forked from KolibriOS/kolibrios
373 lines
14 KiB
C
373 lines
14 KiB
C
|
/*
|
||
|
* audio resampling
|
||
|
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* audio resampling
|
||
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
||
|
*/
|
||
|
|
||
|
#include "libavutil/log.h"
|
||
|
#include "libavutil/avassert.h"
|
||
|
#include "swresample_internal.h"
|
||
|
|
||
|
|
||
|
typedef struct ResampleContext {
|
||
|
const AVClass *av_class;
|
||
|
uint8_t *filter_bank;
|
||
|
int filter_length;
|
||
|
int filter_alloc;
|
||
|
int ideal_dst_incr;
|
||
|
int dst_incr;
|
||
|
int index;
|
||
|
int frac;
|
||
|
int src_incr;
|
||
|
int compensation_distance;
|
||
|
int phase_shift;
|
||
|
int phase_mask;
|
||
|
int linear;
|
||
|
enum SwrFilterType filter_type;
|
||
|
int kaiser_beta;
|
||
|
double factor;
|
||
|
enum AVSampleFormat format;
|
||
|
int felem_size;
|
||
|
int filter_shift;
|
||
|
} ResampleContext;
|
||
|
|
||
|
/**
|
||
|
* 0th order modified bessel function of the first kind.
|
||
|
*/
|
||
|
static double bessel(double x){
|
||
|
double v=1;
|
||
|
double lastv=0;
|
||
|
double t=1;
|
||
|
int i;
|
||
|
static const double inv[100]={
|
||
|
1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
|
||
|
1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
|
||
|
1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
|
||
|
1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
|
||
|
1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
|
||
|
1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
|
||
|
1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
|
||
|
1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
|
||
|
1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
|
||
|
1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
|
||
|
};
|
||
|
|
||
|
x= x*x/4;
|
||
|
for(i=0; v != lastv; i++){
|
||
|
lastv=v;
|
||
|
t *= x*inv[i];
|
||
|
v += t;
|
||
|
av_assert2(i<99);
|
||
|
}
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* builds a polyphase filterbank.
|
||
|
* @param factor resampling factor
|
||
|
* @param scale wanted sum of coefficients for each filter
|
||
|
* @param filter_type filter type
|
||
|
* @param kaiser_beta kaiser window beta
|
||
|
* @return 0 on success, negative on error
|
||
|
*/
|
||
|
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
|
||
|
int filter_type, int kaiser_beta){
|
||
|
int ph, i;
|
||
|
double x, y, w;
|
||
|
double *tab = av_malloc(tap_count * sizeof(*tab));
|
||
|
const int center= (tap_count-1)/2;
|
||
|
|
||
|
if (!tab)
|
||
|
return AVERROR(ENOMEM);
|
||
|
|
||
|
/* if upsampling, only need to interpolate, no filter */
|
||
|
if (factor > 1.0)
|
||
|
factor = 1.0;
|
||
|
|
||
|
for(ph=0;ph<phase_count;ph++) {
|
||
|
double norm = 0;
|
||
|
for(i=0;i<tap_count;i++) {
|
||
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
|
||
|
if (x == 0) y = 1.0;
|
||
|
else y = sin(x) / x;
|
||
|
switch(filter_type){
|
||
|
case SWR_FILTER_TYPE_CUBIC:{
|
||
|
const float d= -0.5; //first order derivative = -0.5
|
||
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
|
||
|
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
|
||
|
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
|
||
|
break;}
|
||
|
case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
|
||
|
w = 2.0*x / (factor*tap_count) + M_PI;
|
||
|
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
|
||
|
break;
|
||
|
case SWR_FILTER_TYPE_KAISER:
|
||
|
w = 2.0*x / (factor*tap_count*M_PI);
|
||
|
y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
|
||
|
break;
|
||
|
default:
|
||
|
av_assert0(0);
|
||
|
}
|
||
|
|
||
|
tab[i] = y;
|
||
|
norm += y;
|
||
|
}
|
||
|
|
||
|
/* normalize so that an uniform color remains the same */
|
||
|
switch(c->format){
|
||
|
case AV_SAMPLE_FMT_S16P:
|
||
|
for(i=0;i<tap_count;i++)
|
||
|
((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
|
||
|
break;
|
||
|
case AV_SAMPLE_FMT_S32P:
|
||
|
for(i=0;i<tap_count;i++)
|
||
|
((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
|
||
|
break;
|
||
|
case AV_SAMPLE_FMT_FLTP:
|
||
|
for(i=0;i<tap_count;i++)
|
||
|
((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
|
||
|
break;
|
||
|
case AV_SAMPLE_FMT_DBLP:
|
||
|
for(i=0;i<tap_count;i++)
|
||
|
((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#if 0
|
||
|
{
|
||
|
#define LEN 1024
|
||
|
int j,k;
|
||
|
double sine[LEN + tap_count];
|
||
|
double filtered[LEN];
|
||
|
double maxff=-2, minff=2, maxsf=-2, minsf=2;
|
||
|
for(i=0; i<LEN; i++){
|
||
|
double ss=0, sf=0, ff=0;
|
||
|
for(j=0; j<LEN+tap_count; j++)
|
||
|
sine[j]= cos(i*j*M_PI/LEN);
|
||
|
for(j=0; j<LEN; j++){
|
||
|
double sum=0;
|
||
|
ph=0;
|
||
|
for(k=0; k<tap_count; k++)
|
||
|
sum += filter[ph * tap_count + k] * sine[k+j];
|
||
|
filtered[j]= sum / (1<<FILTER_SHIFT);
|
||
|
ss+= sine[j + center] * sine[j + center];
|
||
|
ff+= filtered[j] * filtered[j];
|
||
|
sf+= sine[j + center] * filtered[j];
|
||
|
}
|
||
|
ss= sqrt(2*ss/LEN);
|
||
|
ff= sqrt(2*ff/LEN);
|
||
|
sf= 2*sf/LEN;
|
||
|
maxff= FFMAX(maxff, ff);
|
||
|
minff= FFMIN(minff, ff);
|
||
|
maxsf= FFMAX(maxsf, sf);
|
||
|
minsf= FFMIN(minsf, sf);
|
||
|
if(i%11==0){
|
||
|
av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
|
||
|
minff=minsf= 2;
|
||
|
maxff=maxsf= -2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
av_free(tab);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
|
||
|
double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
|
||
|
double precision, int cheby){
|
||
|
double cutoff = cutoff0? cutoff0 : 0.97;
|
||
|
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
|
||
|
int phase_count= 1<<phase_shift;
|
||
|
|
||
|
if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
|
||
|
|| c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
|
||
|
|| c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
|
||
|
c = av_mallocz(sizeof(*c));
|
||
|
if (!c)
|
||
|
return NULL;
|
||
|
|
||
|
c->format= format;
|
||
|
|
||
|
c->felem_size= av_get_bytes_per_sample(c->format);
|
||
|
|
||
|
switch(c->format){
|
||
|
case AV_SAMPLE_FMT_S16P:
|
||
|
c->filter_shift = 15;
|
||
|
break;
|
||
|
case AV_SAMPLE_FMT_S32P:
|
||
|
c->filter_shift = 30;
|
||
|
break;
|
||
|
case AV_SAMPLE_FMT_FLTP:
|
||
|
case AV_SAMPLE_FMT_DBLP:
|
||
|
c->filter_shift = 0;
|
||
|
break;
|
||
|
default:
|
||
|
av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
|
||
|
av_assert0(0);
|
||
|
}
|
||
|
|
||
|
c->phase_shift = phase_shift;
|
||
|
c->phase_mask = phase_count - 1;
|
||
|
c->linear = linear;
|
||
|
c->factor = factor;
|
||
|
c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
|
||
|
c->filter_alloc = FFALIGN(c->filter_length, 8);
|
||
|
c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
|
||
|
c->filter_type = filter_type;
|
||
|
c->kaiser_beta = kaiser_beta;
|
||
|
if (!c->filter_bank)
|
||
|
goto error;
|
||
|
if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
|
||
|
goto error;
|
||
|
memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
|
||
|
memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
|
||
|
}
|
||
|
|
||
|
c->compensation_distance= 0;
|
||
|
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
|
||
|
goto error;
|
||
|
c->ideal_dst_incr= c->dst_incr;
|
||
|
|
||
|
c->index= -phase_count*((c->filter_length-1)/2);
|
||
|
c->frac= 0;
|
||
|
|
||
|
return c;
|
||
|
error:
|
||
|
av_freep(&c->filter_bank);
|
||
|
av_free(c);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void resample_free(ResampleContext **c){
|
||
|
if(!*c)
|
||
|
return;
|
||
|
av_freep(&(*c)->filter_bank);
|
||
|
av_freep(c);
|
||
|
}
|
||
|
|
||
|
static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
|
||
|
c->compensation_distance= compensation_distance;
|
||
|
if (compensation_distance)
|
||
|
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
|
||
|
else
|
||
|
c->dst_incr = c->ideal_dst_incr;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define TEMPLATE_RESAMPLE_S16
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_S16
|
||
|
|
||
|
#define TEMPLATE_RESAMPLE_S32
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_S32
|
||
|
|
||
|
#define TEMPLATE_RESAMPLE_FLT
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_FLT
|
||
|
|
||
|
#define TEMPLATE_RESAMPLE_DBL
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_DBL
|
||
|
|
||
|
// XXX FIXME the whole C loop should be written in asm so this x86 specific code here isnt needed
|
||
|
#if HAVE_MMXEXT_INLINE
|
||
|
|
||
|
#include "x86/resample_mmx.h"
|
||
|
|
||
|
#define TEMPLATE_RESAMPLE_S16_MMX2
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_S16_MMX2
|
||
|
|
||
|
#if HAVE_SSSE3_INLINE
|
||
|
#define TEMPLATE_RESAMPLE_S16_SSSE3
|
||
|
#include "resample_template.c"
|
||
|
#undef TEMPLATE_RESAMPLE_S16_SSSE3
|
||
|
#endif
|
||
|
|
||
|
#endif // HAVE_MMXEXT_INLINE
|
||
|
|
||
|
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
|
||
|
int i, ret= -1;
|
||
|
int av_unused mm_flags = av_get_cpu_flags();
|
||
|
int need_emms= 0;
|
||
|
|
||
|
for(i=0; i<dst->ch_count; i++){
|
||
|
#if HAVE_MMXEXT_INLINE
|
||
|
#if HAVE_SSSE3_INLINE
|
||
|
if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_SSSE3)) ret= swri_resample_int16_ssse3(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
else
|
||
|
#endif
|
||
|
if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_MMX2 )){
|
||
|
ret= swri_resample_int16_mmx2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
need_emms= 1;
|
||
|
} else
|
||
|
#endif
|
||
|
if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
else if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
else if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float *)dst->ch[i], (const float *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
else if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
|
||
|
}
|
||
|
if(need_emms)
|
||
|
emms_c();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int64_t get_delay(struct SwrContext *s, int64_t base){
|
||
|
ResampleContext *c = s->resample;
|
||
|
int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
|
||
|
num <<= c->phase_shift;
|
||
|
num -= c->index;
|
||
|
num *= c->src_incr;
|
||
|
num -= c->frac;
|
||
|
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
|
||
|
}
|
||
|
|
||
|
static int resample_flush(struct SwrContext *s) {
|
||
|
AudioData *a= &s->in_buffer;
|
||
|
int i, j, ret;
|
||
|
if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
|
||
|
return ret;
|
||
|
av_assert0(a->planar);
|
||
|
for(i=0; i<a->ch_count; i++){
|
||
|
for(j=0; j<s->in_buffer_count; j++){
|
||
|
memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
|
||
|
a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
|
||
|
}
|
||
|
}
|
||
|
s->in_buffer_count += (s->in_buffer_count+1)/2;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct Resampler const swri_resampler={
|
||
|
resample_init,
|
||
|
resample_free,
|
||
|
multiple_resample,
|
||
|
resample_flush,
|
||
|
set_compensation,
|
||
|
get_delay,
|
||
|
};
|