/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ //#include #include #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "atom.h" #include "bitmap.h" #include "display.h" #include #define PCI_VENDOR_ID_ATI 0x1002 #define PCI_VENDOR_ID_APPLE 0x106b int radeon_no_wb; int radeon_modeset = -1; int radeon_dynclks = -1; int radeon_r4xx_atom = 0; int radeon_agpmode = 0; int radeon_vram_limit = 0; int radeon_gart_size = -1; /* auto */ int radeon_benchmarking = 0; int radeon_testing = 0; int radeon_connector_table = 0; int radeon_tv = 1; int radeon_audio = -1; int radeon_disp_priority = 0; int radeon_hw_i2c = 0; int radeon_pcie_gen2 = -1; int radeon_msi = -1; int radeon_lockup_timeout = 10000; int radeon_fastfb = 0; int radeon_dpm = -1; int radeon_aspm = -1; int radeon_runtime_pm = -1; int radeon_hard_reset = 0; int radeon_vm_size = 8; int radeon_vm_block_size = -1; int radeon_deep_color = 0; int radeon_use_pflipirq = 2; int irq_override = 0; int radeon_bapm = -1; int radeon_backlight = 0; int radeon_auxch = -1; int radeon_mst = 0; extern display_t *os_display; extern struct drm_device *main_device; extern videomode_t usermode; void parse_cmdline(char *cmdline, videomode_t *mode, char *log, int *kms); int init_display(struct radeon_device *rdev, videomode_t *mode); int init_display_kms(struct drm_device *dev, videomode_t *usermode); int get_modes(videomode_t *mode, u32 *count); int set_user_mode(videomode_t *mode); int r100_2D_test(struct radeon_device *rdev); /* Legacy VGA regions */ #define VGA_RSRC_NONE 0x00 #define VGA_RSRC_LEGACY_IO 0x01 #define VGA_RSRC_LEGACY_MEM 0x02 #define VGA_RSRC_LEGACY_MASK (VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM) /* Non-legacy access */ #define VGA_RSRC_NORMAL_IO 0x04 #define VGA_RSRC_NORMAL_MEM 0x08 static const char radeon_family_name[][16] = { "R100", "RV100", "RS100", "RV200", "RS200", "R200", "RV250", "RS300", "RV280", "R300", "R350", "RV350", "RV380", "R420", "R423", "RV410", "RS400", "RS480", "RS600", "RS690", "RS740", "RV515", "R520", "RV530", "RV560", "RV570", "R580", "R600", "RV610", "RV630", "RV670", "RV620", "RV635", "RS780", "RS880", "RV770", "RV730", "RV710", "RV740", "CEDAR", "REDWOOD", "JUNIPER", "CYPRESS", "HEMLOCK", "PALM", "SUMO", "SUMO2", "BARTS", "TURKS", "CAICOS", "CAYMAN", "ARUBA", "TAHITI", "PITCAIRN", "VERDE", "OLAND", "HAINAN", "BONAIRE", "KAVERI", "KABINI", "HAWAII", "MULLINS", "LAST", }; #define RADEON_PX_QUIRK_DISABLE_PX (1 << 0) #define RADEON_PX_QUIRK_LONG_WAKEUP (1 << 1) struct radeon_px_quirk { u32 chip_vendor; u32 chip_device; u32 subsys_vendor; u32 subsys_device; u32 px_quirk_flags; }; static struct radeon_px_quirk radeon_px_quirk_list[] = { /* Acer aspire 5560g (CPU: AMD A4-3305M; GPU: AMD Radeon HD 6480g + 7470m) * https://bugzilla.kernel.org/show_bug.cgi?id=74551 */ { PCI_VENDOR_ID_ATI, 0x6760, 0x1025, 0x0672, RADEON_PX_QUIRK_DISABLE_PX }, /* Asus K73TA laptop with AMD A6-3400M APU and Radeon 6550 GPU * https://bugzilla.kernel.org/show_bug.cgi?id=51381 */ { PCI_VENDOR_ID_ATI, 0x6741, 0x1043, 0x108c, RADEON_PX_QUIRK_DISABLE_PX }, /* Asus K53TK laptop with AMD A6-3420M APU and Radeon 7670m GPU * https://bugzilla.kernel.org/show_bug.cgi?id=51381 */ { PCI_VENDOR_ID_ATI, 0x6840, 0x1043, 0x2122, RADEON_PX_QUIRK_DISABLE_PX }, /* macbook pro 8.2 */ { PCI_VENDOR_ID_ATI, 0x6741, PCI_VENDOR_ID_APPLE, 0x00e2, RADEON_PX_QUIRK_LONG_WAKEUP }, { 0, 0, 0, 0, 0 }, }; bool radeon_is_px(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; if (rdev->flags & RADEON_IS_PX) return true; return false; } static void radeon_device_handle_px_quirks(struct radeon_device *rdev) { struct radeon_px_quirk *p = radeon_px_quirk_list; /* Apply PX quirks */ while (p && p->chip_device != 0) { if (rdev->pdev->vendor == p->chip_vendor && rdev->pdev->device == p->chip_device && rdev->pdev->subsystem_vendor == p->subsys_vendor && rdev->pdev->subsystem_device == p->subsys_device) { rdev->px_quirk_flags = p->px_quirk_flags; break; } ++p; } if (rdev->px_quirk_flags & RADEON_PX_QUIRK_DISABLE_PX) rdev->flags &= ~RADEON_IS_PX; } /** * radeon_program_register_sequence - program an array of registers. * * @rdev: radeon_device pointer * @registers: pointer to the register array * @array_size: size of the register array * * Programs an array or registers with and and or masks. * This is a helper for setting golden registers. */ void radeon_program_register_sequence(struct radeon_device *rdev, const u32 *registers, const u32 array_size) { u32 tmp, reg, and_mask, or_mask; int i; if (array_size % 3) return; for (i = 0; i < array_size; i +=3) { reg = registers[i + 0]; and_mask = registers[i + 1]; or_mask = registers[i + 2]; if (and_mask == 0xffffffff) { tmp = or_mask; } else { tmp = RREG32(reg); tmp &= ~and_mask; tmp |= or_mask; } WREG32(reg, tmp); } } void radeon_pci_config_reset(struct radeon_device *rdev) { pci_write_config_dword(rdev->pdev, 0x7c, RADEON_ASIC_RESET_DATA); } /** * radeon_surface_init - Clear GPU surface registers. * * @rdev: radeon_device pointer * * Clear GPU surface registers (r1xx-r5xx). */ void radeon_surface_init(struct radeon_device *rdev) { /* FIXME: check this out */ if (rdev->family < CHIP_R600) { int i; for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) { if (rdev->surface_regs[i].bo) radeon_bo_get_surface_reg(rdev->surface_regs[i].bo); else radeon_clear_surface_reg(rdev, i); } /* enable surfaces */ WREG32(RADEON_SURFACE_CNTL, 0); } } /* * GPU scratch registers helpers function. */ /** * radeon_scratch_init - Init scratch register driver information. * * @rdev: radeon_device pointer * * Init CP scratch register driver information (r1xx-r5xx) */ void radeon_scratch_init(struct radeon_device *rdev) { int i; /* FIXME: check this out */ if (rdev->family < CHIP_R300) { rdev->scratch.num_reg = 5; } else { rdev->scratch.num_reg = 7; } rdev->scratch.reg_base = RADEON_SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } /** * radeon_scratch_get - Allocate a scratch register * * @rdev: radeon_device pointer * @reg: scratch register mmio offset * * Allocate a CP scratch register for use by the driver (all asics). * Returns 0 on success or -EINVAL on failure. */ int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.free[i]) { rdev->scratch.free[i] = false; *reg = rdev->scratch.reg[i]; return 0; } } return -EINVAL; } /** * radeon_scratch_free - Free a scratch register * * @rdev: radeon_device pointer * @reg: scratch register mmio offset * * Free a CP scratch register allocated for use by the driver (all asics) */ void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.reg[i] == reg) { rdev->scratch.free[i] = true; return; } } } /* * GPU doorbell aperture helpers function. */ /** * radeon_doorbell_init - Init doorbell driver information. * * @rdev: radeon_device pointer * * Init doorbell driver information (CIK) * Returns 0 on success, error on failure. */ static int radeon_doorbell_init(struct radeon_device *rdev) { /* doorbell bar mapping */ rdev->doorbell.base = pci_resource_start(rdev->pdev, 2); rdev->doorbell.size = pci_resource_len(rdev->pdev, 2); rdev->doorbell.num_doorbells = min_t(u32, rdev->doorbell.size / sizeof(u32), RADEON_MAX_DOORBELLS); if (rdev->doorbell.num_doorbells == 0) return -EINVAL; rdev->doorbell.ptr = ioremap(rdev->doorbell.base, rdev->doorbell.num_doorbells * sizeof(u32)); if (rdev->doorbell.ptr == NULL) { return -ENOMEM; } DRM_INFO("doorbell mmio base: 0x%08X\n", (uint32_t)rdev->doorbell.base); DRM_INFO("doorbell mmio size: %u\n", (unsigned)rdev->doorbell.size); memset(&rdev->doorbell.used, 0, sizeof(rdev->doorbell.used)); return 0; } /** * radeon_doorbell_fini - Tear down doorbell driver information. * * @rdev: radeon_device pointer * * Tear down doorbell driver information (CIK) */ static void radeon_doorbell_fini(struct radeon_device *rdev) { iounmap(rdev->doorbell.ptr); rdev->doorbell.ptr = NULL; } /** * radeon_doorbell_get - Allocate a doorbell entry * * @rdev: radeon_device pointer * @doorbell: doorbell index * * Allocate a doorbell for use by the driver (all asics). * Returns 0 on success or -EINVAL on failure. */ int radeon_doorbell_get(struct radeon_device *rdev, u32 *doorbell) { unsigned long offset = find_first_zero_bit(rdev->doorbell.used, rdev->doorbell.num_doorbells); if (offset < rdev->doorbell.num_doorbells) { __set_bit(offset, rdev->doorbell.used); *doorbell = offset; return 0; } else { return -EINVAL; } } /** * radeon_doorbell_free - Free a doorbell entry * * @rdev: radeon_device pointer * @doorbell: doorbell index * * Free a doorbell allocated for use by the driver (all asics) */ void radeon_doorbell_free(struct radeon_device *rdev, u32 doorbell) { if (doorbell < rdev->doorbell.num_doorbells) __clear_bit(doorbell, rdev->doorbell.used); } /** * radeon_doorbell_get_kfd_info - Report doorbell configuration required to * setup KFD * * @rdev: radeon_device pointer * @aperture_base: output returning doorbell aperture base physical address * @aperture_size: output returning doorbell aperture size in bytes * @start_offset: output returning # of doorbell bytes reserved for radeon. * * Radeon and the KFD share the doorbell aperture. Radeon sets it up, * takes doorbells required for its own rings and reports the setup to KFD. * Radeon reserved doorbells are at the start of the doorbell aperture. */ void radeon_doorbell_get_kfd_info(struct radeon_device *rdev, phys_addr_t *aperture_base, size_t *aperture_size, size_t *start_offset) { /* The first num_doorbells are used by radeon. * KFD takes whatever's left in the aperture. */ if (rdev->doorbell.size > rdev->doorbell.num_doorbells * sizeof(u32)) { *aperture_base = rdev->doorbell.base; *aperture_size = rdev->doorbell.size; *start_offset = rdev->doorbell.num_doorbells * sizeof(u32); } else { *aperture_base = 0; *aperture_size = 0; *start_offset = 0; } } /* * radeon_wb_*() * Writeback is the the method by which the the GPU updates special pages * in memory with the status of certain GPU events (fences, ring pointers, * etc.). */ /** * radeon_wb_disable - Disable Writeback * * @rdev: radeon_device pointer * * Disables Writeback (all asics). Used for suspend. */ void radeon_wb_disable(struct radeon_device *rdev) { rdev->wb.enabled = false; } /** * radeon_wb_fini - Disable Writeback and free memory * * @rdev: radeon_device pointer * * Disables Writeback and frees the Writeback memory (all asics). * Used at driver shutdown. */ void radeon_wb_fini(struct radeon_device *rdev) { radeon_wb_disable(rdev); if (rdev->wb.wb_obj) { if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) { radeon_bo_kunmap(rdev->wb.wb_obj); radeon_bo_unpin(rdev->wb.wb_obj); radeon_bo_unreserve(rdev->wb.wb_obj); } radeon_bo_unref(&rdev->wb.wb_obj); rdev->wb.wb = NULL; rdev->wb.wb_obj = NULL; } } /** * radeon_wb_init- Init Writeback driver info and allocate memory * * @rdev: radeon_device pointer * * Disables Writeback and frees the Writeback memory (all asics). * Used at driver startup. * Returns 0 on success or an -error on failure. */ int radeon_wb_init(struct radeon_device *rdev) { int r; if (rdev->wb.wb_obj == NULL) { r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, 0, NULL, NULL, &rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) create WB bo failed\n", r); return r; } r = radeon_bo_reserve(rdev->wb.wb_obj, false); if (unlikely(r != 0)) { radeon_wb_fini(rdev); return r; } r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT, &rdev->wb.gpu_addr); if (r) { radeon_bo_unreserve(rdev->wb.wb_obj); dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r); radeon_wb_fini(rdev); return r; } r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb); radeon_bo_unreserve(rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) map WB bo failed\n", r); radeon_wb_fini(rdev); return r; } } /* clear wb memory */ memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE); /* disable event_write fences */ rdev->wb.use_event = false; /* disabled via module param */ if (radeon_no_wb == 1) { rdev->wb.enabled = false; } else { if (rdev->flags & RADEON_IS_AGP) { /* often unreliable on AGP */ rdev->wb.enabled = false; } else if (rdev->family < CHIP_R300) { /* often unreliable on pre-r300 */ rdev->wb.enabled = false; } else { rdev->wb.enabled = true; /* event_write fences are only available on r600+ */ if (rdev->family >= CHIP_R600) { rdev->wb.use_event = true; } } } /* always use writeback/events on NI, APUs */ if (rdev->family >= CHIP_PALM) { rdev->wb.enabled = true; rdev->wb.use_event = true; } dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis"); return 0; } /** * radeon_vram_location - try to find VRAM location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * @base: base address at which to put VRAM * * Function will place try to place VRAM at base address provided * as parameter (which is so far either PCI aperture address or * for IGP TOM base address). * * If there is not enough space to fit the unvisible VRAM in the 32bits * address space then we limit the VRAM size to the aperture. * * If we are using AGP and if the AGP aperture doesn't allow us to have * room for all the VRAM than we restrict the VRAM to the PCI aperture * size and print a warning. * * This function will never fails, worst case are limiting VRAM. * * Note: GTT start, end, size should be initialized before calling this * function on AGP platform. * * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size, * this shouldn't be a problem as we are using the PCI aperture as a reference. * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but * not IGP. * * Note: we use mc_vram_size as on some board we need to program the mc to * cover the whole aperture even if VRAM size is inferior to aperture size * Novell bug 204882 + along with lots of ubuntu ones * * Note: when limiting vram it's safe to overwritte real_vram_size because * we are not in case where real_vram_size is inferior to mc_vram_size (ie * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu * ones) * * Note: IGP TOM addr should be the same as the aperture addr, we don't * explicitly check for that thought. * * FIXME: when reducing VRAM size align new size on power of 2. */ void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base) { uint64_t limit = (uint64_t)radeon_vram_limit << 20; mc->vram_start = base; if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) { dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); mc->real_vram_size = mc->aper_size; mc->mc_vram_size = mc->aper_size; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) { dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); mc->real_vram_size = mc->aper_size; mc->mc_vram_size = mc->aper_size; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (limit && limit < mc->real_vram_size) mc->real_vram_size = limit; dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } /** * radeon_gtt_location - try to find GTT location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * * Function will place try to place GTT before or after VRAM. * * If GTT size is bigger than space left then we ajust GTT size. * Thus function will never fails. * * FIXME: when reducing GTT size align new size on power of 2. */ void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { u64 size_af, size_bf; size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align; size_bf = mc->vram_start & ~mc->gtt_base_align; if (size_bf > size_af) { if (mc->gtt_size > size_bf) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_bf; } mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size; } else { if (mc->gtt_size > size_af) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_af; } mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align; } mc->gtt_end = mc->gtt_start + mc->gtt_size - 1; dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n", mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end); } /* * GPU helpers function. */ /** * radeon_card_posted - check if the hw has already been initialized * * @rdev: radeon_device pointer * * Check if the asic has been initialized (all asics). * Used at driver startup. * Returns true if initialized or false if not. */ bool radeon_card_posted(struct radeon_device *rdev) { uint32_t reg; if (ASIC_IS_NODCE(rdev)) goto check_memsize; /* first check CRTCs */ if (ASIC_IS_DCE4(rdev)) { reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET); if (rdev->num_crtc >= 4) { reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET); } if (rdev->num_crtc >= 6) { reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET); } if (reg & EVERGREEN_CRTC_MASTER_EN) return true; } else if (ASIC_IS_AVIVO(rdev)) { reg = RREG32(AVIVO_D1CRTC_CONTROL) | RREG32(AVIVO_D2CRTC_CONTROL); if (reg & AVIVO_CRTC_EN) { return true; } } else { reg = RREG32(RADEON_CRTC_GEN_CNTL) | RREG32(RADEON_CRTC2_GEN_CNTL); if (reg & RADEON_CRTC_EN) { return true; } } check_memsize: /* then check MEM_SIZE, in case the crtcs are off */ if (rdev->family >= CHIP_R600) reg = RREG32(R600_CONFIG_MEMSIZE); else reg = RREG32(RADEON_CONFIG_MEMSIZE); if (reg) return true; return false; } /** * radeon_update_bandwidth_info - update display bandwidth params * * @rdev: radeon_device pointer * * Used when sclk/mclk are switched or display modes are set. * params are used to calculate display watermarks (all asics) */ void radeon_update_bandwidth_info(struct radeon_device *rdev) { fixed20_12 a; u32 sclk = rdev->pm.current_sclk; u32 mclk = rdev->pm.current_mclk; /* sclk/mclk in Mhz */ a.full = dfixed_const(100); rdev->pm.sclk.full = dfixed_const(sclk); rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a); rdev->pm.mclk.full = dfixed_const(mclk); rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a); if (rdev->flags & RADEON_IS_IGP) { a.full = dfixed_const(16); /* core_bandwidth = sclk(Mhz) * 16 */ rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a); } } /** * radeon_boot_test_post_card - check and possibly initialize the hw * * @rdev: radeon_device pointer * * Check if the asic is initialized and if not, attempt to initialize * it (all asics). * Returns true if initialized or false if not. */ bool radeon_boot_test_post_card(struct radeon_device *rdev) { if (radeon_card_posted(rdev)) return true; if (rdev->bios) { DRM_INFO("GPU not posted. posting now...\n"); if (rdev->is_atom_bios) atom_asic_init(rdev->mode_info.atom_context); else radeon_combios_asic_init(rdev->ddev); return true; } else { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return false; } } /** * radeon_dummy_page_init - init dummy page used by the driver * * @rdev: radeon_device pointer * * Allocate the dummy page used by the driver (all asics). * This dummy page is used by the driver as a filler for gart entries * when pages are taken out of the GART * Returns 0 on sucess, -ENOMEM on failure. */ int radeon_dummy_page_init(struct radeon_device *rdev) { if (rdev->dummy_page.page) return 0; rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO); if (rdev->dummy_page.page == NULL) return -ENOMEM; rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); return 0; } /** * radeon_dummy_page_fini - free dummy page used by the driver * * @rdev: radeon_device pointer * * Frees the dummy page used by the driver (all asics). */ void radeon_dummy_page_fini(struct radeon_device *rdev) { if (rdev->dummy_page.page == NULL) return; rdev->dummy_page.page = NULL; } /* ATOM accessor methods */ /* * ATOM is an interpreted byte code stored in tables in the vbios. The * driver registers callbacks to access registers and the interpreter * in the driver parses the tables and executes then to program specific * actions (set display modes, asic init, etc.). See radeon_atombios.c, * atombios.h, and atom.c */ /** * cail_pll_read - read PLL register * * @info: atom card_info pointer * @reg: PLL register offset * * Provides a PLL register accessor for the atom interpreter (r4xx+). * Returns the value of the PLL register. */ static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->pll_rreg(rdev, reg); return r; } /** * cail_pll_write - write PLL register * * @info: atom card_info pointer * @reg: PLL register offset * @val: value to write to the pll register * * Provides a PLL register accessor for the atom interpreter (r4xx+). */ static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->pll_wreg(rdev, reg, val); } /** * cail_mc_read - read MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * * Provides an MC register accessor for the atom interpreter (r4xx+). * Returns the value of the MC register. */ static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->mc_rreg(rdev, reg); return r; } /** * cail_mc_write - write MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * @val: value to write to the pll register * * Provides a MC register accessor for the atom interpreter (r4xx+). */ static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->mc_wreg(rdev, reg, val); } /** * cail_reg_write - write MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * @val: value to write to the pll register * * Provides a MMIO register accessor for the atom interpreter (r4xx+). */ static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32(reg*4, val); } /** * cail_reg_read - read MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * * Provides an MMIO register accessor for the atom interpreter (r4xx+). * Returns the value of the MMIO register. */ static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32(reg*4); return r; } /** * cail_ioreg_write - write IO register * * @info: atom card_info pointer * @reg: IO register offset * @val: value to write to the pll register * * Provides a IO register accessor for the atom interpreter (r4xx+). */ static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32_IO(reg*4, val); } /** * cail_ioreg_read - read IO register * * @info: atom card_info pointer * @reg: IO register offset * * Provides an IO register accessor for the atom interpreter (r4xx+). * Returns the value of the IO register. */ static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32_IO(reg*4); return r; } /** * radeon_atombios_init - init the driver info and callbacks for atombios * * @rdev: radeon_device pointer * * Initializes the driver info and register access callbacks for the * ATOM interpreter (r4xx+). * Returns 0 on sucess, -ENOMEM on failure. * Called at driver startup. */ int radeon_atombios_init(struct radeon_device *rdev) { struct card_info *atom_card_info = kzalloc(sizeof(struct card_info), GFP_KERNEL); if (!atom_card_info) return -ENOMEM; rdev->mode_info.atom_card_info = atom_card_info; atom_card_info->dev = rdev->ddev; atom_card_info->reg_read = cail_reg_read; atom_card_info->reg_write = cail_reg_write; /* needed for iio ops */ if (rdev->rio_mem) { atom_card_info->ioreg_read = cail_ioreg_read; atom_card_info->ioreg_write = cail_ioreg_write; } else { DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n"); atom_card_info->ioreg_read = cail_reg_read; atom_card_info->ioreg_write = cail_reg_write; } atom_card_info->mc_read = cail_mc_read; atom_card_info->mc_write = cail_mc_write; atom_card_info->pll_read = cail_pll_read; atom_card_info->pll_write = cail_pll_write; rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios); if (!rdev->mode_info.atom_context) { radeon_atombios_fini(rdev); return -ENOMEM; } mutex_init(&rdev->mode_info.atom_context->mutex); mutex_init(&rdev->mode_info.atom_context->scratch_mutex); radeon_atom_initialize_bios_scratch_regs(rdev->ddev); atom_allocate_fb_scratch(rdev->mode_info.atom_context); return 0; } /** * radeon_atombios_fini - free the driver info and callbacks for atombios * * @rdev: radeon_device pointer * * Frees the driver info and register access callbacks for the ATOM * interpreter (r4xx+). * Called at driver shutdown. */ void radeon_atombios_fini(struct radeon_device *rdev) { if (rdev->mode_info.atom_context) { kfree(rdev->mode_info.atom_context->scratch); } kfree(rdev->mode_info.atom_context); rdev->mode_info.atom_context = NULL; kfree(rdev->mode_info.atom_card_info); rdev->mode_info.atom_card_info = NULL; } /* COMBIOS */ /* * COMBIOS is the bios format prior to ATOM. It provides * command tables similar to ATOM, but doesn't have a unified * parser. See radeon_combios.c */ /** * radeon_combios_init - init the driver info for combios * * @rdev: radeon_device pointer * * Initializes the driver info for combios (r1xx-r3xx). * Returns 0 on sucess. * Called at driver startup. */ int radeon_combios_init(struct radeon_device *rdev) { radeon_combios_initialize_bios_scratch_regs(rdev->ddev); return 0; } /** * radeon_combios_fini - free the driver info for combios * * @rdev: radeon_device pointer * * Frees the driver info for combios (r1xx-r3xx). * Called at driver shutdown. */ void radeon_combios_fini(struct radeon_device *rdev) { } /* if we get transitioned to only one device, take VGA back */ /** * radeon_vga_set_decode - enable/disable vga decode * * @cookie: radeon_device pointer * @state: enable/disable vga decode * * Enable/disable vga decode (all asics). * Returns VGA resource flags. */ static unsigned int radeon_vga_set_decode(void *cookie, bool state) { struct radeon_device *rdev = cookie; radeon_vga_set_state(rdev, state); if (state) return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM | VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; else return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; } /** * radeon_check_pot_argument - check that argument is a power of two * * @arg: value to check * * Validates that a certain argument is a power of two (all asics). * Returns true if argument is valid. */ static bool radeon_check_pot_argument(int arg) { return (arg & (arg - 1)) == 0; } /** * Determine a sensible default GART size according to ASIC family. * * @family ASIC family name */ static int radeon_gart_size_auto(enum radeon_family family) { /* default to a larger gart size on newer asics */ if (family >= CHIP_TAHITI) return 2048; else if (family >= CHIP_RV770) return 1024; else return 512; } /** * radeon_check_arguments - validate module params * * @rdev: radeon_device pointer * * Validates certain module parameters and updates * the associated values used by the driver (all asics). */ static void radeon_check_arguments(struct radeon_device *rdev) { /* vramlimit must be a power of two */ if (!radeon_check_pot_argument(radeon_vram_limit)) { dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n", radeon_vram_limit); radeon_vram_limit = 0; } if (radeon_gart_size == -1) { radeon_gart_size = radeon_gart_size_auto(rdev->family); } /* gtt size must be power of two and greater or equal to 32M */ if (radeon_gart_size < 32) { dev_warn(rdev->dev, "gart size (%d) too small\n", radeon_gart_size); radeon_gart_size = radeon_gart_size_auto(rdev->family); } else if (!radeon_check_pot_argument(radeon_gart_size)) { dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n", radeon_gart_size); radeon_gart_size = radeon_gart_size_auto(rdev->family); } rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20; /* AGP mode can only be -1, 1, 2, 4, 8 */ switch (radeon_agpmode) { case -1: case 0: case 1: case 2: case 4: case 8: break; default: dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: " "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode); radeon_agpmode = 0; break; } if (!radeon_check_pot_argument(radeon_vm_size)) { dev_warn(rdev->dev, "VM size (%d) must be a power of 2\n", radeon_vm_size); radeon_vm_size = 4; } if (radeon_vm_size < 1) { dev_warn(rdev->dev, "VM size (%d) to small, min is 1GB\n", radeon_vm_size); radeon_vm_size = 4; } /* * Max GPUVM size for Cayman, SI and CI are 40 bits. */ if (radeon_vm_size > 1024) { dev_warn(rdev->dev, "VM size (%d) too large, max is 1TB\n", radeon_vm_size); radeon_vm_size = 4; } /* defines number of bits in page table versus page directory, * a page is 4KB so we have 12 bits offset, minimum 9 bits in the * page table and the remaining bits are in the page directory */ if (radeon_vm_block_size == -1) { /* Total bits covered by PD + PTs */ unsigned bits = ilog2(radeon_vm_size) + 18; /* Make sure the PD is 4K in size up to 8GB address space. Above that split equal between PD and PTs */ if (radeon_vm_size <= 8) radeon_vm_block_size = bits - 9; else radeon_vm_block_size = (bits + 3) / 2; } else if (radeon_vm_block_size < 9) { dev_warn(rdev->dev, "VM page table size (%d) too small\n", radeon_vm_block_size); radeon_vm_block_size = 9; } if (radeon_vm_block_size > 24 || (radeon_vm_size * 1024) < (1ull << radeon_vm_block_size)) { dev_warn(rdev->dev, "VM page table size (%d) too large\n", radeon_vm_block_size); radeon_vm_block_size = 9; } } /** * radeon_device_init - initialize the driver * * @rdev: radeon_device pointer * @pdev: drm dev pointer * @pdev: pci dev pointer * @flags: driver flags * * Initializes the driver info and hw (all asics). * Returns 0 for success or an error on failure. * Called at driver startup. */ int radeon_device_init(struct radeon_device *rdev, struct drm_device *ddev, struct pci_dev *pdev, uint32_t flags) { int r, i; int dma_bits; bool runtime = false; rdev->shutdown = false; rdev->dev = &pdev->dev; rdev->ddev = ddev; rdev->pdev = pdev; rdev->flags = flags; rdev->family = flags & RADEON_FAMILY_MASK; rdev->is_atom_bios = false; rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT; rdev->mc.gtt_size = 512 * 1024 * 1024; rdev->accel_working = false; /* set up ring ids */ for (i = 0; i < RADEON_NUM_RINGS; i++) { rdev->ring[i].idx = i; } rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS); DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n", radeon_family_name[rdev->family], pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); /* mutex initialization are all done here so we * can recall function without having locking issues */ mutex_init(&rdev->ring_lock); mutex_init(&rdev->dc_hw_i2c_mutex); atomic_set(&rdev->ih.lock, 0); mutex_init(&rdev->gem.mutex); mutex_init(&rdev->pm.mutex); mutex_init(&rdev->gpu_clock_mutex); mutex_init(&rdev->srbm_mutex); mutex_init(&rdev->grbm_idx_mutex); init_rwsem(&rdev->pm.mclk_lock); init_rwsem(&rdev->exclusive_lock); init_waitqueue_head(&rdev->irq.vblank_queue); mutex_init(&rdev->mn_lock); // hash_init(rdev->mn_hash); r = radeon_gem_init(rdev); if (r) return r; radeon_check_arguments(rdev); /* Adjust VM size here. * Max GPUVM size for cayman+ is 40 bits. */ rdev->vm_manager.max_pfn = radeon_vm_size << 18; /* Set asic functions */ r = radeon_asic_init(rdev); if (r) return r; /* all of the newer IGP chips have an internal gart * However some rs4xx report as AGP, so remove that here. */ if ((rdev->family >= CHIP_RS400) && (rdev->flags & RADEON_IS_IGP)) { rdev->flags &= ~RADEON_IS_AGP; } if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) { radeon_agp_disable(rdev); } /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ if (rdev->family >= CHIP_CAYMAN) rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ else if (rdev->family >= CHIP_CEDAR) rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */ else rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */ /* set DMA mask + need_dma32 flags. * PCIE - can handle 40-bits. * IGP - can handle 40-bits * AGP - generally dma32 is safest * PCI - dma32 for legacy pci gart, 40 bits on newer asics */ rdev->need_dma32 = false; if (rdev->flags & RADEON_IS_AGP) rdev->need_dma32 = true; if ((rdev->flags & RADEON_IS_PCI) && (rdev->family <= CHIP_RS740)) rdev->need_dma32 = true; dma_bits = rdev->need_dma32 ? 32 : 40; r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { rdev->need_dma32 = true; dma_bits = 32; printk(KERN_WARNING "radeon: No suitable DMA available.\n"); } /* Registers mapping */ /* TODO: block userspace mapping of io register */ spin_lock_init(&rdev->mmio_idx_lock); spin_lock_init(&rdev->smc_idx_lock); spin_lock_init(&rdev->pll_idx_lock); spin_lock_init(&rdev->mc_idx_lock); spin_lock_init(&rdev->pcie_idx_lock); spin_lock_init(&rdev->pciep_idx_lock); spin_lock_init(&rdev->pif_idx_lock); spin_lock_init(&rdev->cg_idx_lock); spin_lock_init(&rdev->uvd_idx_lock); spin_lock_init(&rdev->rcu_idx_lock); spin_lock_init(&rdev->didt_idx_lock); spin_lock_init(&rdev->end_idx_lock); if (rdev->family >= CHIP_BONAIRE) { rdev->rmmio_base = pci_resource_start(rdev->pdev, 5); rdev->rmmio_size = pci_resource_len(rdev->pdev, 5); } else { rdev->rmmio_base = pci_resource_start(rdev->pdev, 2); rdev->rmmio_size = pci_resource_len(rdev->pdev, 2); } rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size); if (rdev->rmmio == NULL) { return -ENOMEM; } DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base); DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size); /* doorbell bar mapping */ if (rdev->family >= CHIP_BONAIRE) radeon_doorbell_init(rdev); /* io port mapping */ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) { rdev->rio_mem_size = pci_resource_len(rdev->pdev, i); rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size); break; } } if (rdev->rio_mem == NULL) DRM_ERROR("Unable to find PCI I/O BAR\n"); if (rdev->flags & RADEON_IS_PX) radeon_device_handle_px_quirks(rdev); if (rdev->flags & RADEON_IS_PX) runtime = true; r = radeon_init(rdev); if (r) goto failed; if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) { /* Acceleration not working on AGP card try again * with fallback to PCI or PCIE GART */ radeon_asic_reset(rdev); radeon_fini(rdev); radeon_agp_disable(rdev); r = radeon_init(rdev); if (r) goto failed; } // r = radeon_ib_ring_tests(rdev); // if (r) // DRM_ERROR("ib ring test failed (%d).\n", r); if ((radeon_testing & 1)) { if (rdev->accel_working) radeon_test_moves(rdev); else DRM_INFO("radeon: acceleration disabled, skipping move tests\n"); } if ((radeon_testing & 2)) { if (rdev->accel_working) radeon_test_syncing(rdev); else DRM_INFO("radeon: acceleration disabled, skipping sync tests\n"); } if (radeon_benchmarking) { if (rdev->accel_working) radeon_benchmark(rdev, radeon_benchmarking); else DRM_INFO("radeon: acceleration disabled, skipping benchmarks\n"); } return 0; failed: return r; } /** * radeon_gpu_reset - reset the asic * * @rdev: radeon device pointer * * Attempt the reset the GPU if it has hung (all asics). * Returns 0 for success or an error on failure. */ int radeon_gpu_reset(struct radeon_device *rdev) { unsigned ring_sizes[RADEON_NUM_RINGS]; uint32_t *ring_data[RADEON_NUM_RINGS]; bool saved = false; int i, r; int resched; down_write(&rdev->exclusive_lock); if (!rdev->needs_reset) { up_write(&rdev->exclusive_lock); return 0; } radeon_save_bios_scratch_regs(rdev); /* block TTM */ // resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); radeon_suspend(rdev); for (i = 0; i < RADEON_NUM_RINGS; ++i) { ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i], &ring_data[i]); if (ring_sizes[i]) { saved = true; dev_info(rdev->dev, "Saved %d dwords of commands " "on ring %d.\n", ring_sizes[i], i); } } r = radeon_asic_reset(rdev); if (!r) { dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n"); radeon_resume(rdev); } radeon_restore_bios_scratch_regs(rdev); for (i = 0; i < RADEON_NUM_RINGS; ++i) { if (!r && ring_data[i]) { radeon_ring_restore(rdev, &rdev->ring[i], ring_sizes[i], ring_data[i]); } else { radeon_fence_driver_force_completion(rdev, i); kfree(ring_data[i]); } } // ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); if (r) { /* bad news, how to tell it to userspace ? */ dev_info(rdev->dev, "GPU reset failed\n"); } rdev->needs_reset = r == -EAGAIN; rdev->in_reset = false; up_read(&rdev->exclusive_lock); return r; } /* * Driver load/unload */ int radeon_driver_load_kms(struct drm_device *dev, unsigned long flags) { struct radeon_device *rdev; int r; rdev = kzalloc(sizeof(struct radeon_device), GFP_KERNEL); if (rdev == NULL) { return -ENOMEM; }; dev->dev_private = (void *)rdev; /* update BUS flag */ if (drm_pci_device_is_agp(dev)) { flags |= RADEON_IS_AGP; } else if (drm_device_is_pcie(dev)) { flags |= RADEON_IS_PCIE; } else { flags |= RADEON_IS_PCI; } /* radeon_device_init should report only fatal error * like memory allocation failure or iomapping failure, * or memory manager initialization failure, it must * properly initialize the GPU MC controller and permit * VRAM allocation */ r = radeon_device_init(rdev, dev, dev->pdev, flags); if (r) { DRM_ERROR("Fatal error while trying to initialize radeon.\n"); return r; } /* Again modeset_init should fail only on fatal error * otherwise it should provide enough functionalities * for shadowfb to run */ main_device = dev; if( radeon_modeset ) { r = radeon_modeset_init(rdev); if (r) { return r; } init_display_kms(dev, &usermode); } else init_display(rdev, &usermode); return 0; } resource_size_t drm_get_resource_start(struct drm_device *dev, unsigned int resource) { return pci_resource_start(dev->pdev, resource); } resource_size_t drm_get_resource_len(struct drm_device *dev, unsigned int resource) { return pci_resource_len(dev->pdev, resource); } uint32_t __div64_32(uint64_t *n, uint32_t base) { uint64_t rem = *n; uint64_t b = base; uint64_t res, d = 1; uint32_t high = rem >> 32; /* Reduce the thing a bit first */ res = 0; if (high >= base) { high /= base; res = (uint64_t) high << 32; rem -= (uint64_t) (high*base) << 32; } while ((int64_t)b > 0 && b < rem) { b = b+b; d = d+d; } do { if (rem >= b) { rem -= b; res += d; } b >>= 1; d >>= 1; } while (d); *n = res; return rem; } static struct pci_device_id pciidlist[] = { radeon_PCI_IDS }; u32 radeon_get_vblank_counter_kms(struct drm_device *dev, unsigned int pipe); int radeon_enable_vblank_kms(struct drm_device *dev, unsigned int pipe); void radeon_disable_vblank_kms(struct drm_device *dev, unsigned int pipe); int radeon_get_vblank_timestamp_kms(struct drm_device *dev, unsigned int pipe, int *max_error, struct timeval *vblank_time, unsigned flags); void radeon_gem_object_free(struct drm_gem_object *obj); void radeon_driver_irq_preinstall_kms(struct drm_device *dev); int radeon_driver_irq_postinstall_kms(struct drm_device *dev); void radeon_driver_irq_uninstall_kms(struct drm_device *dev); irqreturn_t radeon_driver_irq_handler_kms(int irq, void *arg); static struct drm_driver kms_driver = { .driver_features = DRIVER_USE_AGP | DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME | DRIVER_RENDER, .load = radeon_driver_load_kms, // .open = radeon_driver_open_kms, // .preclose = radeon_driver_preclose_kms, // .postclose = radeon_driver_postclose_kms, // .lastclose = radeon_driver_lastclose_kms, // .unload = radeon_driver_unload_kms, .get_vblank_counter = radeon_get_vblank_counter_kms, .enable_vblank = radeon_enable_vblank_kms, .disable_vblank = radeon_disable_vblank_kms, .get_vblank_timestamp = radeon_get_vblank_timestamp_kms, .get_scanout_position = radeon_get_crtc_scanoutpos, #if defined(CONFIG_DEBUG_FS) .debugfs_init = radeon_debugfs_init, .debugfs_cleanup = radeon_debugfs_cleanup, #endif .irq_preinstall = radeon_driver_irq_preinstall_kms, .irq_postinstall = radeon_driver_irq_postinstall_kms, .irq_uninstall = radeon_driver_irq_uninstall_kms, .irq_handler = radeon_driver_irq_handler_kms, // .ioctls = radeon_ioctls_kms, .gem_free_object = radeon_gem_object_free, // .gem_open_object = radeon_gem_object_open, // .gem_close_object = radeon_gem_object_close, // .dumb_create = radeon_mode_dumb_create, // .dumb_map_offset = radeon_mode_dumb_mmap, // .dumb_destroy = drm_gem_dumb_destroy, // .fops = &radeon_driver_kms_fops, // .prime_handle_to_fd = drm_gem_prime_handle_to_fd, // .prime_fd_to_handle = drm_gem_prime_fd_to_handle, // .gem_prime_export = drm_gem_prime_export, // .gem_prime_import = drm_gem_prime_import, // .gem_prime_pin = radeon_gem_prime_pin, // .gem_prime_unpin = radeon_gem_prime_unpin, // .gem_prime_get_sg_table = radeon_gem_prime_get_sg_table, // .gem_prime_import_sg_table = radeon_gem_prime_import_sg_table, // .gem_prime_vmap = radeon_gem_prime_vmap, // .gem_prime_vunmap = radeon_gem_prime_vunmap, }; int ati_init(void) { static pci_dev_t device; const struct pci_device_id *ent; int err; ent = find_pci_device(&device, pciidlist); if( unlikely(ent == NULL) ) { dbgprintf("device not found\n"); return -ENODEV; }; drm_core_init(); DRM_INFO("device %x:%x\n", device.pci_dev.vendor, device.pci_dev.device); kms_driver.driver_features |= DRIVER_MODESET; err = drm_get_pci_dev(&device.pci_dev, ent, &kms_driver); return err; }