|
mov eax, [esi+MODULE.prev]
|
||
|
mov edx, [esi+MODULE.next]
|
||
|
mov [eax+MODULE.next], edx
|
||
|
mov [edx+MODULE.prev], eax
|
||
|
; 3. Recursively unload dependencies.
|
||
|
cmp [esi+MODULE.num_imports], 0
|
||
|
jz .import_deref_done
|
||
|
.import_deref_loop:
|
||
|
mov eax, [esi+MODULE.num_imports]
|
||
|
push esi
|
||
|
mov esi, [esi+MODULE.imports]
|
||
|
mov esi, [esi+(eax-1)*4]
|
||
|
call dereference_module
|
||
|
pop esi
|
||
|
dec [esi+MODULE.num_imports]
|
||
|
jnz .import_deref_loop
|
||
|
.import_deref_done:
|
||
|
stdcall free, [esi+MODULE.imports] ; free(NULL) is ok
|
||
|
; 4. Unmap the module.
|
||
|
push ebx
|
||
|
mov eax, 68
|
||
|
mov ebx, 29
|
||
|
mov ecx, [esi+MODULE.base]
|
||
|
call FS_SYSCALL_PTR
|
||
|
pop ebx
|
||
|
; 5. Free the MODULE struct.
|
||
|
stdcall free, esi
|
||
|
.nothing:
|
||
|
ret
|
||
|
endp
|