kolibrios/contrib/other/sdlquake-1.0.9/r_main.c

1086 lines
24 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_main.c
#include "quakedef.h"
#include "r_local.h"
//define PASSAGES
void *colormap;
vec3_t viewlightvec;
alight_t r_viewlighting = {128, 192, viewlightvec};
float r_time1;
int r_numallocatededges;
qboolean r_drawpolys;
qboolean r_drawculledpolys;
qboolean r_worldpolysbacktofront;
qboolean r_recursiveaffinetriangles = true;
int r_pixbytes = 1;
float r_aliasuvscale = 1.0;
int r_outofsurfaces;
int r_outofedges;
qboolean r_dowarp, r_dowarpold, r_viewchanged;
int numbtofpolys;
btofpoly_t *pbtofpolys;
mvertex_t *r_pcurrentvertbase;
int c_surf;
int r_maxsurfsseen, r_maxedgesseen, r_cnumsurfs;
qboolean r_surfsonstack;
int r_clipflags;
byte *r_warpbuffer;
byte *r_stack_start;
qboolean r_fov_greater_than_90;
//
// view origin
//
vec3_t vup, base_vup;
vec3_t vpn, base_vpn;
vec3_t vright, base_vright;
vec3_t r_origin;
//
// screen size info
//
refdef_t r_refdef;
float xcenter, ycenter;
float xscale, yscale;
float xscaleinv, yscaleinv;
float xscaleshrink, yscaleshrink;
float aliasxscale, aliasyscale, aliasxcenter, aliasycenter;
int screenwidth;
float pixelAspect;
float screenAspect;
float verticalFieldOfView;
float xOrigin, yOrigin;
mplane_t screenedge[4];
//
// refresh flags
//
int r_framecount = 1; // so frame counts initialized to 0 don't match
int r_visframecount;
int d_spanpixcount;
int r_polycount;
int r_drawnpolycount;
int r_wholepolycount;
#define VIEWMODNAME_LENGTH 256
char viewmodname[VIEWMODNAME_LENGTH+1];
int modcount;
int *pfrustum_indexes[4];
int r_frustum_indexes[4*6];
int reinit_surfcache = 1; // if 1, surface cache is currently empty and
// must be reinitialized for current cache size
mleaf_t *r_viewleaf, *r_oldviewleaf;
texture_t *r_notexture_mip;
float r_aliastransition, r_resfudge;
int d_lightstylevalue[256]; // 8.8 fraction of base light value
float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2;
float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2;
void R_MarkLeaves (void);
cvar_t r_draworder = {"r_draworder","0"};
cvar_t r_speeds = {"r_speeds","0"};
cvar_t r_timegraph = {"r_timegraph","0"};
cvar_t r_graphheight = {"r_graphheight","10"};
cvar_t r_clearcolor = {"r_clearcolor","2"};
cvar_t r_waterwarp = {"r_waterwarp","1"};
cvar_t r_fullbright = {"r_fullbright","0"};
cvar_t r_drawentities = {"r_drawentities","1"};
cvar_t r_drawviewmodel = {"r_drawviewmodel","1"};
cvar_t r_aliasstats = {"r_polymodelstats","0"};
cvar_t r_dspeeds = {"r_dspeeds","0"};
cvar_t r_drawflat = {"r_drawflat", "0"};
cvar_t r_ambient = {"r_ambient", "0"};
cvar_t r_reportsurfout = {"r_reportsurfout", "0"};
cvar_t r_maxsurfs = {"r_maxsurfs", "0"};
cvar_t r_numsurfs = {"r_numsurfs", "0"};
cvar_t r_reportedgeout = {"r_reportedgeout", "0"};
cvar_t r_maxedges = {"r_maxedges", "0"};
cvar_t r_numedges = {"r_numedges", "0"};
cvar_t r_aliastransbase = {"r_aliastransbase", "200"};
cvar_t r_aliastransadj = {"r_aliastransadj", "100"};
extern cvar_t scr_fov;
void CreatePassages (void);
void SetVisibilityByPassages (void);
/*
==================
R_InitTextures
==================
*/
void R_InitTextures (void)
{
int x,y, m;
byte *dest;
// create a simple checkerboard texture for the default
r_notexture_mip = Hunk_AllocName (sizeof(texture_t) + 16*16+8*8+4*4+2*2, "notexture");
r_notexture_mip->width = r_notexture_mip->height = 16;
r_notexture_mip->offsets[0] = sizeof(texture_t);
r_notexture_mip->offsets[1] = r_notexture_mip->offsets[0] + 16*16;
r_notexture_mip->offsets[2] = r_notexture_mip->offsets[1] + 8*8;
r_notexture_mip->offsets[3] = r_notexture_mip->offsets[2] + 4*4;
for (m=0 ; m<4 ; m++)
{
dest = (byte *)r_notexture_mip + r_notexture_mip->offsets[m];
for (y=0 ; y< (16>>m) ; y++)
for (x=0 ; x< (16>>m) ; x++)
{
if ( (y< (8>>m) ) ^ (x< (8>>m) ) )
*dest++ = 0;
else
*dest++ = 0xff;
}
}
}
/*
===============
R_Init
===============
*/
void R_Init (void)
{
int dummy;
// get stack position so we can guess if we are going to overflow
r_stack_start = (byte *)&dummy;
R_InitTurb ();
Cmd_AddCommand ("timerefresh", R_TimeRefresh_f);
Cmd_AddCommand ("pointfile", R_ReadPointFile_f);
Cvar_RegisterVariable (&r_draworder);
Cvar_RegisterVariable (&r_speeds);
Cvar_RegisterVariable (&r_timegraph);
Cvar_RegisterVariable (&r_graphheight);
Cvar_RegisterVariable (&r_drawflat);
Cvar_RegisterVariable (&r_ambient);
Cvar_RegisterVariable (&r_clearcolor);
Cvar_RegisterVariable (&r_waterwarp);
Cvar_RegisterVariable (&r_fullbright);
Cvar_RegisterVariable (&r_drawentities);
Cvar_RegisterVariable (&r_drawviewmodel);
Cvar_RegisterVariable (&r_aliasstats);
Cvar_RegisterVariable (&r_dspeeds);
Cvar_RegisterVariable (&r_reportsurfout);
Cvar_RegisterVariable (&r_maxsurfs);
Cvar_RegisterVariable (&r_numsurfs);
Cvar_RegisterVariable (&r_reportedgeout);
Cvar_RegisterVariable (&r_maxedges);
Cvar_RegisterVariable (&r_numedges);
Cvar_RegisterVariable (&r_aliastransbase);
Cvar_RegisterVariable (&r_aliastransadj);
Cvar_SetValue ("r_maxedges", (float)NUMSTACKEDGES);
Cvar_SetValue ("r_maxsurfs", (float)NUMSTACKSURFACES);
view_clipplanes[0].leftedge = true;
view_clipplanes[1].rightedge = true;
view_clipplanes[1].leftedge = view_clipplanes[2].leftedge =
view_clipplanes[3].leftedge = false;
view_clipplanes[0].rightedge = view_clipplanes[2].rightedge =
view_clipplanes[3].rightedge = false;
r_refdef.xOrigin = XCENTERING;
r_refdef.yOrigin = YCENTERING;
R_InitParticles ();
// TODO: collect 386-specific code in one place
#if id386
Sys_MakeCodeWriteable ((long)R_EdgeCodeStart,
(long)R_EdgeCodeEnd - (long)R_EdgeCodeStart);
#endif // id386
D_Init ();
}
/*
===============
R_NewMap
===============
*/
void R_NewMap (void)
{
int i;
// clear out efrags in case the level hasn't been reloaded
// FIXME: is this one short?
for (i=0 ; i<cl.worldmodel->numleafs ; i++)
cl.worldmodel->leafs[i].efrags = NULL;
r_viewleaf = NULL;
R_ClearParticles ();
r_cnumsurfs = r_maxsurfs.value;
if (r_cnumsurfs <= MINSURFACES)
r_cnumsurfs = MINSURFACES;
if (r_cnumsurfs > NUMSTACKSURFACES)
{
surfaces = Hunk_AllocName (r_cnumsurfs * sizeof(surf_t), "surfaces");
surface_p = surfaces;
surf_max = &surfaces[r_cnumsurfs];
r_surfsonstack = false;
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
}
else
{
r_surfsonstack = true;
}
r_maxedgesseen = 0;
r_maxsurfsseen = 0;
r_numallocatededges = r_maxedges.value;
if (r_numallocatededges < MINEDGES)
r_numallocatededges = MINEDGES;
if (r_numallocatededges <= NUMSTACKEDGES)
{
auxedges = NULL;
}
else
{
auxedges = Hunk_AllocName (r_numallocatededges * sizeof(edge_t),
"edges");
}
r_dowarpold = false;
r_viewchanged = false;
#ifdef PASSAGES
CreatePassages ();
#endif
}
/*
===============
R_SetVrect
===============
*/
void R_SetVrect (vrect_t *pvrectin, vrect_t *pvrect, int lineadj)
{
int h;
float size;
size = scr_viewsize.value > 100 ? 100 : scr_viewsize.value;
if (cl.intermission)
{
size = 100;
lineadj = 0;
}
size /= 100;
h = pvrectin->height - lineadj;
pvrect->width = pvrectin->width * size;
if (pvrect->width < 96)
{
size = 96.0 / pvrectin->width;
pvrect->width = 96; // min for icons
}
pvrect->width &= ~7;
pvrect->height = pvrectin->height * size;
if (pvrect->height > pvrectin->height - lineadj)
pvrect->height = pvrectin->height - lineadj;
pvrect->height &= ~1;
pvrect->x = (pvrectin->width - pvrect->width)/2;
pvrect->y = (h - pvrect->height)/2;
{
if (lcd_x.value)
{
pvrect->y >>= 1;
pvrect->height >>= 1;
}
}
}
/*
===============
R_ViewChanged
Called every time the vid structure or r_refdef changes.
Guaranteed to be called before the first refresh
===============
*/
void R_ViewChanged (vrect_t *pvrect, int lineadj, float aspect)
{
int i;
float res_scale;
r_viewchanged = true;
R_SetVrect (pvrect, &r_refdef.vrect, lineadj);
r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x/360*M_PI);
r_refdef.fvrectx = (float)r_refdef.vrect.x;
r_refdef.fvrectx_adj = (float)r_refdef.vrect.x - 0.5;
r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x<<20) + (1<<19) - 1;
r_refdef.fvrecty = (float)r_refdef.vrect.y;
r_refdef.fvrecty_adj = (float)r_refdef.vrect.y - 0.5;
r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width;
r_refdef.vrectright_adj_shift20 = (r_refdef.vrectright<<20) + (1<<19) - 1;
r_refdef.fvrectright = (float)r_refdef.vrectright;
r_refdef.fvrectright_adj = (float)r_refdef.vrectright - 0.5;
r_refdef.vrectrightedge = (float)r_refdef.vrectright - 0.99;
r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height;
r_refdef.fvrectbottom = (float)r_refdef.vrectbottom;
r_refdef.fvrectbottom_adj = (float)r_refdef.vrectbottom - 0.5;
r_refdef.aliasvrect.x = (int)(r_refdef.vrect.x * r_aliasuvscale);
r_refdef.aliasvrect.y = (int)(r_refdef.vrect.y * r_aliasuvscale);
r_refdef.aliasvrect.width = (int)(r_refdef.vrect.width * r_aliasuvscale);
r_refdef.aliasvrect.height = (int)(r_refdef.vrect.height * r_aliasuvscale);
r_refdef.aliasvrectright = r_refdef.aliasvrect.x +
r_refdef.aliasvrect.width;
r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y +
r_refdef.aliasvrect.height;
pixelAspect = aspect;
xOrigin = r_refdef.xOrigin;
yOrigin = r_refdef.yOrigin;
screenAspect = r_refdef.vrect.width*pixelAspect /
r_refdef.vrect.height;
// 320*200 1.0 pixelAspect = 1.6 screenAspect
// 320*240 1.0 pixelAspect = 1.3333 screenAspect
// proper 320*200 pixelAspect = 0.8333333
verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect;
// values for perspective projection
// if math were exact, the values would range from 0.5 to to range+0.5
// hopefully they wll be in the 0.000001 to range+.999999 and truncate
// the polygon rasterization will never render in the first row or column
// but will definately render in the [range] row and column, so adjust the
// buffer origin to get an exact edge to edge fill
xcenter = ((float)r_refdef.vrect.width * XCENTERING) +
r_refdef.vrect.x - 0.5;
aliasxcenter = xcenter * r_aliasuvscale;
ycenter = ((float)r_refdef.vrect.height * YCENTERING) +
r_refdef.vrect.y - 0.5;
aliasycenter = ycenter * r_aliasuvscale;
xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView;
aliasxscale = xscale * r_aliasuvscale;
xscaleinv = 1.0 / xscale;
yscale = xscale * pixelAspect;
aliasyscale = yscale * r_aliasuvscale;
yscaleinv = 1.0 / yscale;
xscaleshrink = (r_refdef.vrect.width-6)/r_refdef.horizontalFieldOfView;
yscaleshrink = xscaleshrink*pixelAspect;
// left side clip
screenedge[0].normal[0] = -1.0 / (xOrigin*r_refdef.horizontalFieldOfView);
screenedge[0].normal[1] = 0;
screenedge[0].normal[2] = 1;
screenedge[0].type = PLANE_ANYZ;
// right side clip
screenedge[1].normal[0] =
1.0 / ((1.0-xOrigin)*r_refdef.horizontalFieldOfView);
screenedge[1].normal[1] = 0;
screenedge[1].normal[2] = 1;
screenedge[1].type = PLANE_ANYZ;
// top side clip
screenedge[2].normal[0] = 0;
screenedge[2].normal[1] = -1.0 / (yOrigin*verticalFieldOfView);
screenedge[2].normal[2] = 1;
screenedge[2].type = PLANE_ANYZ;
// bottom side clip
screenedge[3].normal[0] = 0;
screenedge[3].normal[1] = 1.0 / ((1.0-yOrigin)*verticalFieldOfView);
screenedge[3].normal[2] = 1;
screenedge[3].type = PLANE_ANYZ;
for (i=0 ; i<4 ; i++)
VectorNormalize (screenedge[i].normal);
res_scale = sqrt ((double)(r_refdef.vrect.width * r_refdef.vrect.height) /
(320.0 * 152.0)) *
(2.0 / r_refdef.horizontalFieldOfView);
r_aliastransition = r_aliastransbase.value * res_scale;
r_resfudge = r_aliastransadj.value * res_scale;
if (scr_fov.value <= 90.0)
r_fov_greater_than_90 = false;
else
r_fov_greater_than_90 = true;
// TODO: collect 386-specific code in one place
#if id386
if (r_pixbytes == 1)
{
Sys_MakeCodeWriteable ((long)R_Surf8Start,
(long)R_Surf8End - (long)R_Surf8Start);
colormap = vid.colormap;
R_Surf8Patch ();
}
else
{
Sys_MakeCodeWriteable ((long)R_Surf16Start,
(long)R_Surf16End - (long)R_Surf16Start);
colormap = vid.colormap16;
R_Surf16Patch ();
}
#endif // id386
D_ViewChanged ();
}
/*
===============
R_MarkLeaves
===============
*/
void R_MarkLeaves (void)
{
byte *vis;
mnode_t *node;
int i;
if (r_oldviewleaf == r_viewleaf)
return;
r_visframecount++;
r_oldviewleaf = r_viewleaf;
vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel);
for (i=0 ; i<cl.worldmodel->numleafs ; i++)
{
if (vis[i>>3] & (1<<(i&7)))
{
node = (mnode_t *)&cl.worldmodel->leafs[i+1];
do
{
if (node->visframe == r_visframecount)
break;
node->visframe = r_visframecount;
node = node->parent;
} while (node);
}
}
}
/*
=============
R_DrawEntitiesOnList
=============
*/
void R_DrawEntitiesOnList (void)
{
int i, j;
int lnum;
alight_t lighting;
// FIXME: remove and do real lighting
float lightvec[3] = {-1, 0, 0};
vec3_t dist;
float add;
if (!r_drawentities.value)
return;
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = cl_visedicts[i];
if (currententity == &cl_entities[cl.viewentity])
continue; // don't draw the player
switch (currententity->model->type)
{
case mod_sprite:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
R_DrawSprite ();
break;
case mod_alias:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
// see if the bounding box lets us trivially reject, also sets
// trivial accept status
if (R_AliasCheckBBox ())
{
j = R_LightPoint (currententity->origin);
lighting.ambientlight = j;
lighting.shadelight = j;
lighting.plightvec = lightvec;
for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++)
{
if (cl_dlights[lnum].die >= cl.time)
{
VectorSubtract (currententity->origin,
cl_dlights[lnum].origin,
dist);
add = cl_dlights[lnum].radius - Length(dist);
if (add > 0)
lighting.ambientlight += add;
}
}
// clamp lighting so it doesn't overbright as much
if (lighting.ambientlight > 128)
lighting.ambientlight = 128;
if (lighting.ambientlight + lighting.shadelight > 192)
lighting.shadelight = 192 - lighting.ambientlight;
R_AliasDrawModel (&lighting);
}
break;
default:
break;
}
}
}
/*
=============
R_DrawViewModel
=============
*/
void R_DrawViewModel (void)
{
// FIXME: remove and do real lighting
float lightvec[3] = {-1, 0, 0};
int j;
int lnum;
vec3_t dist;
float add;
dlight_t *dl;
if (!r_drawviewmodel.value || r_fov_greater_than_90)
return;
if (cl.items & IT_INVISIBILITY)
return;
if (cl.stats[STAT_HEALTH] <= 0)
return;
currententity = &cl.viewent;
if (!currententity->model)
return;
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
VectorCopy (vup, viewlightvec);
VectorInverse (viewlightvec);
j = R_LightPoint (currententity->origin);
if (j < 24)
j = 24; // allways give some light on gun
r_viewlighting.ambientlight = j;
r_viewlighting.shadelight = j;
// add dynamic lights
for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++)
{
dl = &cl_dlights[lnum];
if (!dl->radius)
continue;
if (!dl->radius)
continue;
if (dl->die < cl.time)
continue;
VectorSubtract (currententity->origin, dl->origin, dist);
add = dl->radius - Length(dist);
if (add > 0)
r_viewlighting.ambientlight += add;
}
// clamp lighting so it doesn't overbright as much
if (r_viewlighting.ambientlight > 128)
r_viewlighting.ambientlight = 128;
if (r_viewlighting.ambientlight + r_viewlighting.shadelight > 192)
r_viewlighting.shadelight = 192 - r_viewlighting.ambientlight;
r_viewlighting.plightvec = lightvec;
#ifdef QUAKE2
cl.light_level = r_viewlighting.ambientlight;
#endif
R_AliasDrawModel (&r_viewlighting);
}
/*
=============
R_BmodelCheckBBox
=============
*/
int R_BmodelCheckBBox (model_t *clmodel, float *minmaxs)
{
int i, *pindex, clipflags;
vec3_t acceptpt, rejectpt;
double d;
clipflags = 0;
if (currententity->angles[0] || currententity->angles[1]
|| currententity->angles[2])
{
for (i=0 ; i<4 ; i++)
{
d = DotProduct (currententity->origin, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= -clmodel->radius)
return BMODEL_FULLY_CLIPPED;
if (d <= clmodel->radius)
clipflags |= (1<<i);
}
}
else
{
for (i=0 ; i<4 ; i++)
{
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the sign bit
// of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = minmaxs[pindex[0]];
rejectpt[1] = minmaxs[pindex[1]];
rejectpt[2] = minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return BMODEL_FULLY_CLIPPED;
acceptpt[0] = minmaxs[pindex[3+0]];
acceptpt[1] = minmaxs[pindex[3+1]];
acceptpt[2] = minmaxs[pindex[3+2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
clipflags |= (1<<i);
}
}
return clipflags;
}
/*
=============
R_DrawBEntitiesOnList
=============
*/
void R_DrawBEntitiesOnList (void)
{
int i, j, k, clipflags;
vec3_t oldorigin;
model_t *clmodel;
float minmaxs[6];
if (!r_drawentities.value)
return;
VectorCopy (modelorg, oldorigin);
insubmodel = true;
r_dlightframecount = r_framecount;
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = cl_visedicts[i];
switch (currententity->model->type)
{
case mod_brush:
clmodel = currententity->model;
// see if the bounding box lets us trivially reject, also sets
// trivial accept status
for (j=0 ; j<3 ; j++)
{
minmaxs[j] = currententity->origin[j] +
clmodel->mins[j];
minmaxs[3+j] = currententity->origin[j] +
clmodel->maxs[j];
}
clipflags = R_BmodelCheckBBox (clmodel, minmaxs);
if (clipflags != BMODEL_FULLY_CLIPPED)
{
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
// FIXME: is this needed?
VectorCopy (modelorg, r_worldmodelorg);
r_pcurrentvertbase = clmodel->vertexes;
// FIXME: stop transforming twice
R_RotateBmodel ();
// calculate dynamic lighting for bmodel if it's not an
// instanced model
if (clmodel->firstmodelsurface != 0)
{
for (k=0 ; k<MAX_DLIGHTS ; k++)
{
if ((cl_dlights[k].die < cl.time) ||
(!cl_dlights[k].radius))
{
continue;
}
R_MarkLights (&cl_dlights[k], 1<<k,
clmodel->nodes + clmodel->hulls[0].firstclipnode);
}
}
// if the driver wants polygons, deliver those. Z-buffering is on
// at this point, so no clipping to the world tree is needed, just
// frustum clipping
if (r_drawpolys | r_drawculledpolys)
{
R_ZDrawSubmodelPolys (clmodel);
}
else
{
r_pefragtopnode = NULL;
for (j=0 ; j<3 ; j++)
{
r_emins[j] = minmaxs[j];
r_emaxs[j] = minmaxs[3+j];
}
R_SplitEntityOnNode2 (cl.worldmodel->nodes);
if (r_pefragtopnode)
{
currententity->topnode = r_pefragtopnode;
if (r_pefragtopnode->contents >= 0)
{
// not a leaf; has to be clipped to the world BSP
r_clipflags = clipflags;
R_DrawSolidClippedSubmodelPolygons (clmodel);
}
else
{
// falls entirely in one leaf, so we just put all the
// edges in the edge list and let 1/z sorting handle
// drawing order
R_DrawSubmodelPolygons (clmodel, clipflags);
}
currententity->topnode = NULL;
}
}
// put back world rotation and frustum clipping
// FIXME: R_RotateBmodel should just work off base_vxx
VectorCopy (base_vpn, vpn);
VectorCopy (base_vup, vup);
VectorCopy (base_vright, vright);
VectorCopy (base_modelorg, modelorg);
VectorCopy (oldorigin, modelorg);
R_TransformFrustum ();
}
break;
default:
break;
}
}
insubmodel = false;
}
/*
================
R_EdgeDrawing
================
*/
void R_EdgeDrawing (void)
{
edge_t ledges[NUMSTACKEDGES +
((CACHE_SIZE - 1) / sizeof(edge_t)) + 1];
surf_t lsurfs[NUMSTACKSURFACES +
((CACHE_SIZE - 1) / sizeof(surf_t)) + 1];
if (auxedges)
{
r_edges = auxedges;
}
else
{
r_edges = (edge_t *)
(((long)&ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
}
if (r_surfsonstack)
{
surfaces = (surf_t *)
(((long)&lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
surf_max = &surfaces[r_cnumsurfs];
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
}
R_BeginEdgeFrame ();
if (r_dspeeds.value)
{
rw_time1 = Sys_FloatTime ();
}
R_RenderWorld ();
if (r_drawculledpolys)
R_ScanEdges ();
// only the world can be drawn back to front with no z reads or compares, just
// z writes, so have the driver turn z compares on now
D_TurnZOn ();
if (r_dspeeds.value)
{
rw_time2 = Sys_FloatTime ();
db_time1 = rw_time2;
}
R_DrawBEntitiesOnList ();
if (r_dspeeds.value)
{
db_time2 = Sys_FloatTime ();
se_time1 = db_time2;
}
if (!r_dspeeds.value)
{
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (!(r_drawpolys | r_drawculledpolys))
R_ScanEdges ();
}
/*
================
R_RenderView
r_refdef must be set before the first call
================
*/
void R_RenderView_ (void)
{
byte warpbuffer[WARP_WIDTH * WARP_HEIGHT];
r_warpbuffer = warpbuffer;
if (r_timegraph.value || r_speeds.value || r_dspeeds.value)
r_time1 = Sys_FloatTime ();
R_SetupFrame ();
#ifdef PASSAGES
SetVisibilityByPassages ();
#else
R_MarkLeaves (); // done here so we know if we're in water
#endif
// make FDIV fast. This reduces timing precision after we've been running for a
// while, so we don't do it globally. This also sets chop mode, and we do it
// here so that setup stuff like the refresh area calculations match what's
// done in screen.c
Sys_LowFPPrecision ();
if (!cl_entities[0].model || !cl.worldmodel)
Sys_Error ("R_RenderView: NULL worldmodel");
if (!r_dspeeds.value)
{
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
R_EdgeDrawing ();
if (!r_dspeeds.value)
{
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (r_dspeeds.value)
{
se_time2 = Sys_FloatTime ();
de_time1 = se_time2;
}
R_DrawEntitiesOnList ();
if (r_dspeeds.value)
{
de_time2 = Sys_FloatTime ();
dv_time1 = de_time2;
}
R_DrawViewModel ();
if (r_dspeeds.value)
{
dv_time2 = Sys_FloatTime ();
dp_time1 = Sys_FloatTime ();
}
R_DrawParticles ();
if (r_dspeeds.value)
dp_time2 = Sys_FloatTime ();
if (r_dowarp)
D_WarpScreen ();
V_SetContentsColor (r_viewleaf->contents);
if (r_timegraph.value)
R_TimeGraph ();
if (r_aliasstats.value)
R_PrintAliasStats ();
if (r_speeds.value)
R_PrintTimes ();
if (r_dspeeds.value)
R_PrintDSpeeds ();
if (r_reportsurfout.value && r_outofsurfaces)
Con_Printf ("Short %d surfaces\n", r_outofsurfaces);
if (r_reportedgeout.value && r_outofedges)
Con_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3);
// back to high floating-point precision
Sys_HighFPPrecision ();
}
void R_RenderView (void)
{
int dummy;
int delta;
delta = (byte *)&dummy - r_stack_start;
if (delta < -10000 || delta > 10000)
Sys_Error ("R_RenderView: called without enough stack");
if ( Hunk_LowMark() & 3 )
Sys_Error ("Hunk is missaligned");
if ( (long)(&dummy) & 3 )
Sys_Error ("Stack is missaligned");
if ( (long)(&r_warpbuffer) & 3 )
Sys_Error ("Globals are missaligned");
R_RenderView_ ();
}
/*
================
R_InitTurb
================
*/
void R_InitTurb (void)
{
int i;
for (i=0 ; i<(SIN_BUFFER_SIZE) ; i++)
{
sintable[i] = AMP + sin(i*3.14159*2/CYCLE)*AMP;
intsintable[i] = AMP2 + sin(i*3.14159*2/CYCLE)*AMP2; // AMP2, not 20
}
}