; Code for UHCI controllers. ; Note: it should be moved to an external driver, ; it was convenient to have this code compiled into the kernel during initial ; development, but there are no reasons to keep it here. ; ============================================================================= ; ================================= Constants ================================= ; ============================================================================= ; UHCI register declarations UhciCommandReg = 0 UhciStatusReg = 2 UhciInterruptReg = 4 UhciFrameNumberReg = 6 UhciBaseAddressReg = 8 UhciSOFModifyReg = 0Ch UhciPort1StatusReg = 10h ; possible PIDs for USB data transfers USB_PID_SETUP = 2Dh USB_PID_IN = 69h USB_PID_OUT = 0E1h ; UHCI does not support an interrupt on root hub status change. We must poll ; the controller periodically. This is the period in timer ticks (10ms). ; We use the value 100 ticks: it is small enough to be responsive to connect ; events and large enough to not load CPU too often. UHCI_POLL_INTERVAL = 100 ; the following constant is an invalid encoding for length fields in ; uhci_gtd; it is used to check whether an inactive TD has been ; completed (actual length of the transfer is valid) or not processed at all ; (actual length of the transfer is UHCI_INVALID_LENGTH). ; Valid values are 0-4FFh and 7FFh. We use 700h as an invalid value. UHCI_INVALID_LENGTH = 700h ; ============================================================================= ; ================================ Structures ================================= ; ============================================================================= ; UHCI-specific part of a pipe descriptor. ; * The structure corresponds to the Queue Head aka QH from the UHCI ; specification with some additional fields. ; * The hardware uses first two fields (8 bytes). Next two fields are used for ; software book-keeping. ; * The hardware requires 16-bytes alignment of the hardware part. ; Since the allocator (usb_allocate_common) allocates memory sequentially ; from page start (aligned on 0x1000 bytes), block size for the allocator ; must be divisible by 16; usb1_allocate_endpoint ensures this. struct uhci_pipe NextQH dd ? ; 1. First bit (bit 0) is Terminate bit. 1 = there is no next QH. ; 2. Next bit (bit 1) is QH/TD select bit. 1 = NextQH points to QH. ; 3. Next two bits (bits 2-3) are reserved. ; 4. With masked 4 lower bits, this is the physical address of the next QH in ; the QH list. ; See also the description before NextVirt field of the usb_pipe ; structure. Additionally to that description, the following is specific for ; the UHCI controller: ; * n=10, N=1024. However, this number is quite large. ; * 1024 lists are used only for individual transfer descriptors for ; Isochronous endpoints. This means that the software can sleep up to 1024 ms ; before initiating the next portion of a large isochronous transfer, which ; is a sufficiently large value. ; * We use the 32ms upper limit for interrupt endpoint polling interval. ; This seems to be a reasonable value. ; * The "next" list for last Periodic list is the Control list. ; * The "next" list for Control list is Bulk list and the "next" ; list for Bulk list is Control list. This loop is used for bandwidth ; reclamation: the hardware traverses lists until end-of-frame. HeadTD dd ? ; 1. First bit (bit 0) is Terminate bit. 1 = there is no TDs in this QH. ; 2. Next bit (bit 1) is QH/TD select bit. 1 = HeadTD points to QH. ; 3. Next two bits (bits 2-3) are reserved. ; 4. With masked 4 lower bits, this is the physical address of the first TD in ; the TD queue for this QH. Token dd ? ; This field is a template for uhci_gtd.Token field in transfer ; descriptors. The meaning of individual bits is the same as for ; uhci_gtd.Token, except that PID bitfield is always ; USB_PID_SETUP/IN/OUT for control/in/out pipes, ; the MaximumLength bitfield encodes maximum packet size, ; the Reserved bit 20 is LowSpeedDevice bit. ErrorTD dd ? ; Usually NULL. If nonzero, it is a pointer to descriptor which was error'd ; and should be freed sometime in the future (the hardware could still use it). ends ; This structure describes the static head of every list of pipes. ; The hardware requires 16-bytes alignment of this structure. ; All instances of this structure are located sequentially in uhci_controller, ; uhci_controller is page-aligned, so it is sufficient to make this structure ; 16-bytes aligned and verify that the first instance is 16-bytes aligned ; inside uhci_controller. struct uhci_static_ep NextQH dd ? ; Same as uhci_pipe.NextQH. HeadTD dd ? ; Same as uhci_pipe.HeadTD. NextList dd ? ; Virtual address of the next list. dd ? ; Not used. SoftwarePart rd sizeof.usb_static_ep/4 ; Common part for all controllers, described by usb_static_ep structure. dd ? ; Padding for 16-byte alignment. ends if sizeof.uhci_static_ep mod 16 .err uhci_static_ep must be 16-bytes aligned end if ; UHCI-specific part of controller data. ; * The structure includes two parts, the hardware part and the software part. ; * The hardware part consists of first 4096 bytes and corresponds to ; the Frame List from UHCI specification. ; * The hardware requires page-alignment of the hardware part, so ; the entire descriptor must be page-aligned. ; This structure is allocated with kernel_alloc (see usb_init_controller), ; this gives page-aligned data. struct uhci_controller ; ------------------------------ hardware fields ------------------------------ FrameList rd 1024 ; Entry n corresponds to the head of the frame list to be executed in ; the frames n,n+1024,n+2048,n+3072,... ; The first bit of each entry is Terminate bit, 1 = the frame is empty. ; The second bit of each entry is QH/TD select bit, 1 = the entry points to ; QH, 0 = to TD. ; With masked 2 lower bits, the entry is a physical address of the first QH/TD ; to be executed. ; ------------------------------ software fields ------------------------------ ; Every list has the static head, which is an always empty QH. ; The following fields are static heads, one per list: ; 32+16+8+4+2+1 = 63 for Periodic lists, 1 for Control list and 1 for Bulk list. IntEDs uhci_static_ep rb 62 * sizeof.uhci_static_ep ControlED uhci_static_ep BulkED uhci_static_ep IOBase dd ? ; Base port in I/O space for UHCI controller. ; UHCI register UhciXxx is addressed as in/out to IOBase + UhciXxx, ; see declarations in the beginning of this source. DeferredActions dd ? ; Bitmask of bits from UhciStatusReg which need to be processed ; by uhci_process_deferred. Bit 0 = a transaction with IOC bit ; has completed. Bit 1 = a transaction has failed. Set by uhci_irq, ; cleared by uhci_process_deferred. LastPollTime dd ? ; See the comment before UHCI_POLL_INTERVAL. This variable keeps the ; last time, in timer ticks, when the polling was done. ends if uhci_controller.IntEDs mod 16 .err Static endpoint descriptors must be 16-bytes aligned inside uhci_controller end if ; UHCI general transfer descriptor. ; * The structure describes non-Isochronous data transfers ; for the UHCI controller. ; * The structure includes two parts, the hardware part and the software part. ; * The hardware part consists of first 16 bytes and corresponds to the ; Transfer Descriptor aka TD from UHCI specification. ; * The hardware requires 16-bytes alignment of the hardware part, so ; the entire descriptor must be 16-bytes aligned. Since the allocator ; (uhci_allocate_common) allocates memory sequentially from page start ; (aligned on 0x1000 bytes), block size for the allocator must be ; divisible by 16; usb1_allocate_general_td ensures this. struct uhci_gtd NextTD dd ? ; 1. First bit (bit 0) is Terminate bit. 1 = there is no next TD. ; 2. Next bit (bit 1) is QH/TD select bit. 1 = NextTD points to QH. ; This bit is always set to 0 in the implementation. ; 3. Next bit (bit 2) is Depth/Breadth select bit. 1 = the controller should ; proceed to the NextTD after this TD is complete. 0 = the controller ; should proceed to the next endpoint after this TD is complete. ; The implementation sets this bit to 0 for final stages of all transactions ; and to 1 for other stages. ; 4. Next bit (bit 3) is reserved and must be zero. ; 5. With masked 4 lower bits, this is the physical address of the next TD ; in the TD list. ControlStatus dd ? ; 1. Lower 11 bits (bits 0-10) are ActLen. This is written by the controller ; at the conclusion of a USB transaction to indicate the actual number of ; bytes that were transferred minus 1. ; 2. Next 6 bits (bits 11-16) are reserved. ; 3. Next bit (bit 17) signals Bitstuff error. ; 4. Next bit (bit 18) signals CRC/Timeout error. ; 5. Next bit (bit 19) signals NAK receive. ; 6. Next bit (bit 20) signals Babble error. ; 7. Next bit (bit 21) signals Data Buffer error. ; 8. Next bit (bit 22) signals Stall error. ; 9. Next bit (bit 23) is Active field. 1 = this TD should be processed. ; 10. Next bit (bit 24) is InterruptOnComplete bit. 1 = the controller should ; issue an interrupt on completion of the frame in which this TD is ; executed. ; 11. Next bit (bit 25) is IsochronousSelect bit. 1 = this TD is isochronous. ; 12. Next bit (bit 26) is LowSpeedDevice bit. 1 = this TD is for low-speed. ; 13. Next two bits (bits 27-28) are ErrorCounter field. This field is ; decremented by the controller on every non-fatal error with this TD. ; Babble and Stall are considered fatal errors and immediately deactivate ; the TD without decrementing this field. 0 = no error limit, ; n = deactivate the TD after n errors. ; 14. Next bit (bit 29) is ShortPacketDetect bit. 1 = short packet is an error. ; Note: the specification defines this bit as input for the controller, ; but does not specify the value written by controller. ; Some controllers (e.g. Intel) keep the value, some controllers (e.g. VIA) ; set the value to whether a short packet was actually detected ; (or something like that). ; Thus, we duplicate this bit as bit 0 of OrigBufferInfo. ; 15. Upper two bits (bits 30-31) are reserved. Token dd ? ; 1. Lower 8 bits (bits 0-7) are PID, one of USB_PID_*. ; 2. Next 7 bits (bits 8-14) are DeviceAddress field. This is the address of ; the target device on the USB bus. ; 3. Next 4 bits (bits 15-18) are Endpoint field. This is the target endpoint ; number. ; 4. Next bit (bit 19) is DataToggle bit. n = issue/expect DATAn token. ; 5. Next bit (bit 20) is reserved. ; 6. Upper 11 bits (bits 21-31) are MaximumLength field. This field specifies ; the maximum number of data bytes for the transfer minus 1 byte. Null data ; packet is encoded as 0x7FF, maximum possible non-null data packet is 1280 ; bytes, encoded as 0x4FF. Buffer dd ? ; Physical address of the data buffer for this TD. OrigBufferInfo dd ? ; Usually NULL. If the original buffer crosses a page boundary, this is a ; pointer to the structure uhci_original_buffer for this request. ; bit 0: 1 = short packet is NOT allowed ; (before the TD is processed, it is the copy of bit 29 of ControlStatus; ; some controllers modify that bit, so we need a copy in a safe place) ends ; UHCI requires that the entire transfer buffer should be on one page. ; If the actual buffer crosses page boundary, uhci_alloc_packet ; allocates additional memory for buffer for hardware. ; This structure describes correspondence between two buffers. struct uhci_original_buffer OrigBuffer dd ? UsedBuffer dd ? ends ; Description of UHCI-specific data and functions for ; controller-independent code. ; Implements the structure usb_hardware_func from hccommon.inc for UHCI. iglobal align 4 uhci_hardware_func: dd 'UHCI' dd sizeof.uhci_controller dd uhci_init dd uhci_process_deferred dd uhci_set_device_address dd uhci_get_device_address dd uhci_port_disable dd uhci_new_port.reset dd uhci_set_endpoint_packet_size dd usb1_allocate_endpoint dd uhci_free_pipe dd uhci_init_pipe dd uhci_unlink_pipe dd usb1_allocate_general_td dd uhci_free_td dd uhci_alloc_transfer dd uhci_insert_transfer dd uhci_new_device endg ; ============================================================================= ; =================================== Code ==================================== ; ============================================================================= ; Controller-specific initialization function. ; Called from usb_init_controller. Initializes the hardware and ; UHCI-specific parts of software structures. ; eax = pointer to uhci_controller to be initialized ; [ebp-4] = pcidevice proc uhci_init ; inherit some variables from the parent (usb_init_controller) .devfn equ ebp - 4 .bus equ ebp - 3 ; 1. Store pointer to uhci_controller for further use. push eax mov edi, eax mov esi, eax ; 2. Initialize uhci_controller.FrameList. ; Note that FrameList is located in the beginning of uhci_controller, ; so esi and edi now point to uhci_controller.FrameList. ; First 32 entries of FrameList contain physical addresses ; of first 32 Periodic static heads, further entries duplicate these. ; See the description of structures for full info. ; Note that all static heads fit in one page, so one call to ; get_phys_addr is sufficient. if (uhci_controller.IntEDs / 0x1000) <> (uhci_controller.BulkED / 0x1000) .err assertion failed end if ; 2a. Get physical address of first static head. ; Note that 1) it is located in the beginning of a page ; and 2) all other static heads fit in the same page, ; so one call to get_phys_addr without correction of lower 12 bits ; is sufficient. if (uhci_controller.IntEDs mod 0x1000) <> 0 .err assertion failed end if add eax, uhci_controller.IntEDs call get_phys_addr ; 2b. Fill first 32 entries. inc eax inc eax ; set QH bit for uhci_pipe.NextQH movi ecx, 32 mov edx, ecx @@: stosd add eax, sizeof.uhci_static_ep loop @b ; 2c. Fill the rest entries. mov ecx, 1024 - 32 rep movsd ; 3. Initialize static heads uhci_controller.*ED. ; Use the loop over groups: first group consists of first 32 Periodic ; descriptors, next group consists of next 16 Periodic descriptors, ; ..., last group consists of the last Periodic descriptor. ; 3a. Prepare for the loop. ; make esi point to the second group, other registers are already set. add esi, 32*4 + 32*sizeof.uhci_static_ep ; 3b. Loop over groups. On every iteration: ; edx = size of group, edi = pointer to the current group, ; esi = pointer to the next group, eax = physical address of the next group. .init_static_eds: ; 3c. Get the size of next group. shr edx, 1 ; 3d. Exit the loop if there is no next group. jz .init_static_eds_done ; 3e. Initialize the first half of the current group. ; Advance edi to the second half. push eax esi call uhci_init_static_ep_group pop esi eax ; 3f. Initialize the second half of the current group ; with the same values. ; Advance edi to the next group, esi/eax to the next of the next group. call uhci_init_static_ep_group jmp .init_static_eds .init_static_eds_done: ; 3g. Initialize the last static head. xor esi, esi call uhci_init_static_endpoint ; 3i. Initialize the head of Control list. add eax, sizeof.uhci_static_ep call uhci_init_static_endpoint ; 3j. Initialize the head of Bulk list. sub eax, sizeof.uhci_static_ep call uhci_init_static_endpoint ; 4. Get I/O base address and size from PCI bus. ; 4a. Read&save PCI command state. mov bh, [.devfn] mov ch, [.bus] mov cl, 1 mov eax, ecx mov bl, 4 call pci_read_reg push eax ; 4b. Disable IO access. and al, not 1 push ecx xchg eax, ecx call pci_write_reg pop ecx ; 4c. Read&save IO base address. mov eax, ecx mov bl, 20h call pci_read_reg and al, not 3 xchg eax, edi ; now edi = IO base ; 4d. Write 0xffff to IO base address. push ecx xchg eax, ecx or ecx, -1 call pci_write_reg pop ecx ; 4e. Read IO base address. mov eax, ecx call pci_read_reg and al, not 3 cwde not eax inc eax xchg eax, esi ; now esi = IO size ; 4f. Restore IO base address. xchg eax, ecx mov ecx, edi push eax call pci_write_reg pop eax ; 4g. Restore PCI command state and enable io & bus master access. pop ecx or ecx, 5 mov bl, 4 push eax call pci_write_reg pop eax ; 5. Reset the controller. ; 5e. Host reset. mov edx, edi mov ax, 2 out dx, ax ; 5f. Wait up to 10ms. movi ecx, 10 @@: push esi movi esi, 1 call delay_ms pop esi in ax, dx test al, 2 loopnz @b jz @f dbgstr 'UHCI controller reset timeout' jmp .fail @@: if 0 ; emergency variant for tests - always wait 10 ms ; wait 10 ms push esi movi esi, 10 call delay_ms pop esi ; clear reset signal xor eax, eax out dx, ax end if .resetok: ; 6. Get number of ports & disable all ports. add esi, edi lea edx, [edi+UhciPort1StatusReg] .scanports: cmp edx, esi jae .doneports in ax, dx cmp ax, 0xFFFF jz .doneports test al, al jns .doneports xor eax, eax out dx, ax inc edx inc edx jmp .scanports .doneports: lea esi, [edx-UhciPort1StatusReg] sub esi, edi shr esi, 1 ; esi = number of ports jnz @f dbgstr 'error: no ports on UHCI controller' jmp .fail @@: ; 7. Setup the rest of uhci_controller. xchg esi, [esp] ; restore the pointer to uhci_controller from the step 1 add esi, sizeof.uhci_controller pop [esi+usb_controller.NumPorts] DEBUGF 1,'K : UHCI controller at %x:%x with %d ports initialized\n',[.bus]:2,[.devfn]:2,[esi+usb_controller.NumPorts] mov [esi+uhci_controller.IOBase-sizeof.uhci_controller], edi mov eax, [timer_ticks] mov [esi+uhci_controller.LastPollTime-sizeof.uhci_controller], eax ; 8. Hook interrupt. mov ah, [.bus] mov al, 0 mov bh, [.devfn] mov bl, 3Ch call pci_read_reg ; al = IRQ ; DEBUGF 1,'K : UHCI %x: io=%x, irq=%x\n',esi,edi,al movzx eax, al stdcall attach_int_handler, eax, uhci_irq, esi ; 9. Setup controller registers. xor eax, eax mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] ; 9a. UhciStatusReg := 3Fh: clear all status bits ; (for this register 1 clears the corresponding bit, 0 does not change it). inc edx inc edx ; UhciStatusReg == 2 mov al, 3Fh out dx, ax ; 9b. UhciInterruptReg := 0Dh. inc edx inc edx ; UhciInterruptReg == 4 mov al, 0Dh out dx, ax ; 9c. UhciFrameNumberReg := 0. inc edx inc edx ; UhciFrameNumberReg == 6 mov al, 0 out dx, ax ; 9d. UhciBaseAddressReg := physical address of uhci_controller. inc edx inc edx ; UhciBaseAddressReg == 8 lea eax, [esi-sizeof.uhci_controller] call get_phys_addr out dx, eax ; 9e. UhciCommandReg := Run + Configured + (MaxPacket is 64 bytes) sub edx, UhciBaseAddressReg ; UhciCommandReg == 0 mov ax, 0C1h ; Run, Configured, MaxPacket = 64b out dx, ax ; 10. Do initial scan of existing devices. call uhci_poll_roothub ; 11. Return pointer to usb_controller. xchg eax, esi ret .fail: ; On error, pop the pointer saved at step 1 and return zero. ; Note that the main code branch restores the stack at step 7 and never fails ; after step 7. pop ecx xor eax, eax ret endp ; Controller-specific pre-initialization function: take ownership from BIOS. ; UHCI has no mechanism to ask the owner politely to release ownership, ; so do it in inpolite way, preventing controller from any SMI activity. proc uhci_kickoff_bios ; 1. Get the I/O address. mov ah, [esi+PCIDEV.bus] mov al, 1 mov bh, [esi+PCIDEV.devfn] mov bl, 20h call pci_read_reg and eax, 0xFFFC xchg eax, edx ; 2. Stop the controller and disable all interrupts. in ax, dx and al, not 1 out dx, ax add edx, UhciInterruptReg xor eax, eax out dx, ax ; 3. Disable all bits for SMI routing, clear SMI routing status, ; enable master interrupt bit. mov ah, [esi+PCIDEV.bus] mov al, 1 mov bl, 0xC0 mov ecx, 0AF00h call pci_write_reg ret endp ; Helper procedure for step 3 of uhci_init. ; Initializes the static head of one list. ; eax = physical address of the "next" list, esi = pointer to the "next" list, ; edi = pointer to head to initialize. ; Advances edi to the next head, keeps eax/esi. proc uhci_init_static_endpoint mov [edi+uhci_static_ep.NextQH], eax mov byte [edi+uhci_static_ep.HeadTD], 1 mov [edi+uhci_static_ep.NextList], esi add edi, uhci_static_ep.SoftwarePart call usb_init_static_endpoint add edi, sizeof.uhci_static_ep - uhci_static_ep.SoftwarePart ret endp ; Helper procedure for step 3 of uhci_init, see comments there. ; Initializes one half of group of static heads. ; edx = size of the next group = half of size of the group, ; edi = pointer to the group, eax = physical address of the next group, ; esi = pointer to the next group. ; Advances eax, esi, edi to next group, keeps edx. proc uhci_init_static_ep_group push edx @@: call uhci_init_static_endpoint add eax, sizeof.uhci_static_ep add esi, sizeof.uhci_static_ep dec edx jnz @b pop edx ret endp ; IRQ handler for UHCI controllers. uhci_irq.noint: ; Not our interrupt: restore esi and return zero. pop esi xor eax, eax ret proc uhci_irq push esi ; save used register to be cdecl virtual at esp dd ? ; saved esi dd ? ; return address .controller dd ? end virtual mov esi, [.controller] ; 1. Read UhciStatusReg. mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] inc edx inc edx ; UhciStatusReg == 2 in ax, dx ; 2. Test whether it is our interrupt; if so, at least one status bit is set. test al, 0x1F jz .noint ; 3. Clear all status bits. out dx, ax ; 4. Sanity check. test al, 0x3C jz @f DEBUGF 1,'K : something terrible happened with UHCI (%x)\n',al @@: ; 5. We can't do too much from an interrupt handler, e.g. we can't take ; any mutex locks since our code could be called when another code holds the ; lock and has no chance to release it. Thus, only inform the processing thread ; that it should scan the queue and wake it if needed. lock or byte [esi+uhci_controller.DeferredActions-sizeof.uhci_controller], al push ebx xor ebx, ebx inc ebx call usb_wakeup_if_needed pop ebx ; 6. This is our interrupt; return 1. mov al, 1 pop esi ; restore used register to be stdcall ret endp ; This procedure is called in the USB thread from usb_thread_proc, ; processes regular actions and those actions which can't be safely done ; from interrupt handler. ; Returns maximal time delta before the next call. proc uhci_process_deferred push ebx edi ; save used registers to be stdcall ; 1. Initialize the return value. push -1 ; 2. Poll the root hub every UHCI_POLL_INTERVAL ticks. ; Also force polling if some transaction has completed with errors; ; the error can be caused by disconnect, try to detect it. test byte [esi+uhci_controller.DeferredActions-sizeof.uhci_controller], 2 jnz .force_poll mov eax, [timer_ticks] sub eax, [esi+uhci_controller.LastPollTime-sizeof.uhci_controller] sub eax, UHCI_POLL_INTERVAL jl .nopoll .force_poll: mov eax, [timer_ticks] mov [esi+uhci_controller.LastPollTime-sizeof.uhci_controller], eax call uhci_poll_roothub mov eax, -UHCI_POLL_INTERVAL .nopoll: neg eax cmp [esp], eax jb @f mov [esp], eax @@: ; 3. Process wait lists. ; 3a. Test whether there is a wait request. mov eax, [esi+usb_controller.WaitPipeRequestAsync] cmp eax, [esi+usb_controller.ReadyPipeHeadAsync] jnz .check_removed mov eax, [esi+usb_controller.WaitPipeRequestPeriodic] cmp eax, [esi+usb_controller.ReadyPipeHeadPeriodic] jz @f .check_removed: ; 3b. Yep. Find frame and compare it with the saved one. mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] add edx, UhciFrameNumberReg in ax, dx cmp word [esi+usb_controller.StartWaitFrame], ax jnz .removed ; 3c. The same frame; wake up in 0.01 sec. mov dword [esp], 1 jmp @f .removed: ; 3d. The frame is changed, old contents is guaranteed to be forgotten. mov eax, [esi+usb_controller.WaitPipeRequestAsync] mov [esi+usb_controller.ReadyPipeHeadAsync], eax mov eax, [esi+usb_controller.WaitPipeRequestPeriodic] mov [esi+usb_controller.ReadyPipeHeadPeriodic], eax @@: ; 4. Process disconnect events. This should be done after step 2 ; (which includes the first stage of disconnect processing). call usb_disconnect_stage2 ; 5. Test whether USB_CONNECT_DELAY for a connected device is over. ; Call uhci_new_port for all such devices. xor ecx, ecx cmp [esi+usb_controller.NewConnected], ecx jz .skip_newconnected .portloop: bt [esi+usb_controller.NewConnected], ecx jnc .noconnect mov eax, [timer_ticks] sub eax, [esi+usb_controller.ConnectedTime+ecx*4] sub eax, USB_CONNECT_DELAY jge .connected neg eax cmp [esp], eax jb .nextport mov [esp], eax jmp .nextport .connected: btr [esi+usb_controller.NewConnected], ecx call uhci_new_port .noconnect: .nextport: inc ecx cmp ecx, [esi+usb_controller.NumPorts] jb .portloop .skip_newconnected: ; 6. Test for processed packets. ; This should be done after step 4, so transfers which were failed due ; to disconnect are marked with the exact reason, not just ; 'device not responding'. xor eax, eax xchg byte [esi+uhci_controller.DeferredActions-sizeof.uhci_controller], al test al, 3 jz .noioc call uhci_process_updated_schedule .noioc: ; 7. Test whether reset signalling has been started. If so, ; either should be stopped now (if time is over) or schedule wakeup (otherwise). ; This should be done after step 6, because a completed SET_ADDRESS command ; could result in reset of a new port. .test_reset: ; 7a. Test whether reset signalling is active. cmp [esi+usb_controller.ResettingStatus], 1 jnz .no_reset_in_progress ; 7b. Yep. Test whether it should be stopped. mov eax, [timer_ticks] sub eax, [esi+usb_controller.ResetTime] sub eax, USB_RESET_TIME jge .reset_done ; 7c. Not yet, but initiate wakeup in -eax ticks and exit this step. neg eax cmp [esp], eax jb .skip_reset mov [esp], eax jmp .skip_reset .reset_done: ; 7d. Yep, call the worker function and proceed to 7e. call uhci_port_reset_done .no_reset_in_progress: ; 7e. Test whether reset process is done, either successful or failed. cmp [esi+usb_controller.ResettingStatus], 0 jz .skip_reset ; 7f. Yep. Test whether it should be stopped. mov eax, [timer_ticks] sub eax, [esi+usb_controller.ResetTime] sub eax, USB_RESET_RECOVERY_TIME jge .reset_recovery_done ; 7g. Not yet, but initiate wakeup in -eax ticks and exit this step. neg eax cmp [esp], eax jb .skip_reset mov [esp], eax jmp .skip_reset .reset_recovery_done: ; 7h. Yep, call the worker function. This could initiate another reset, ; so return to the beginning of this step. call uhci_port_init jmp .test_reset .skip_reset: ; 8. Process wait-done notifications, test for new wait requests. ; Note: that must be done after steps 4 and 6 which could create new requests. ; 8a. Call the worker function. call usb_process_wait_lists ; 8b. If no new requests, skip the rest of this step. test eax, eax jz @f ; 8c. UHCI is not allowed to cache anything; we don't know what is ; processed right now, but we can be sure that the controller will not ; use any removed structure starting from the next frame. ; Request removal of everything disconnected until now, ; schedule wakeup in 0.01 sec. mov eax, [esi+usb_controller.WaitPipeListAsync] mov [esi+usb_controller.WaitPipeRequestAsync], eax mov eax, [esi+usb_controller.WaitPipeListPeriodic] mov [esi+usb_controller.WaitPipeRequestPeriodic], eax mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] add edx, UhciFrameNumberReg in ax, dx mov word [esi+usb_controller.StartWaitFrame], ax mov dword [esp], 1 @@: ; 9. Return the value from the top of stack. pop eax pop edi ebx ; restore used registers to be stdcall. ret endp ; This procedure is called in the USB thread from uhci_process_deferred ; when UHCI IRQ handler has signalled that new IOC-packet was processed. ; It scans all lists for completed packets and calls uhci_process_finalized_td ; for those packets. ; in: esi -> usb_controller proc uhci_process_updated_schedule ; Important note: we cannot hold the list lock during callbacks, ; because callbacks sometimes open and/or close pipes and thus acquire/release ; the corresponding lock itself. ; Fortunately, pipes can be finally freed only by another step of ; uhci_process_deferred, so all pipes existing at the start of this function ; will be valid while this function is running. Some pipes can be removed ; from the corresponding list, some pipes can be inserted; insert/remove ; functions guarantee that traversing one list yields all pipes that were in ; that list at the beginning of the traversing (possibly with some new pipes, ; possibly without some new pipes, that doesn't matter). ; 1. Process all Periodic lists. lea edi, [esi+uhci_controller.IntEDs.SoftwarePart-sizeof.uhci_controller] lea ebx, [esi+uhci_controller.IntEDs.SoftwarePart+63*sizeof.uhci_static_ep-sizeof.uhci_controller] @@: call uhci_process_updated_list cmp edi, ebx jnz @b ; 2. Process the Control list. call uhci_process_updated_list ; 3. Process the Bulk list. call uhci_process_updated_list ; 4. Return. ret endp ; This procedure is called from uhci_process_updated_schedule, ; see comments there. ; It processes one list, esi -> usb_controller, edi -> usb_static_ep, ; and advances edi to the next head. proc uhci_process_updated_list push ebx ; save used register to be stdcall ; 1. Perform the external loop over all pipes. mov ebx, [edi+usb_static_ep.NextVirt] .loop: cmp ebx, edi jz .done ; store pointer to the next pipe in the stack push [ebx+usb_static_ep.NextVirt] ; 2. For every pipe, perform the internal loop over all descriptors. ; All descriptors are organized in the queue; we process items from the start ; of the queue until a) the last descriptor (not the part of the queue itself) ; or b) an active (not yet processed by the hardware) descriptor is reached. lea ecx, [ebx+usb_pipe.Lock] call mutex_lock mov ebx, [ebx+usb_pipe.LastTD] push ebx mov ebx, [ebx+usb_gtd.NextVirt] .tdloop: ; 3. For every descriptor, test active flag and check for end-of-queue; ; if either of conditions holds, exit from the internal loop. cmp ebx, [esp] jz .tddone mov eax, [ebx+uhci_gtd.ControlStatus-sizeof.uhci_gtd] test eax, 1 shl 23 ; active? jnz .tddone ; Release the queue lock while processing one descriptor: ; callback function could (and often would) schedule another transfer. push ecx call mutex_unlock call uhci_process_finalized_td pop ecx call mutex_lock jmp .tdloop .tddone: call mutex_unlock pop ebx ; End of internal loop, restore pointer to the next pipe ; and continue the external loop. pop ebx jmp .loop .done: pop ebx ; restore used register to be stdcall add edi, sizeof.uhci_static_ep ret endp ; This procedure is called from uhci_process_updated_list, which is itself ; called from uhci_process_updated_schedule, see comments there. ; It processes one completed descriptor. ; in: esi -> usb_controller, ebx -> usb_gtd, out: ebx -> next usb_gtd. proc uhci_process_finalized_td ; 1. Remove this descriptor from the list of descriptors for this pipe. call usb_unlink_td ; DEBUGF 1,'K : finalized TD:\n' ; DEBUGF 1,'K : %x %x %x %x\n',[ebx-20],[ebx-16],[ebx-12],[ebx-8] ; DEBUGF 1,'K : %x %x %x %x\n',[ebx-4],[ebx],[ebx+4],[ebx+8] ; 2. If this is IN transfer into special buffer, copy the data ; to target location. mov edx, [ebx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd] and edx, not 1 ; clear lsb (used for another goal) jz .nocopy cmp byte [ebx+uhci_gtd.Token-sizeof.uhci_gtd], USB_PID_IN jnz .nocopy ; Note: we assume that pointer to buffer is valid in the memory space of ; the USB thread. This means that buffer must reside in kernel memory ; (shared by all processes). push esi edi mov esi, [edx+uhci_original_buffer.UsedBuffer] mov edi, [edx+uhci_original_buffer.OrigBuffer] mov ecx, [ebx+uhci_gtd.ControlStatus-sizeof.uhci_gtd] inc ecx and ecx, 7FFh mov edx, ecx shr ecx, 2 and edx, 3 rep movsd mov ecx, edx rep movsb pop edi esi .nocopy: ; 3. Calculate actual number of bytes transferred. ; 3a. Read the state. mov eax, [ebx+uhci_gtd.ControlStatus-sizeof.uhci_gtd] mov ecx, [ebx+uhci_gtd.Token-sizeof.uhci_gtd] ; 3b. Get number of bytes processed. lea edx, [eax+1] and edx, 7FFh ; 3c. Subtract number of bytes in this packet. add ecx, 1 shl 21 shr ecx, 21 sub edx, ecx ; 3d. Add total length transferred so far. add edx, [ebx+usb_gtd.Length] ; Actions on error and on success are slightly different. ; 4. Test for error. On error, proceed to step 5, otherwise go to step 6 ; with ecx = 0 (no error). ; USB transaction error is always considered as such. ; If short packets are not allowed, UHCI controllers do not set an error bit, ; but stop (clear Active bit and do not advance) the queue. ; Short packet is considered as an error if the packet is actually short ; (actual length is less than maximal one) and the code creating the packet ; requested that behaviour (so bit 0 of OrigBufferInfo is set; this could be ; because the caller disallowed short packets or because the packet is not ; the last one in the corresponding transfer). xor ecx, ecx test eax, 1 shl 22 jnz .error test byte [ebx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd], 1 jz .notify cmp edx, [ebx+usb_gtd.Length] jz .notify .error: ; 5. There was an error while processing this packet. ; The hardware has stopped processing the queue. DEBUGF 1,'K : TD failed:\n' if sizeof.uhci_gtd <> 20 .err modify offsets for debug output end if DEBUGF 1,'K : %x %x %x %x\n',[ebx-20],[ebx-16],[ebx-12],[ebx-8] DEBUGF 1,'K : %x %x %x %x\n',[ebx-4],[ebx],[ebx+4],[ebx+8] ; 5a. Save the status and length. push edx push eax mov eax, [ebx+usb_gtd.Pipe] DEBUGF 1,'K : pipe: %x %x\n',[eax+0-sizeof.uhci_pipe],[eax+4-sizeof.uhci_pipe] ; 5b. Store the current TD as an error packet. ; If an error packet is already stored for this pipe, ; it is definitely not used already, so free the old packet. mov eax, [eax+uhci_pipe.ErrorTD-sizeof.uhci_pipe] test eax, eax jz @f stdcall uhci_free_td, eax @@: mov eax, [ebx+usb_gtd.Pipe] mov [eax+uhci_pipe.ErrorTD-sizeof.uhci_pipe], ebx ; 5c. Traverse the list of descriptors looking for the final packet ; for this transfer. ; Free and unlink non-final descriptors, except the current one. ; Final descriptor will be freed in step 7. call usb_is_final_packet jnc .found_final mov ebx, [ebx+usb_gtd.NextVirt] .look_final: call usb_unlink_td call usb_is_final_packet jnc .found_final push [ebx+usb_gtd.NextVirt] stdcall uhci_free_td, ebx pop ebx jmp .look_final .found_final: ; 5d. Restore the status saved in 5a and transform it to the error code. pop eax ; error code shr eax, 16 ; Notes: ; * any USB transaction error results in Stalled bit; if it is not set, ; but we are here, it must be due to short packet; ; * babble is considered a fatal USB transaction error, ; other errors just lead to retrying the transaction; ; if babble is detected, return the corresponding error; ; * if several non-fatal errors have occured during transaction retries, ; all corresponding bits are set. In this case, return some error code, ; the order is quite arbitrary. movi ecx, USB_STATUS_UNDERRUN test al, 1 shl (22-16) ; not Stalled? jz .know_error mov cl, USB_STATUS_OVERRUN test al, 1 shl (20-16) ; Babble detected? jnz .know_error mov cl, USB_STATUS_BITSTUFF test al, 1 shl (17-16) ; Bitstuff error? jnz .know_error mov cl, USB_STATUS_NORESPONSE test al, 1 shl (18-16) ; CRC/TimeOut error? jnz .know_error mov cl, USB_STATUS_BUFOVERRUN test al, 1 shl (21-16) ; Data Buffer error? jnz .know_error mov cl, USB_STATUS_STALL .know_error: ; 5e. If error code is USB_STATUS_UNDERRUN ; and the last TD allows short packets, it is not an error. ; Note: all TDs except the last one in any transfer stage are marked ; as short-packet-is-error to stop controller from further processing ; of that stage; we need to restart processing from a TD following the last. ; After that, go to step 6 with ecx = 0 (no error). cmp ecx, USB_STATUS_UNDERRUN jnz @f test byte [ebx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd], 1 jnz @f ; The controller has stopped this queue on the error packet. ; Update uhci_pipe.HeadTD to point to the next packet in the queue. call uhci_fix_toggle xor ecx, ecx .control: mov eax, [ebx+uhci_gtd.NextTD-sizeof.uhci_gtd] and al, not 0xF mov edx, [ebx+usb_gtd.Pipe] mov [edx+uhci_pipe.HeadTD-sizeof.uhci_pipe], eax pop edx ; length jmp .notify @@: ; 5f. Abort the entire transfer. ; There are two cases: either there is only one transfer stage ; (everything except control transfers), then ebx points to the last TD and ; all previous TD were unlinked and dismissed (if possible), ; or there are several stages (a control transfer) and ebx points to the last ; TD of Data or Status stage (usb_is_final_packet does not stop in Setup stage, ; because Setup stage can not produce short packets); for Data stage, we need ; to unlink and free (if possible) one more TD and advance ebx to the next one. cmp [ebx+usb_gtd.Callback], 0 jnz .normal ; We cannot free ErrorTD yet, it could still be used by the hardware. push ecx mov eax, [ebx+usb_gtd.Pipe] push [ebx+usb_gtd.NextVirt] cmp ebx, [eax+uhci_pipe.ErrorTD-sizeof.uhci_pipe] jz @f stdcall uhci_free_td, ebx @@: pop ebx call usb_unlink_td pop ecx .normal: ; 5g. For bulk/interrupt transfers we have no choice but halt the queue, ; the driver should intercede (through some API which is not written yet). ; Control pipes normally recover at the next SETUP transaction (first stage ; of any control transfer), so we hope on the best and just advance the queue ; to the next transfer. (According to the standard, "A control pipe may also ; support functional stall as well, but this is not recommended."). mov edx, [ebx+usb_gtd.Pipe] cmp [edx+usb_pipe.Type], CONTROL_PIPE jz .control ; Bulk/interrupt transfer; halt the queue. mov eax, [ebx+uhci_gtd.NextTD-sizeof.uhci_gtd] and al, not 0xF inc eax ; set Halted bit mov [edx+uhci_pipe.HeadTD-sizeof.uhci_pipe], eax pop edx ; restore length saved in step 5a .notify: ; 6. Either the descriptor in ebx was processed without errors, ; or all necessary error actions were taken and ebx points to the last ; related descriptor. ; 6a. Test whether it is the last packet in the transfer ; <=> it has an associated callback. mov eax, [ebx+usb_gtd.Callback] test eax, eax jz .nocallback ; 6b. It has an associated callback; call it with corresponding parameters. stdcall_verify eax, [ebx+usb_gtd.Pipe], ecx, \ [ebx+usb_gtd.Buffer], edx, [ebx+usb_gtd.UserData] jmp .callback .nocallback: ; 6c. It is an intermediate packet. Add its length to the length ; in the following packet. mov eax, [ebx+usb_gtd.NextVirt] add [eax+usb_gtd.Length], edx .callback: ; 7. Free the current descriptor (if allowed) and return the next one. ; 7a. Save pointer to the next descriptor. push [ebx+usb_gtd.NextVirt] ; 7b. Free the descriptor, unless it is saved as ErrorTD. mov eax, [ebx+usb_gtd.Pipe] cmp [eax+uhci_pipe.ErrorTD-sizeof.uhci_pipe], ebx jz @f stdcall uhci_free_td, ebx @@: ; 7c. Restore pointer to the next descriptor and return. pop ebx ret endp ; Helper procedure for restarting transfer queue. ; When transfers are queued, their toggle bit is filled assuming that ; everything will go without errors. On error, some packets needs to be ; skipped, so toggle bits may become incorrect. ; This procedure fixes toggle bits. ; in: ebx -> last packet to be skipped, ErrorTD -> last processed packet proc uhci_fix_toggle ; 1. Nothing to do for control pipes: in that case, ; toggle bits for different transfer stages are independent. mov ecx, [ebx+usb_gtd.Pipe] cmp [ecx+usb_pipe.Type], CONTROL_PIPE jz .nothing ; 2. The hardware expects next packet with toggle = (ErrorTD.toggle xor 1), ; the current value in next packet is (ebx.toggle xor 1). ; Nothing to do if ErrorTD.toggle == ebx.toggle. mov eax, [ecx+uhci_pipe.ErrorTD-sizeof.uhci_pipe] mov eax, [eax+uhci_gtd.Token-sizeof.uhci_gtd] xor eax, [ebx+uhci_gtd.Token-sizeof.uhci_gtd] test eax, 1 shl 19 jz .nothing ; 3. Lock the transfer queue. add ecx, usb_pipe.Lock call mutex_lock ; 4. Flip the toggle bit in all packets from ebx.NextVirt to ecx.LastTD ; (inclusive). mov eax, [ebx+usb_gtd.NextVirt] .loop: xor byte [eax+uhci_gtd.Token-sizeof.uhci_gtd+2], 1 shl (19-16) cmp eax, [ecx+usb_pipe.LastTD-usb_pipe.Lock] mov eax, [eax+usb_gtd.NextVirt] jnz .loop ; 5. Flip the toggle bit in uhci_pipe structure. xor byte [ecx+uhci_pipe.Token-sizeof.uhci_pipe-usb_pipe.Lock+2], 1 shl (19-16) or dword [ecx+uhci_pipe.Token-sizeof.uhci_pipe-usb_pipe.Lock], eax ; 6. Unlock the transfer queue. call mutex_unlock .nothing: ret endp ; This procedure is called in the USB thread from uhci_process_deferred ; every UHCI_POLL_INTERVAL ticks. It polls the controller for ; connect/disconnect events. ; in: esi -> usb_controller proc uhci_poll_roothub push ebx ; save used register to be stdcall ; 1. Prepare for the loop for every port. xor ecx, ecx .portloop: ; 2. Some implementations of UHCI set ConnectStatusChange bit in a response to ; PortReset. Thus, we must ignore this change for port which is resetting. cmp cl, [esi+usb_controller.ResettingPort] jz .nextport ; 3. Read port status. mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] lea edx, [edx+ecx*2+UhciPort1StatusReg] in ax, dx ; 4. If no change bits are set, continue to the next port. test al, 0Ah jz .nextport ; 5. Clear change bits and read the status again. ; (It is possible, although quite unlikely, that some event occurs between ; the first read and the clearing, invalidating the old status. If an event ; occurs after the clearing, we will not miss it, looking in the next scan. out dx, ax mov ebx, eax in ax, dx ; 6. Process connect change notifications. ; Note: if connect status has changed, ignore enable status change; ; it is normal to disable a port at disconnect event. ; Some controllers set enable status change bit, some don't. test bl, 2 jz .noconnectchange DEBUGF 1,'K : [%d] UHCI %x connect status changed, %x/%x\n',[timer_ticks],esi,bx,ax ; yep. Regardless of the current status, note disconnect event; ; if there is something connected, store the connect time and note connect event. ; In any way, do not process bts [esi+usb_controller.NewDisconnected], ecx test al, 1 jz .disconnect mov eax, [timer_ticks] mov [esi+usb_controller.ConnectedTime+ecx*4], eax bts [esi+usb_controller.NewConnected], ecx jmp .nextport .disconnect: btr [esi+usb_controller.NewConnected], ecx jmp .nextport .noconnectchange: ; 7. Process enable change notifications. ; Note: that needs work. test bl, 8 jz .nextport test al, 4 jnz .nextport dbgstr 'Port disabled' .nextport: ; 8. Continue the loop for every port. inc ecx cmp ecx, [esi+usb_controller.NumPorts] jb .portloop pop ebx ; restore used register to be stdcall ret endp ; This procedure is called from uhci_process_deferred when ; a new device was connected at least USB_CONNECT_DELAY ticks ; and therefore is ready to be configured. ; in: esi -> usb_controller, ecx = port (zero-based) proc uhci_new_port ; test whether we are configuring another port ; if so, postpone configuring and return bts [esi+usb_controller.PendingPorts], ecx cmp [esi+usb_controller.ResettingPort], -1 jnz .nothing btr [esi+usb_controller.PendingPorts], ecx ; fall through to uhci_new_port.reset ; This function is called from uhci_new_port and uhci_test_pending_port. ; It starts reset signalling for the port. Note that in USB first stages ; of configuration can not be done for several ports in parallel. .reset: ; 1. Store information about resetting hub (roothub) and port. and [esi+usb_controller.ResettingHub], 0 mov [esi+usb_controller.ResettingPort], cl ; 2. Initiate reset signalling. mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] lea edx, [edx+ecx*2+UhciPort1StatusReg] in ax, dx or ah, 2 out dx, ax ; 3. Store the current time and set status to 1 = reset signalling active. mov eax, [timer_ticks] mov [esi+usb_controller.ResetTime], eax mov [esi+usb_controller.ResettingStatus], 1 .nothing: ret endp ; This procedure is called from uhci_process_deferred when ; reset signalling for a port needs to be finished. proc uhci_port_reset_done ; 1. Stop reset signalling. movzx ecx, [esi+usb_controller.ResettingPort] mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] lea edx, [edx+ecx*2+UhciPort1StatusReg] in ax, dx DEBUGF 1,'K : [%d] UHCI %x status %x/',[timer_ticks],esi,ax and ah, not 2 out dx, ax ; 2. Status bits in UHCI are invalid during reset signalling. ; Wait a millisecond while status bits become valid again. push esi movi esi, 1 call delay_ms pop esi ; 3. ConnectStatus bit is zero during reset and becomes 1 during step 2; ; some controllers interpret this as a (fake) connect event. ; Enable port and clear status change notification. in ax, dx DEBUGF 1,'%x\n',ax or al, 6 ; enable port, clear status change out dx, ax ; 4. Store the current time and set status to 2 = reset recovery active. mov eax, [timer_ticks] DEBUGF 1,'K : reset done at %d\n',[timer_ticks] mov [esi+usb_controller.ResetTime], eax mov [esi+usb_controller.ResettingStatus], 2 ret endp ; This procedure is called from uhci_process_deferred when ; a new device has been reset, recovered after reset and ; needs to be configured. ; in: esi -> usb_controller proc uhci_port_init ; 1. Read port status. mov [esi+usb_controller.ResettingStatus], 0 movzx ecx, [esi+usb_controller.ResettingPort] mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] lea edx, [edx+ecx*2+UhciPort1StatusReg] in ax, dx DEBUGF 1,'K : [%d] UHCI %x status %x\n',[timer_ticks],esi,ax ; 2. If the device has been disconnected, stop the initialization. test al, 1 jnz @f dbgstr 'USB port disabled after reset' jmp usb_test_pending_port @@: ; 3. Copy LowSpeed bit to bit 0 of eax and call the worker procedure ; to notify the protocol layer about new UHCI device. push edx mov al, ah call uhci_new_device pop edx test eax, eax jnz .nothing ; 4. If something at the protocol layer has failed ; (no memory, no bus address), disable the port and stop the initialization. .disable_exit: in ax, dx and al, not 4 out dx, ax ; disable the port jmp usb_test_pending_port .nothing: ret endp ; This procedure is called from uhci_port_init and from hub support code ; when a new device is connected and has been reset. ; It calls usb_new_device at the protocol layer with correct parameters. ; in: esi -> usb_controller, eax = speed; ; UHCI is USB1 device, so only low bit of eax (LowSpeed) is used. proc uhci_new_device ; 1. Clear all bits of speed except bit 0. and eax, 1 ; 2. Store the speed for the protocol layer. mov [esi+usb_controller.ResettingSpeed], al ; 3. Create pseudo-pipe in the stack. ; See uhci_init_pipe: only .Controller and .Token fields are used. push esi ; fill .Controller field mov ecx, esp shl eax, 20 ; bit 20 = LowSpeedDevice push eax ; ignored (ErrorTD) push eax ; .Token field: DeviceAddress is zero, bit 20 = LowSpeedDevice ; 4. Notify the protocol layer. call usb_new_device ; 5. Cleanup the stack after step 3 and return. add esp, 12 ret endp ; This procedure is called from usb_set_address_callback ; and stores USB device address in the uhci_pipe structure. ; in: esi -> usb_controller, ebx -> usb_pipe, cl = address proc uhci_set_device_address mov byte [ebx+uhci_pipe.Token+1-sizeof.uhci_pipe], cl call usb_subscription_done ret endp ; This procedure returns USB device address from the uhci_pipe structure. ; in: esi -> usb_controller, ebx -> usb_pipe ; out: eax = endpoint address proc uhci_get_device_address mov al, byte [ebx+uhci_pipe.Token+1-sizeof.uhci_pipe] and eax, 7Fh ret endp ; This procedure is called from usb_set_address_callback ; if the device does not accept SET_ADDRESS command and needs ; to be disabled at the port level. ; in: esi -> usb_controller, ecx = port (zero-based) proc uhci_port_disable mov edx, [esi+uhci_controller.IOBase-sizeof.uhci_controller] lea edx, [edx+UhciPort1StatusReg+ecx*2] in ax, dx and al, not 4 out dx, ax ret endp ; This procedure is called from usb_get_descr8_callback when ; the packet size for zero endpoint becomes known and ; stores the packet size in uhci_pipe structure. ; in: esi -> usb_controller, ebx -> usb_pipe, ecx = packet size proc uhci_set_endpoint_packet_size dec ecx shl ecx, 21 and [ebx+uhci_pipe.Token-sizeof.uhci_pipe], (1 shl 21) - 1 or [ebx+uhci_pipe.Token-sizeof.uhci_pipe], ecx ; uhci_pipe.Token field is purely for software bookkeeping and does not affect ; the hardware; thus, we can continue initialization immediately. call usb_subscription_done ret endp ; This procedure is called from API usb_open_pipe and processes ; the controller-specific part of this API. See docs. ; in: edi -> usb_pipe for target, ecx -> usb_pipe for config pipe, ; esi -> usb_controller, eax -> usb_gtd for the first TD, ; [ebp+12] = endpoint, [ebp+16] = maxpacket, [ebp+20] = type proc uhci_init_pipe ; inherit some variables from the parent usb_open_pipe virtual at ebp+8 .config_pipe dd ? .endpoint dd ? .maxpacket dd ? .type dd ? .interval dd ? end virtual ; 1. Initialize ErrorTD to zero. and [edi+uhci_pipe.ErrorTD-sizeof.uhci_pipe], 0 ; 2. Initialize HeadTD to the physical address of the first TD. push eax ; store pointer to the first TD for step ? sub eax, sizeof.uhci_gtd call get_phys_addr mov [edi+uhci_pipe.HeadTD-sizeof.uhci_pipe], eax ; 3. Initialize Token field: ; take DeviceAddress and LowSpeedDevice from the parent pipe, ; take Endpoint and MaximumLength fields from API arguments, ; set PID depending on pipe type and provided pipe direction, ; set DataToggle to zero. mov eax, [ecx+uhci_pipe.Token-sizeof.uhci_pipe] and eax, 0x107F00 ; keep DeviceAddress and LowSpeedDevice mov edx, [.endpoint] and edx, 15 shl edx, 15 or eax, edx mov edx, [.maxpacket] dec edx shl edx, 21 or eax, edx mov al, USB_PID_SETUP cmp [.type], CONTROL_PIPE jz @f mov al, USB_PID_OUT test byte [.endpoint], 80h jz @f mov al, USB_PID_IN @@: mov [edi+uhci_pipe.Token-sizeof.uhci_pipe], eax ; 4. Initialize the first TD: ; copy Token from uhci_pipe.Token zeroing reserved bit 20, ; set ControlStatus for future transfers, bit make it inactive, ; set bit 0 in NextTD = "no next TD". pop edx ; restore pointer saved in step 2 mov [edx+uhci_gtd.Token-sizeof.uhci_gtd], eax and byte [edx+uhci_gtd.Token+2-sizeof.uhci_gtd], not (1 shl (20-16)) and eax, 1 shl 20 shl eax, 6 or eax, UHCI_INVALID_LENGTH + (3 shl 27) ; not processed, inactive, allow 3 errors mov [edx+uhci_gtd.ControlStatus-sizeof.uhci_gtd], eax mov [edx+uhci_gtd.NextTD-sizeof.uhci_gtd], 1 ; 5. Select the corresponding list and insert to the list. ; 5a. Use Control list for control pipes, Bulk list for bulk pipes. lea edx, [esi+uhci_controller.ControlED.SoftwarePart-sizeof.uhci_controller] cmp [.type], BULK_PIPE jb .insert ; control pipe lea edx, [esi+uhci_controller.BulkED.SoftwarePart-sizeof.uhci_controller] jz .insert ; bulk pipe .interrupt_pipe: ; 5b. For interrupt pipes, let the scheduler select the appropriate list ; based on the current bandwidth distribution and the requested bandwidth. ; This could fail if the requested bandwidth is not available; ; if so, return an error. lea edx, [esi + uhci_controller.IntEDs - sizeof.uhci_controller] lea eax, [esi + uhci_controller.IntEDs + 32*sizeof.uhci_static_ep - sizeof.uhci_controller] movi ecx, 64 call usb1_select_interrupt_list test edx, edx jz .return0 .insert: ; Insert to the head of the corresponding list. ; Note: inserting to the head guarantees that the list traverse in ; uhci_process_updated_schedule, once started, will not interact with new pipes. ; However, we still need to ensure that links in the new pipe (edi.NextVirt) ; are initialized before links to the new pipe (edx.NextVirt). ; 5c. Insert in the list of virtual addresses. mov ecx, [edx+usb_pipe.NextVirt] mov [edi+usb_pipe.NextVirt], ecx mov [edi+usb_pipe.PrevVirt], edx mov [ecx+usb_pipe.PrevVirt], edi mov [edx+usb_pipe.NextVirt], edi ; 5d. Insert in the hardware list: copy previous NextQH to the new pipe, ; store the physical address of the new pipe to previous NextQH. mov ecx, [edx+uhci_static_ep.NextQH-uhci_static_ep.SoftwarePart] mov [edi+uhci_pipe.NextQH-sizeof.uhci_pipe], ecx lea eax, [edi-sizeof.uhci_pipe] call get_phys_addr inc eax inc eax mov [edx+uhci_static_ep.NextQH-uhci_static_ep.SoftwarePart], eax ; 6. Return with nonzero eax. ret .return0: xor eax, eax ret endp ; This procedure is called when a pipe is closing (either due to API call ; or due to disconnect); it unlinks a pipe from the corresponding list. if uhci_static_ep.SoftwarePart <> sizeof.uhci_pipe .err uhci_unlink_pipe assumes that uhci_static_ep.SoftwarePart == sizeof.uhci_pipe end if proc uhci_unlink_pipe cmp [ebx+usb_pipe.Type], INTERRUPT_PIPE jnz @f mov eax, [ebx+uhci_pipe.Token-sizeof.uhci_pipe] cmp al, USB_PID_IN setz ch bt eax, 20 setc cl add eax, 1 shl 21 shr eax, 21 stdcall usb1_interrupt_list_unlink, eax, ecx @@: ; Note: we need to ensure that NextVirt field of the pipe is not modified; ; this procedure can be called while uhci_process_updated_schedule processes ; the same pipe, and it needs a correct NextVirt field to continue. mov edx, [ebx+usb_pipe.NextVirt] mov eax, [ebx+usb_pipe.PrevVirt] mov [edx+usb_pipe.PrevVirt], eax mov [eax+usb_pipe.NextVirt], edx ; Note: eax could be either usb_pipe or usb_static_ep; ; fortunately, NextQH and SoftwarePart have same offsets in both. mov edx, [ebx+uhci_pipe.NextQH-sizeof.uhci_pipe] mov [eax+uhci_pipe.NextQH-sizeof.uhci_pipe], edx ret endp ; Free memory associated with pipe. ; For UHCI, this includes usb_pipe structure and ErrorTD, if present. proc uhci_free_pipe mov eax, [esp+4] mov eax, [eax+uhci_pipe.ErrorTD-sizeof.uhci_pipe] test eax, eax jz @f stdcall uhci_free_td, eax @@: jmp usb1_free_endpoint endp ; This procedure is called from the several places in main USB code ; and allocates required packets for the given transfer stage. ; ebx = pipe, other parameters are passed through the stack proc uhci_alloc_transfer stdcall uses edi, buffer:dword, size:dword, flags:dword, td:dword, direction:dword locals token dd ? origTD dd ? packetSize dd ? ; must be the last variable, see usb_init_transfer endl ; 1. [td] will be the first packet in the transfer. ; Save it to allow unrolling if something will fail. mov eax, [td] mov [origTD], eax ; In UHCI one TD describes one packet, transfers should be split into parts ; with size <= endpoint max packet size. ; 2. Get the maximum packet size for endpoint from uhci_pipe.Token ; and generate Token field for TDs. mov edi, [ebx+uhci_pipe.Token-sizeof.uhci_pipe] mov eax, edi shr edi, 21 inc edi ; zero packet size (it will be set for every packet individually), ; zero reserved bit 20, and eax, (1 shl 20) - 1 mov [packetSize], edi ; set the correct PID if it is different from the pipe-wide PID ; (Data and Status stages of control transfers), mov ecx, [direction] and ecx, 3 jz @f mov al, USB_PID_OUT dec ecx jz @f mov al, USB_PID_IN @@: ; set the toggle bit for control transfers, mov ecx, [direction] test cl, 1 shl 3 jz @f and ecx, 1 shl 2 and eax, not (1 shl 19) shl ecx, 19-2 or eax, ecx @@: ; store the resulting Token in the stack variable. mov [token], eax ; 3. While the remaining data cannot fit in one packet, ; allocate full packets (of maximal possible size). .fullpackets: cmp [size], edi jbe .lastpacket call uhci_alloc_packet test eax, eax jz .fail mov [td], eax add [buffer], edi sub [size], edi jmp .fullpackets .lastpacket: ; 4. The remaining data can fit in one packet; ; allocate the last packet with size = size of remaining data. mov eax, [size] mov [packetSize], eax call uhci_alloc_packet test eax, eax jz .fail ; 5. Clear 'short packets are not allowed' bit for the last packet, ; if the caller requested this. ; Note: even if the caller says that short transfers are ok, ; all packets except the last one are marked as 'must be complete': ; if one of them will be short, the software intervention is needed ; to skip remaining packets; uhci_process_finalized_td will handle this ; transparently to the caller. test [flags], 1 jz @f and byte [ecx+uhci_gtd.ControlStatus+3-sizeof.uhci_gtd], not (1 shl (29-24)) and byte [ecx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd], not 1 @@: ; 6. Update toggle bit in uhci_pipe structure from current value of [token]. mov edx, [token] xor edx, [ebx+uhci_pipe.Token-sizeof.uhci_pipe] and edx, 1 shl 19 xor [ebx+uhci_pipe.Token-sizeof.uhci_pipe], edx .nothing: ret .fail: mov edi, uhci_hardware_func mov eax, [td] stdcall usb_undo_tds, [origTD] xor eax, eax jmp .nothing endp ; Helper procedure for uhci_alloc_transfer. Allocates one packet. proc uhci_alloc_packet ; inherit some variables from the parent uhci_alloc_transfer virtual at ebp-12 .token dd ? .origTD dd ? .packetSize dd ? rd 2 .buffer dd ? .transferSize dd ? .Flags dd ? .td dd ? .direction dd ? end virtual ; 1. In UHCI all data for one packet must be on the same page. ; Thus, if the given buffer splits page boundary, we need a temporary buffer ; and code that transfers data between the given buffer and the temporary one. ; 1a. There is no buffer for zero-length packets. xor eax, eax cmp [.packetSize], eax jz .notempbuf ; 1b. A temporary buffer is not required if the first and the last bytes ; of the given buffer are the same except lower 12 bits. mov edx, [.buffer] add edx, [.packetSize] dec edx xor edx, [.buffer] test edx, -0x1000 jz .notempbuf ; 1c. We need a temporary buffer. Allocate [packetSize]*2 bytes, so that ; there must be [packetSize] bytes on one page, ; plus space for a header uhci_original_buffer. mov eax, [.packetSize] add eax, eax add eax, sizeof.uhci_original_buffer call malloc ; 1d. If failed, return zero. test eax, eax jz .nothing ; 1e. Test whether [.packetSize] bytes starting from ; eax + sizeof.uhci_original_buffer are in the same page. ; If so, use eax + sizeof.uhci_original_buffer as a temporary buffer. ; Otherwise, use the beginning of the next page as a temporary buffer ; (since we have overallocated, sufficient space must remain). lea ecx, [eax+sizeof.uhci_original_buffer] mov edx, ecx add edx, [.packetSize] dec edx xor edx, ecx test edx, -0x1000 jz @f mov ecx, eax or ecx, 0xFFF inc ecx @@: mov [eax+uhci_original_buffer.UsedBuffer], ecx mov ecx, [.buffer] mov [eax+uhci_original_buffer.OrigBuffer], ecx ; 1f. For SETUP and OUT packets, copy data from the given buffer ; to the temporary buffer now. For IN packets, data go in other direction ; when the transaction completes. cmp byte [.token], USB_PID_IN jz .nocopy push esi edi mov esi, ecx mov edi, [eax+uhci_original_buffer.UsedBuffer] mov ecx, [.packetSize] mov edx, ecx shr ecx, 2 and edx, 3 rep movsd mov ecx, edx rep movsb pop edi esi .nocopy: .notempbuf: ; 2. Allocate the next TD. push eax call usb1_allocate_general_td pop edx ; If failed, free the temporary buffer (if it was allocated) and return zero. test eax, eax jz .fail ; 3. Initialize controller-independent parts of both TDs. push edx call usb_init_transfer ; 4. Initialize the next TD: ; mark it as last one (this will be changed when further packets will be ; allocated), copy Token field from uhci_pipe.Token zeroing bit 20, ; generate ControlStatus field, mark as Active ; (for last descriptor, this will be changed by uhci_insert_transfer), ; zero OrigBufferInfo (otherwise uhci_free_td would try to free it). and [eax+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd], 0 mov [eax+uhci_gtd.NextTD-sizeof.uhci_gtd], 1 ; no next TD mov edx, [ebx+uhci_pipe.Token-sizeof.uhci_pipe] mov [eax+uhci_gtd.Token-sizeof.uhci_gtd], edx and byte [eax+uhci_gtd.Token+2-sizeof.uhci_gtd], not (1 shl (20-16)) and edx, 1 shl 20 shl edx, 6 or edx, UHCI_INVALID_LENGTH + (1 shl 23) + (3 shl 27) ; not processed, active, allow 3 errors mov [eax+uhci_gtd.ControlStatus-sizeof.uhci_gtd], edx ; 5. Initialize remaining fields of the current TD. ; 5a. Store pointer to the buffer allocated in step 1 (or zero). pop [ecx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd] ; 5b. Store physical address of the next TD. push eax sub eax, sizeof.uhci_gtd call get_phys_addr ; for Control/Bulk pipes, use Depth traversal unless this is the first TD ; in the transfer stage; ; uhci_insert_transfer will set Depth traversal for the first TD and clear ; it in the last TD test [ebx+usb_pipe.Type], 1 jnz @f cmp ecx, [ebx+usb_pipe.LastTD] jz @f or eax, 4 @@: mov [ecx+uhci_gtd.NextTD-sizeof.uhci_gtd], eax ; 5c. Store physical address of the buffer: zero if no data present, ; the temporary buffer if it was allocated, the given buffer otherwise. xor eax, eax cmp [.packetSize], eax jz .hasphysbuf mov eax, [.buffer] mov edx, [ecx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd] test edx, edx jz @f mov eax, [edx+uhci_original_buffer.UsedBuffer] @@: call get_phys_addr .hasphysbuf: mov [ecx+uhci_gtd.Buffer-sizeof.uhci_gtd], eax ; 5d. For IN transfers, disallow short packets. ; This will be overridden, if needed, by uhci_alloc_transfer. mov eax, [.token] mov edx, [.packetSize] dec edx cmp al, USB_PID_IN jnz @f or byte [ecx+uhci_gtd.ControlStatus+3-sizeof.uhci_gtd], 1 shl (29-24) ; disallow short packets or byte [ecx+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd], 1 @@: ; 5e. Get Token field: combine [.token] with [.packetSize]. shl edx, 21 or edx, eax mov [ecx+uhci_gtd.Token-sizeof.uhci_gtd], edx ; 6. Flip toggle bit in [.token]. xor eax, 1 shl 19 mov [.token], eax ; 7. Return pointer to the next TD. pop eax .nothing: ret .fail: xchg eax, edx call free xor eax, eax ret endp ; This procedure is called from the several places in main USB code ; and activates the transfer which was previously allocated by ; uhci_alloc_transfer. ; ecx -> last descriptor for the transfer, ebx -> usb_pipe proc uhci_insert_transfer ; DEBUGF 1,'K : uhci_insert_transfer: eax=%x, ecx=%x, [esp+4]=%x\n',eax,ecx,[esp+4] and byte [eax+uhci_gtd.ControlStatus+2-sizeof.uhci_gtd], not (1 shl (23-16)) ; clear Active bit or byte [ecx+uhci_gtd.ControlStatus+3-sizeof.uhci_gtd], 1 shl (24-24) ; set InterruptOnComplete bit mov eax, [esp+4] or byte [eax+uhci_gtd.ControlStatus+2-sizeof.uhci_gtd], 1 shl (23-16) ; set Active bit test [ebx+usb_pipe.Type], 1 jnz @f or byte [eax+uhci_gtd.NextTD-sizeof.uhci_gtd], 4 ; set Depth bit @@: ret endp ; Free all memory associated with one TD. ; For UHCI, this includes memory for uhci_gtd itself ; and the temporary buffer, if present. proc uhci_free_td mov eax, [esp+4] mov eax, [eax+uhci_gtd.OrigBufferInfo-sizeof.uhci_gtd] and eax, not 1 jz .nobuf push ebx call free pop ebx .nobuf: sub dword [esp+4], sizeof.uhci_gtd jmp usb_free_common endp