; trees.asm -- output deflated data using Huffman coding ; Copyright (C) 1995-2012 Jean-loup Gailly ; detect_data_type() function provided freely by Cosmin Truta, 2006 ; For conditions of distribution and use, see copyright notice in zlib.inc ; ALGORITHM ; The "deflation" process uses several Huffman trees. The more ; common source values are represented by shorter bit sequences. ; Each code tree is stored in a compressed form which is itself ; a Huffman encoding of the lengths of all the code strings (in ; ascending order by source values). The actual code strings are ; reconstructed from the lengths in the inflate process, as described ; in the deflate specification. ; REFERENCES ; Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". ; Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc ; Storer, James A. ; Data Compression: Methods and Theory, pp. 49-50. ; Computer Science Press, 1988. ISBN 0-7167-8156-5. ; Sedgewick, R. ; Algorithms, p290. ; Addison-Wesley, 1983. ISBN 0-201-06672-6. ; =========================================================================== ; Constants MAX_BL_BITS equ 7 ; Bit length codes must not exceed MAX_BL_BITS bits END_BLOCK equ 256 ; end of block literal code REP_3_6 equ 16 ; repeat previous bit length 3-6 times (2 bits of repeat count) REPZ_3_10 equ 17 ; repeat a zero length 3-10 times (3 bits of repeat count) REPZ_11_138 equ 18 ; repeat a zero length 11-138 times (7 bits of repeat count) align 4 extra_lbits dd \ ;int [LENGTH_CODES] ;extra bits for each length code 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0 align 4 extra_dbits dd \ ;int [D_CODES] ;extra bits for each distance code 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 align 4 extra_blbits dd \ ;int [BL_CODES] ;extra bits for each bit length code 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7 align 4 bl_order db 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 ; The lengths of the bit length codes are sent in order of decreasing ; probability, to avoid transmitting the lengths for unused bit length codes. ; =========================================================================== ; Local data. These are initialized only once. DIST_CODE_LEN equ 512 ;see definition of array dist_code below if GEN_TREES_H eq 1 ;| !(STDC) ; non ANSI compilers may not accept trees.inc align 4 static_ltree rb sizeof.ct_data * (L_CODES+2) ; The static literal tree. Since the bit lengths are imposed, there is no ; need for the L_CODES extra codes used during heap construction. However ; The codes 286 and 287 are needed to build a canonical tree (see _tr_init ; below). align 4 static_dtree rb sizeof.ct_data * D_CODES ; The static distance tree. (Actually a trivial tree since all codes use ; 5 bits.) align 4 _dist_code rb DIST_CODE_LEN ;uch[] ; Distance codes. The first 256 values correspond to the distances ; 3 .. 258, the last 256 values correspond to the top 8 bits of ; the 15 bit distances. align 4 _length_code rb MAX_MATCH-MIN_MATCH+1 ;uch[] ; length code for each normalized match length (0 == MIN_MATCH) align 4 base_length rd LENGTH_CODES ;int[] ; First normalized length for each code (0 = MIN_MATCH) align 4 base_dist rd D_CODES ;int[] ; First normalized distance for each code (0 = distance of 1) else include 'trees.inc' end if ;GEN_TREES_H struct static_tree_desc static_tree dd ? ;const ct_data * ;static tree or NULL extra_bits dd ? ;const intf * ;extra bits for each code or NULL extra_base dd ? ;int ;base index for extra_bits elems dd ? ;int ;max number of elements in the tree max_length dd ? ;int ;max bit length for the codes ends align 4 static_l_desc static_tree_desc static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS align 4 static_d_desc static_tree_desc static_dtree, extra_dbits, 0, D_CODES, MAX_BITS align 4 static_bl_desc static_tree_desc 0, extra_blbits, 0, BL_CODES, MAX_BL_BITS ; =========================================================================== ; Local (static) routines in this file. macro send_code s, c, tree { if DEBUG eq 1 ; if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)) end if push eax ebx if c eq eax else mov eax,c end if imul eax,sizeof.ct_data add eax,tree movzx ebx,word[eax+Len] push ebx movzx ebx,word[eax+Code] push ebx stdcall send_bits, s ;tree[c].Code, tree[c].Len pop ebx eax } ; Send a code of the given tree[c] and tree must not have side effects ; =========================================================================== ; Output a short LSB first on the stream. ; IN assertion: there is enough room in pendingBuf. macro put_short s, w { mov eax,[s+deflate_state.pending] add eax,[s+deflate_state.pending_buf] mov word[eax],w add dword[s+deflate_state.pending],2 } ; =========================================================================== ; Send a value on a given number of bits. ; IN assertion: length <= 16 and value fits in length bits. ;void (s, value, length) ; deflate_state* s ; int value ;value to send ; int length ;number of bits align 4 proc send_bits uses eax ecx edi, s:dword, value:dword, length:dword ; Tracevv((stderr," l %2d v %4x ", length, value)); ;if DEBUG eq 1 mov eax,[length] cmp eax,0 jle @f cmp eax,15 jle .end1 @@: zlib_assert 'invalid length' ;Assert(..>0 && ..<=15) .end1: mov edi,[s] ;;add [edi+deflate_state.bits_sent],eax ; If not enough room in bi_buf, use (valid) bits from bi_buf and ; (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) ; unused bits in value. mov ecx,Buf_size sub ecx,eax cmp [edi+deflate_state.bi_valid],ecx jle @f ;if (..>..) mov eax,[value] mov ecx,[edi+deflate_state.bi_valid] shl eax,cl or [edi+deflate_state.bi_buf],ax mov cx,[edi+deflate_state.bi_buf] put_short edi, cx mov eax,[value] mov ecx,Buf_size sub ecx,[edi+deflate_state.bi_valid] sar eax,cl mov [edi+deflate_state.bi_buf],ax mov eax,[length] sub eax,Buf_size jmp .end0 @@: ;else mov eax,[value] mov ecx,[edi+deflate_state.bi_valid] shl eax,cl or [edi+deflate_state.bi_buf],ax mov eax,[length] .end0: add [edi+deflate_state.bi_valid],eax ;else ;!DEBUG ;{ int len = length; ; if (s->bi_valid > (int)Buf_size - len) { ; int val = value; ; s->bi_buf |= (uint_16)val << s->bi_valid; ; put_short(s, s->bi_buf); ; s->bi_buf = (uint_16)val >> (Buf_size - s->bi_valid); ; s->bi_valid += len - Buf_size; ; } else { ; s->bi_buf |= (uint_16)(value) << s->bi_valid; ; s->bi_valid += len; ; } ;} ;end if ;DEBUG ret endp ; the arguments must not have side effects ; =========================================================================== ; Initialize the various 'constant' tables. ;int static_init_done = 0 ;void () align 4 proc tr_static_init if GEN_TREES_H eq 1 ; int n ;iterates over tree elements ; int bits ;bit counter ; int length ;length value ; int code ;code value ; int dist ;distance index ; uint_16 bl_count[MAX_BITS+1]; ; number of codes at each bit length for an optimal tree ; if (static_init_done) return; ; For some embedded targets, global variables are not initialized: ;if NO_INIT_GLOBAL_POINTERS ; static_l_desc.static_tree = static_ltree; ; static_l_desc.extra_bits = extra_lbits; ; static_d_desc.static_tree = static_dtree; ; static_d_desc.extra_bits = extra_dbits; ; static_bl_desc.extra_bits = extra_blbits; ;end if ; Initialize the mapping length (0..255) -> length code (0..28) ; length = 0; ; for (code = 0; code < LENGTH_CODES-1; code++) { ; base_length[code] = length; ; for (n = 0; n < (1< dist code (0..29) ; dist = 0; ; for (code = 0 ; code < 16; code++) { ; base_dist[code] = dist; ; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ ; for ( ; code < D_CODES; code++) { ; base_dist[code] = dist << 7; ; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { ; _dist_code[256 + dist++] = (uch)code; ; } ; } ; Assert (dist == 256, "tr_static_init: 256+dist != 512"); ; Construct the codes of the static literal tree ; for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; ; n = 0; ; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; ; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; ; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; ; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; ; Codes 286 and 287 do not exist, but we must include them in the ; tree construction to get a canonical Huffman tree (longest code ; all ones) ; gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); ; The static distance tree is trivial: ; for (n = 0; n < D_CODES; n++) { ; static_dtree[n].Len = 5; ; static_dtree[n].Code = bi_reverse((unsigned)n, 5); ; } ; static_init_done = 1; if GEN_TREES_H eq 1 call gen_trees_header end if end if ;(GEN_TREES_H) | !(STDC) ret endp ; =========================================================================== ; Genererate the file trees.inc describing the static trees. ;# define SEPARATOR(i, last, width) \ ; ((i) == (last)? "\n};\n\n" : \ ; ((i) % (width) == (width)-1 ? ",\n" : ", ")) ;void () align 4 proc gen_trees_header ; FILE *header = fopen("trees.inc", "w"); ; int i; ; Assert (header != NULL, "Can't open trees.inc"); ; fprintf(header, ; "/* header created automatically with -DGEN_TREES_H */\n\n"); ; fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); ; for (i = 0; i < L_CODES+2; i++) { ; fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, ; static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); ; } ; fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); ; for (i = 0; i < D_CODES; i++) { ; fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, ; static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); ; } ; fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); ; for (i = 0; i < DIST_CODE_LEN; i++) { ; fprintf(header, "%2u%s", _dist_code[i], ; SEPARATOR(i, DIST_CODE_LEN-1, 20)); ; } ; fprintf(header, ; "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); ; for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { ; fprintf(header, "%2u%s", _length_code[i], ; SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); ; } ; fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); ; for (i = 0; i < LENGTH_CODES; i++) { ; fprintf(header, "%1u%s", base_length[i], ; SEPARATOR(i, LENGTH_CODES-1, 20)); ; } ; fprintf(header, "local const int base_dist[D_CODES] = {\n"); ; for (i = 0; i < D_CODES; i++) { ; fprintf(header, "%5u%s", base_dist[i], ; SEPARATOR(i, D_CODES-1, 10)); ; } ; fclose(header); ret endp ; =========================================================================== ; Initialize the tree data structures for a new zlib stream. ;void (deflate_state* s) align 4 proc _tr_init uses eax edi, s:dword mov edi,[s] call tr_static_init mov eax,edi add eax,deflate_state.dyn_ltree mov [edi+deflate_state.l_desc.dyn_tree],eax mov [edi+deflate_state.l_desc.stat_desc],static_l_desc add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree mov [edi+deflate_state.d_desc.dyn_tree],eax mov [edi+deflate_state.d_desc.stat_desc],static_d_desc add eax,deflate_state.bl_tree-deflate_state.dyn_dtree mov [edi+deflate_state.bl_desc.dyn_tree],eax mov [edi+deflate_state.bl_desc.stat_desc],static_bl_desc; mov word[edi+deflate_state.bi_buf],0 mov dword[edi+deflate_state.bi_valid],0 if DEBUG eq 1 mov dword[edi+deflate_state.compressed_len],0 mov dword[edi+deflate_state.bits_sent],0 end if ; Initialize the first block of the first file: stdcall init_block,edi ret endp ; =========================================================================== ; Initialize a new block. ;void (deflate_state* s) align 4 proc init_block uses eax ecx edi, s:dword mov edi,[s] ; Initialize the trees. mov eax,edi add eax,deflate_state.dyn_ltree+Freq mov ecx,L_CODES @@: mov word[eax],0 add eax,sizeof.ct_data loop @b mov eax,edi add eax,deflate_state.dyn_dtree+Freq mov ecx,D_CODES @@: mov word[eax],0 add eax,sizeof.ct_data loop @b mov eax,edi add eax,deflate_state.bl_tree+Freq mov ecx,BL_CODES @@: mov word[eax],0 add eax,sizeof.ct_data loop @b mov word[edi+sizeof.ct_data*END_BLOCK+deflate_state.dyn_ltree+Freq],1 mov dword[edi+deflate_state.static_len],0 mov dword[edi+deflate_state.opt_len],0 mov dword[edi+deflate_state.matches],0 mov dword[edi+deflate_state.last_lit],0 ret endp SMALLEST equ 1 ; Index within the heap array of least frequent node in the Huffman tree ; =========================================================================== ; Remove the smallest element from the heap and recreate the heap with ; one less element. Updates heap and heap_len. macro pqremove s, tree, top { mov eax,s add eax,deflate_state.heap+4*SMALLEST movzx top,word[eax] push ebx mov ebx,[s+deflate_state.heap_len] mov ebx,[s+deflate_state.heap+4*ebx] mov [eax],ebx dec dword[s+deflate_state.heap_len] pop ebx stdcall pqdownheap, s, tree, SMALLEST } ; =========================================================================== ; Compares to subtrees, using the tree depth as tie breaker when ; the subtrees have equal frequency. This minimizes the worst case length. macro smaller tree, n, m, depth, m_end { ;if (..<.. || (..==.. && depth[n] <= depth[m])) local .end0 mov eax,n imul eax,sizeof.ct_data add eax,tree mov ax,word[eax+Freq] mov ebx,m imul ebx,sizeof.ct_data add ebx,tree cmp ax,word[ebx+Freq] jl .end0 jne m_end mov eax,n mov al,byte[eax+depth] mov ebx,m cmp al,byte[ebx+depth] jg m_end .end0: } ; =========================================================================== ; Restore the heap property by moving down the tree starting at node k, ; exchanging a node with the smallest of its two sons if necessary, stopping ; when the heap property is re-established (each father smaller than its ; two sons). ;void (s, tree, k) ; deflate_state* s ; ct_data* tree ;the tree to restore ; int k ;node to move down align 4 proc pqdownheap, s:dword, tree:dword, k:dword pushad ;ecx - v dw mov edi,[s] mov esi,[k] mov ecx,[edi+deflate_state.heap+4*esi] shl esi,1 ;esi = j ;left son of k .cycle0: ;while (..<=..) cmp esi,[edi+deflate_state.heap_len] jg .cycle0end ; Set j to the smallest of the two sons: ;;cmp esi,[edi+deflate_state.heap_len] jge .end1 ;if (..<.. && lea edx,[edi+4*esi+deflate_state.heap] smaller [tree], dword[edx+4], dword[edx], edi+deflate_state.depth, .end1 inc esi .end1: ; Exit if v is smaller than both sons mov edx,[edi+deflate_state.heap+4*esi] smaller [tree], ecx, edx, edi+deflate_state.depth, .end2 jmp .cycle0end ;break .end2: ; Exchange v with the smallest son ;;mov dx,[edi+deflate_state.heap+2*esi] mov eax,[k] mov [edi+deflate_state.heap+4*eax],edx mov [k],esi ; And continue down the tree, setting j to the left son of k shl esi,1 jmp .cycle0 align 4 .cycle0end: mov eax,[k] mov [edi+deflate_state.heap+4*eax],ecx popad ret endp ; =========================================================================== ; Compute the optimal bit lengths for a tree and update the total bit length ; for the current block. ; IN assertion: the fields freq and dad are set, heap[heap_max] and ; above are the tree nodes sorted by increasing frequency. ; OUT assertions: the field len is set to the optimal bit length, the ; array bl_count contains the frequencies for each bit length. ; The length opt_len is updated; static_len is also updated if stree is ; not null. ;void (deflate_state* s, tree_desc* desc) align 16 proc gen_bitlen, s:dword, desc:dword locals tree dd ? ;ct_data* ;= desc.dyn_tree max_code dd ? ;int ;= desc.max_code stree dd ? ;ct_data* ;= desc.stat_desc.static_tree extra dd ? ;intf* ;= desc.stat_desc.extra_bits base dd ? ;int ;= desc.stat_desc.extra_base max_length dd ? ;int ;= desc.stat_desc.max_length h dd ? ;int ;heap index m dd ? ;int ;iterate over the tree elements bits dd ? ;int ;bit length xbits dd ? ;int ;extra bits f dw ? ;uint_16 ;frequency overflow dd 0 ;int ;number of elements with bit length too large endl pushad mov edi,[s] mov edx,[desc] mov eax,[edx+tree_desc.dyn_tree] mov [tree],eax mov eax,[edx+tree_desc.max_code] mov [max_code],eax mov ebx,[edx+tree_desc.stat_desc] mov eax,[ebx+static_tree_desc.static_tree] mov [stree],eax mov eax,[ebx+static_tree_desc.extra_bits] mov [extra],eax mov eax,[ebx+static_tree_desc.extra_base] mov [base],eax mov eax,[ebx+static_tree_desc.max_length] mov [max_length],eax xor ecx,ecx .cycle0: cmp ecx,MAX_BITS jg .cycle0end ;for (..;..<=..;..) mov word[edi+deflate_state.bl_count+2*ecx],0 inc ecx jmp .cycle0 align 4 .cycle0end: ; In a first pass, compute the optimal bit lengths (which may ; overflow in the case of the bit length tree). mov eax,[edi+deflate_state.heap_max] mov eax,[edi+deflate_state.heap+4*eax] imul eax,sizeof.ct_data add eax,[tree] mov word[eax+Len],0 ;root of the heap mov eax,[edi+deflate_state.heap_max] inc eax mov [h],eax jmp @f align 4 .cycle1: inc dword[h] @@: cmp dword[h],HEAP_SIZE jge .cycle1end ;for (..;..<..;..) mov eax,[h] mov ecx,[edi+4*eax+deflate_state.heap] ;ecx = n mov edx,[tree] movzx eax,word[edx+sizeof.ct_data*ecx+Dad] movzx eax,word[edx+sizeof.ct_data*eax+Len] inc eax mov [bits],eax ;bits = tree[tree[n].Dad].Len + 1 cmp eax,[max_length] jle @f ;if (..>..) mov eax,[max_length] mov [bits],eax inc dword[overflow] @@: mov [edx+sizeof.ct_data*ecx+Len],ax ; We overwrite tree[n].Dad which is no longer needed cmp ecx,[max_code] jg .cycle1 ;if (..>..) continue ;not a leaf node inc word[edi+2*eax+deflate_state.bl_count] mov dword[xbits],0 cmp ecx,[base] jl @f ;if (..>=..) mov eax,ecx sub eax,[base] shl eax,2 ;*= sizeof.dd add eax,[extra] mov eax,[eax] mov [xbits],eax @@: movzx eax,word[edx+sizeof.ct_data*ecx+Freq] mov [f],ax mov esi,[bits] add esi,[xbits] imul eax,esi add [edi+deflate_state.opt_len],eax cmp dword[stree],0 je .cycle1 ;if (..) movzx eax,word[f] mov esi,[stree] movzx esi,word[esi+sizeof.ct_data*ecx+Len] add esi,[xbits] imul eax,esi add [edi+deflate_state.static_len],eax jmp .cycle1 align 4 .cycle1end: cmp dword[overflow],0 je .end_f ;if (..==0) return ; Trace((stderr,"\nbit length overflow\n")); ; This happens for example on obj2 and pic of the Calgary corpus ; Find the first bit length which could increase: .cycle2: ;do mov eax,[max_length] dec eax mov [bits],eax shl eax,1 ;*= sizeof.dw add eax,edi add eax,deflate_state.bl_count @@: cmp word[eax],0 jne @f ;while (..==0) bits-- dec dword[bits] sub eax,2 jmp @b align 4 @@: dec word[eax] ;move one leaf down the tree add word[eax+2],2 ;move one overflow item as its brother mov eax,[max_length] dec word[edi+deflate_state.bl_count+2*eax] ; The brother of the overflow item also moves one step up, ; but this does not affect bl_count[max_length] sub dword[overflow],2 cmp dword[overflow],0 jg .cycle2 ;while (..>0) ; Now recompute all bit lengths, scanning in increasing frequency. ; h is still equal to HEAP_SIZE. (It is simpler to reconstruct all ; lengths instead of fixing only the wrong ones. This idea is taken ; from 'ar' written by Haruhiko Okumura.) mov eax,[max_length] mov [bits],eax .cycle3: cmp dword[bits],0 je .end_f ;for (..;..!=0;..) mov eax,[bits] movzx ecx,word[edi+2*eax+deflate_state.bl_count] .cycle4: ;while (..!=0) test ecx,ecx jz .cycle4end dec dword[h] mov eax,[h] mov eax,[edi+4*eax+deflate_state.heap] mov [m],eax ;m = s.heap[--h] cmp eax,[max_code] jg .cycle4 ;if (..>..) continue mov esi,[m] imul esi,sizeof.ct_data add esi,edx ;esi = &tree[m] mov eax,[bits] cmp word[esi+Len],ax je @f ;if (..!=..) ; Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); movzx ebx,word[esi+Len] sub eax,ebx movzx ebx,word[esi+Freq] imul eax,ebx ;eax = (bits - tree[m].Len) * tree[m].Freq add [edi+deflate_state.opt_len],eax mov eax,[bits] mov word[esi+Len],ax @@: dec ecx jmp .cycle4 align 4 .cycle4end: dec dword[bits] jmp .cycle3 align 4 .end_f: popad ret endp ; =========================================================================== ; Generate the codes for a given tree and bit counts (which need not be ; optimal). ; IN assertion: the array bl_count contains the bit length statistics for ; the given tree and the field len is set for all tree elements. ; OUT assertion: the field code is set for all tree elements of non ; zero code length. ;void (tree, max_code, bl_count) ; ct_data *tree ;the tree to decorate ; int max_code ;largest code with non zero frequency ; uint_16p bl_count ;number of codes at each bit length align 4 proc gen_codes uses eax ebx ecx edx edi, tree:dword, max_code:dword, bl_count:dword locals u_code dw 0 ;uint_16 ;running code value bits dd 1 ;int ;bit index next_code rw MAX_BITS+1 ;uint_16[] ;next code value for each bit length endl ; The distribution counts are first used to generate the code values ; without bit reversal. mov ebx,ebp sub ebx,2*(MAX_BITS+1) .cycle0: ;for (..;..<=..;..) cmp dword[bits],MAX_BITS jg .cycle0end mov eax,[bits] dec eax shl eax,1 add eax,[bl_count] mov ax,word[eax] add ax,[u_code] shl ax,1 ;ax = (u_code + bl_count[bits-1]) << 1 mov [u_code],ax mov ecx,[bits] mov word[ebx+2*ecx],ax ;next_code[bits] = u_code inc dword[bits] jmp .cycle0 .cycle0end: ; Check that the bit counts in bl_count are consistent. The last code ; must be all ones. mov eax,[bl_count] mov ax,word[eax+2*MAX_BITS] add ax,[u_code] dec ax cmp ax,(1 shl MAX_BITS)-1 je @f zlib_assert 'inconsistent bit counts' ;Assert(..==..) @@: ; Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); xor ecx,ecx ;n = 0 .cycle1: ;for (..;..<=..;..) cmp ecx,[max_code] jg .cycle1end mov edx,sizeof.ct_data imul edx,ecx add edx,[tree] ;edx = &tree[n] movzx edi,word[edx+Len] cmp edi,0 jne @f ;if (..==0) continue inc ecx jmp .cycle1 @@: ; Now reverse the bits movzx eax,word[ebx+2*edi] stdcall bi_reverse, eax, edi mov word[edx+Code],ax inc word[ebx+2*edi] ; Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", ; n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); inc ecx jmp .cycle1 .cycle1end: ret endp ; =========================================================================== ; Construct one Huffman tree and assigns the code bit strings and lengths. ; Update the total bit length for the current block. ; IN assertion: the field freq is set for all tree elements. ; OUT assertions: the fields len and code are set to the optimal bit length ; and corresponding code. The length opt_len is updated; static_len is ; also updated if stree is not null. The field max_code is set. ;void (s, desc) ; deflate_state* s ; tree_desc *desc ;the tree descriptor align 4 proc build_tree uses eax ebx ecx edx edi, s:dword, desc:dword locals tree dd ? ;ct_data* ;= desc.dyn_tree stree dd ? ;ct_data* ;= desc.stat_desc.static_tree elems dd ? ;int ;= desc.stat_desc.elems m dd ? ;int ;iterate over heap elements max_code dd -1 ;int ;largest code with non zero frequency node dd ? ;int ;new node being created endl ; Construct the initial heap, with least frequent element in ; heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. ; heap[0] is not used. mov ebx,[desc] mov eax,[ebx+tree_desc.dyn_tree] mov [tree],eax mov ecx,[ebx+tree_desc.stat_desc] mov eax,[ecx+static_tree_desc.static_tree] mov [stree],eax mov ecx,[ecx+static_tree_desc.elems] mov [elems],ecx mov edi,[s] zlib_debug 'build_tree cycle0 ecx = %d',ecx mov dword[edi+deflate_state.heap_len],0 mov dword[edi+deflate_state.heap_max],HEAP_SIZE mov edx,[tree] xor ecx,ecx .cycle0: ;for (..;..<..;..) cmp ecx,[elems] jge .cycle1 cmp word[edx+Freq],0 je @f ;if (..!=0) inc dword[edi+deflate_state.heap_len] mov eax,[edi+deflate_state.heap_len] mov [max_code],ecx mov dword[edi+deflate_state.heap+4*eax],ecx mov byte[edi+deflate_state.depth+ecx],0 jmp .end0 align 4 @@: ;else mov word[edx+Len],0 .end0: add edx,sizeof.ct_data inc ecx jmp .cycle0 ; The pkzip format requires that at least one distance code exists, ; and that at least one bit should be sent even if there is only one ; possible code. So to avoid special checks later on we force at least ; two codes of non zero frequency. align 4 .cycle1: ;while (..<..) cmp dword[edi+deflate_state.heap_len],2 jge .cycle1end inc dword[edi+deflate_state.heap_len] xor eax,eax cmp dword[max_code],2 jge @f inc dword[max_code] mov eax,[max_code] @@: mov ecx,[edi+deflate_state.heap_len] mov [edi+deflate_state.heap+4*ecx],eax mov [node],eax imul eax,sizeof.ct_data add eax,[tree] mov word[eax+Freq],1 mov eax,[node] mov byte[edi+deflate_state.depth+eax],0 dec dword[edi+deflate_state.opt_len] cmp dword[stree],0 je .cycle1 ;if (..) mov eax,[node] imul eax,sizeof.ct_data add eax,[stree] movzx eax,word[eax+Len] sub [edi+deflate_state.static_len],eax ; node is 0 or 1 so it does not have extra bits jmp .cycle1 align 4 .cycle1end: mov eax,[max_code] mov [ebx+tree_desc.max_code],eax ; The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, ; establish sub-heaps of increasing lengths: mov ecx,[edi+deflate_state.heap_len] sar ecx,1 .cycle2: ;for (..;..>=..;..) cmp ecx,1 jl .cycle2end stdcall pqdownheap, edi, [tree], ecx dec ecx jmp .cycle2 align 4 .cycle2end: ; Construct the Huffman tree by repeatedly combining the least two ; frequent nodes. mov eax,[elems] mov [node],eax ;next internal node of the tree .cycle3: ;do pqremove edi, [tree], ecx ;n = node of least frequency movzx edx,word[eax] mov [m],edx ;m = node of next least frequency mov eax,[edi+deflate_state.heap_max] dec eax mov [edi+deflate_state.heap+4*eax],ecx ;keep the nodes sorted by frequency dec eax mov [edi+deflate_state.heap_max],eax mov [edi+deflate_state.heap+4*eax],edx ; Create a new node father of n and m ;;mov edx,[m] imul edx,sizeof.ct_data add edx,[tree] mov ax,word[edx+Freq] mov edx,[tree] add ax,word[edx+sizeof.ct_data*ecx+Freq] mov edx,[node] imul edx,sizeof.ct_data add edx,[tree] mov word[edx+Freq],ax mov eax,ecx add eax,edi mov al,byte[eax+deflate_state.depth] mov edx,[m] add edx,edi mov ah,byte[edx+deflate_state.depth] cmp al,ah jge @f ;if (al>=ah) al=al : al=ah mov al,ah @@: inc al mov edx,[node] add edx,edi mov byte[edx+deflate_state.depth],al mov eax,[node] mov edx,[m] imul edx,sizeof.ct_data add edx,[tree] mov [edx+Dad],ax mov edx,ecx imul edx,sizeof.ct_data add edx,[tree] mov [edx+Dad],ax ;if DUMP_BL_TREE eq 1 ; if (tree == s->bl_tree) { ; fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", ; node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); ; } ;end if ; and insert the new node in the heap mov ecx,[node] mov [edi+deflate_state.heap+4*SMALLEST],ecx inc dword[node] stdcall pqdownheap, edi, [tree], SMALLEST cmp dword[edi+deflate_state.heap_len],2 jge .cycle3 ;while (..>=..) mov ecx,[edi+deflate_state.heap+4*SMALLEST] dec dword[edi+deflate_state.heap_max] mov eax,[edi+deflate_state.heap_max] mov [edi+deflate_state.heap+4*eax],ecx ; At this point, the fields freq and dad are set. We can now ; generate the bit lengths. stdcall gen_bitlen, edi, [desc] ; The field len is now set, we can generate the bit codes mov eax,edi add eax,deflate_state.bl_count stdcall gen_codes, [tree], [max_code], eax ret endp ; =========================================================================== ; Scan a literal or distance tree to determine the frequencies of the codes ; in the bit length tree. ;void (s, tree, max_code) ; deflate_state* s ; ct_data *tree ;the tree to be scanned ; int max_code ;and its largest code of non zero frequency align 4 proc scan_tree uses eax ebx ecx edi, s:dword, tree:dword, max_code:dword locals n dd ? ;int ;iterates over all tree elements prevlen dd -1 ;int ;last emitted length curlen dd ? ;int ;length of current code nextlen dd ? ;int ;= tree[0].Len ;length of next code count dd 0 ;int ;repeat count of the current code max_count dd 7 ;int ;max repeat count min_count dd 4 ;int ;min repeat count endl mov edi,[s] mov eax,[tree] movzx eax,word[eax+Len] mov [nextlen],eax test eax,eax jnz @f ;if (..==0) mov dword[max_count],138 mov dword[min_count],3 @@: mov eax,[max_code] inc eax imul eax,sizeof.ct_data add eax,[tree] mov word[eax+Len],0xffff ;guard xor ecx,ecx align 4 .cycle0: cmp ecx,[max_code] jg .cycle0end ;for (..;..<=..;..) mov eax,[nextlen] mov [curlen],eax inc ecx mov eax,sizeof.ct_data imul eax,ecx add eax,[tree] movzx eax,word[eax+Len] mov [nextlen],eax inc dword[count] mov ebx,[count] cmp ebx,[max_count] jge .end0 mov eax,[nextlen] cmp [curlen],eax je .cycle0 ;if (..<.. && ..==..) continue align 4 .end0: cmp ebx,[min_count] jge .end1 ;else if (..<..) mov eax,[curlen] imul eax,sizeof.ct_data add eax,edi add word[eax+deflate_state.bl_tree+Freq],bx jmp .end4 align 4 .end1: cmp dword[curlen],0 je .end2 ;else if (..!=0) mov eax,[curlen] cmp eax,[prevlen] je @f ;if (..!=..) imul eax,sizeof.ct_data add eax,edi inc word[eax+deflate_state.bl_tree+Freq] @@: mov eax,REP_3_6 imul eax,sizeof.ct_data add eax,edi inc word[eax+deflate_state.bl_tree+Freq] jmp .end4 align 4 .end2: cmp ebx,10 jg .end3 ;else if (..<=..) mov eax,REPZ_3_10 imul eax,sizeof.ct_data add eax,edi inc word[eax+deflate_state.bl_tree+Freq] jmp .end4 align 4 .end3: ;else mov eax,REPZ_11_138 imul eax,sizeof.ct_data add eax,edi inc word[eax+deflate_state.bl_tree+Freq] .end4: mov eax,[curlen] mov [prevlen],eax xor eax,eax mov dword[count],eax cmp dword[nextlen],eax jne .end5 ;if (..==0) mov dword[max_count],138 mov dword[min_count],3 jmp .cycle0 align 4 .end5: cmp eax,[nextlen] jne .end6 ;else if (..==..) mov dword[max_count],6 mov dword[min_count],3 jmp .cycle0 align 4 .end6: ;else mov dword[max_count],7 mov dword[min_count],4 jmp .cycle0 align 4 .cycle0end: ret endp ; =========================================================================== ; Send a literal or distance tree in compressed form, using the codes in ; bl_tree. ;void (s, tree, max_code) ; deflate_state* s ; ct_data *tree ;the tree to be scanned ; int max_code ;and its largest code of non zero frequency align 16 proc send_tree uses eax ebx ecx edi, s:dword, tree:dword, max_code:dword locals n dd ? ;int ;iterates over all tree elements prevlen dd -1 ;int ;last emitted length curlen dd ? ;int ;length of current code nextlen dd ? ;int ;= tree[0].Len ;length of next code count dd 0 ;int ;repeat count of the current code max_count dd 7 ;int ;max repeat count min_count dd 4 ;int ;min repeat count endl mov edi,[s] ; *** tree[max_code+1].Len = -1 ;guard already set mov eax,[tree] movzx eax,word[eax+Len] mov [nextlen],eax xor ecx,ecx test eax,eax jnz .cycle0 ;if (..==0) mov dword[max_count],138 mov dword[min_count],3 align 4 .cycle0: ;for (..;..<=..;..) cmp ecx,[max_code] jg .cycle0end mov eax,[nextlen] mov [curlen],eax mov eax,ecx inc eax imul eax,sizeof.ct_data add eax,[tree] movzx eax,word[eax+Len] mov [nextlen],eax inc dword[count] mov ebx,[count] cmp ebx,[max_count] jge .end0 mov eax,[nextlen] cmp [curlen],eax jne .end0 ;if (..<.. && ..==..) inc ecx jmp .cycle0 ;continue align 4 .end0: cmp ebx,[min_count] jge .end1 ;else if (..<..) @@: ;do mov ebx,edi add ebx,deflate_state.bl_tree send_code edi, [curlen], ebx dec dword[count] jnz @b ;while (..!=0) jmp .end4 align 4 .end1: cmp dword[curlen],0 je .end2 ;else if (..!=0) mov eax,[curlen] cmp eax,[prevlen] je @f ;if (..!=..) mov ebx,edi add ebx,deflate_state.bl_tree send_code edi, eax, ebx dec dword[count] @@: cmp dword[count],3 jl @f cmp dword[count],6 jle .end8 @@: zlib_assert ' 3_6?' ;Assert(..>=.. && ..<=..) .end8: mov ebx,edi add ebx,deflate_state.bl_tree send_code edi, REP_3_6, ebx mov ebx,[count] sub ebx,3 stdcall send_bits, edi, ebx, 2 jmp .end4 .end2: cmp ebx,10 jg .end3 ;else if (..<=..) mov ebx,edi add ebx,deflate_state.bl_tree send_code edi, REPZ_3_10, ebx mov ebx,[count] sub ebx,3 stdcall send_bits, edi, ebx, 3 jmp .end4 .end3: ;else mov ebx,edi add ebx,deflate_state.bl_tree send_code edi, REPZ_11_138, ebx mov ebx,[count] sub ebx,11 stdcall send_bits, edi, ebx, 7 .end4: mov eax,[curlen] mov [prevlen],eax xor eax,eax mov dword[count],eax cmp [nextlen],eax jne .end5 ;if (..==0) mov dword[max_count],138 mov dword[min_count],3 jmp .end7 .end5: mov eax,[curlen] cmp eax,[nextlen] jne .end6 ;else if (..==..) mov dword[max_count],6 mov dword[min_count],3 jmp .end7 .end6: ;else mov dword[max_count],7 mov dword[min_count],4 .end7: inc ecx jmp .cycle0 align 4 .cycle0end: ret endp ; =========================================================================== ; Construct the Huffman tree for the bit lengths and return the index in ; bl_order of the last bit length code to send. ;int (deflate_state* s) align 16 proc build_bl_tree uses ebx ecx edi, s:dword ;ebx - max_blindex ;index of last bit length code of non zero freq mov edi,[s] ; Determine the bit length frequencies for literal and distance trees mov eax,edi add eax,deflate_state.dyn_ltree stdcall scan_tree, edi, eax, [edi+deflate_state.l_desc.max_code] add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree stdcall scan_tree, edi, eax, [edi+deflate_state.d_desc.max_code] ; Build the bit length tree: add eax,deflate_state.bl_desc-deflate_state.dyn_dtree stdcall build_tree, edi, eax ; opt_len now includes the length of the tree representations, except ; the lengths of the bit lengths codes and the 5+5+4 bits for the counts. ; Determine the number of bit length codes to send. The pkzip format ; requires that at least 4 bit length codes be sent. (appnote.txt says ; 3 but the actual value used is 4.) mov ebx,BL_CODES-1 jmp @f align 4 .cycle0: ;for (..;..>=..;..) dec ebx @@: cmp ebx,3 jl .cycle0end movzx ecx,byte[ebx+bl_order] movzx ecx,word[edi+sizeof.ct_data*ecx+deflate_state.bl_tree+Len] jecxz .cycle0 align 4 .cycle0end: ; Update opt_len to include the bit length tree and counts mov eax,ebx inc eax imul eax,3 add eax,5+5+4 add [edi+deflate_state.opt_len],eax ; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); mov eax,ebx ret endp ; =========================================================================== ; Send the header for a block using dynamic Huffman trees: the counts, the ; lengths of the bit length codes, the literal tree and the distance tree. ; IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. ;void (deflate_state* s, lcodes, dcodes, blcodes) ; int lcodes, dcodes, blcodes ;number of codes for each tree align 4 proc send_all_trees uses eax ebx ecx edi, s:dword, lcodes:dword, dcodes:dword, blcodes:dword ;ecx = index in bl_order cmp dword[lcodes],257 jl @f cmp dword[dcodes],1 jl @f cmp dword[blcodes],4 jge .end0 @@: zlib_assert 'not enough codes' ;Assert(..>=.. && ..>=.. && ..>=..) .end0: cmp dword[lcodes],L_CODES jg @f cmp dword[dcodes],D_CODES jg @f cmp dword[blcodes],BL_CODES jle .end1 @@: zlib_assert 'too many codes' ;Assert(..<=.. && ..<=.. && ..<=..) .end1: ; Tracev((stderr, "\nbl counts: ")); mov edi,[s] mov eax,[lcodes] sub eax,257 stdcall send_bits, edi, eax, 5 ;not +255 as stated in appnote.txt mov eax,[dcodes] dec eax stdcall send_bits, edi, eax, 5 mov eax,[blcodes] sub eax,4 stdcall send_bits, edi, eax, 4 ;not -3 as stated in appnote.txt xor ecx,ecx .cycle0: cmp ecx,[blcodes] jge .cycle0end ;for (..;..<..;..) ; Tracev((stderr, "\nbl code %2d ", bl_order[ecx])); movzx eax,byte[ecx+bl_order] movzx eax,word[edi+sizeof.ct_data*eax+deflate_state.bl_tree+Len] stdcall send_bits, edi, eax, 3 inc ecx jmp .cycle0 align 4 .cycle0end: ; Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); mov ebx,[lcodes] dec ebx mov eax,edi add eax,deflate_state.dyn_ltree stdcall send_tree, edi, eax, ebx ;literal tree ; Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); mov ebx,[dcodes] dec ebx add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree stdcall send_tree, edi, eax, ebx ;distance tree ; Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); ret endp ; =========================================================================== ; Send a stored block ;void (s, buf, stored_len, last) ; deflate_state* s ; charf *buf ;input block ; ulg stored_len ;length of input block ; int last ;one if this is the last block for a file align 4 proc _tr_stored_block uses eax edi, s:dword, buf:dword, stored_len:dword, last:dword mov edi,[s] mov eax,[last] add eax,STORED_BLOCK shl 1 stdcall send_bits, edi, eax, 3 ;send block type if DEBUG eq 1 mov eax,[edi+deflate_state.compressed_len] add eax,3+7 and eax,not 7 mov [edi+deflate_state.compressed_len],eax mov eax,[stored_len] add eax,4 shl eax,3 add [edi+deflate_state.compressed_len],eax end if stdcall copy_block, edi, [buf], [stored_len], 1 ;with header ret endp ; =========================================================================== ; Flush the bits in the bit buffer to pending output (leaves at most 7 bits) ;void (deflate_state* s) ;align 4 ;proc _tr_flush_bits, s:dword ; stdcall bi_flush, [s] ; ret ;endp _tr_flush_bits equ bi_flush ; =========================================================================== ; Send one empty static block to give enough lookahead for inflate. ; This takes 10 bits, of which 7 may remain in the bit buffer. ;void (deflate_state* s) align 4 proc _tr_align uses edi, s:dword mov edi,[s] stdcall send_bits, edi, STATIC_TREES shl 1, 3 send_code edi, END_BLOCK, static_ltree if DEBUG eq 1 add [edi+deflate_state.compressed_len],10 ;3 for block type, 7 for EOB end if stdcall bi_flush, edi ret endp ; =========================================================================== ; Determine the best encoding for the current block: dynamic trees, static ; trees or store, and output the encoded block to the zip file. ;void (s, buf, stored_len, last) ; deflate_state* s ; charf *buf ;input block, or NULL if too old ; ulg stored_len ;length of input block ; int last ;one if this is the last block for a file align 4 proc _tr_flush_block uses eax ebx edi, s:dword, buf:dword, stored_len:dword, last:dword locals opt_lenb dd ? ;ulg static_lenb dd ? ;opt_len and static_len in bytes max_blindex dd 0 ;int ;index of last bit length code of non zero freq endl ; Build the Huffman trees unless a stored block is forced mov edi,[s] cmp word[edi+deflate_state.level],0 jle .end0 ;if (..>0) ; Check if the file is binary or text mov ebx,[edi+deflate_state.strm] cmp dword[ebx+z_stream.data_type],Z_UNKNOWN jne @f ;if (..==..) stdcall detect_data_type, edi mov [ebx+z_stream.data_type],eax @@: ; Construct the literal and distance trees mov eax,edi add eax,deflate_state.l_desc stdcall build_tree, edi, eax ; Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); mov eax,edi add eax,deflate_state.d_desc stdcall build_tree, edi, eax ; Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); ; At this point, opt_len and static_len are the total bit lengths of ; the compressed block data, excluding the tree representations. ; Build the bit length tree for the above two trees, and get the index ; in bl_order of the last bit length code to send. stdcall build_bl_tree, edi mov [max_blindex],eax ; Determine the best encoding. Compute the block lengths in bytes. mov eax,[edi+deflate_state.opt_len] add eax,3+7 shr eax,3 mov [opt_lenb],eax mov eax,[edi+deflate_state.static_len] add eax,3+7 shr eax,3 mov [static_lenb],eax ; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", ; opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, ; s->last_lit)); cmp eax,[opt_lenb] ja .end1 ;if (..<=..) mov [opt_lenb],eax jmp .end1 .end0: ;else cmp dword[buf],0 jne @f zlib_assert 'lost buf' ;Assert(..!=0) @@: mov eax,[stored_len] add eax,5 mov [static_lenb],eax mov [opt_lenb],eax ;force a stored block .end1: if FORCE_STORED eq 1 cmp dword[buf],0 je .end2 ;if (..!=0) ;force stored block else mov eax,[stored_len] add eax,4 cmp eax,[opt_lenb] ja .end2 cmp dword[buf],0 je .end2 ;if (..<=.. && ..!=0) ;4: two words for the lengths end if ; The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. ; Otherwise we can't have processed more than WSIZE input bytes since ; the last block flush, because compression would have been ; successful. If LIT_BUFSIZE <= WSIZE, it is never too late to ; transform a block into a stored block. stdcall _tr_stored_block, edi, [buf], [stored_len], [last] jmp .end4 .end2: if FORCE_STATIC eq 1 cmp dword[static_lenb],0 jl .end3 ;else if (..>=0) ;force static trees else cmp word[edi+deflate_state.strategy],Z_FIXED je @f mov eax,[opt_lenb] cmp [static_lenb],eax je @f ;else if (..==.. || ..==..) jmp .end3 @@: end if mov eax,STATIC_TREES shl 1 add eax,[last] stdcall send_bits, edi, eax, 3 stdcall compress_block, edi, static_ltree, static_dtree if DEBUG eq 1 mov eax,[edi+deflate_state.static_len] add eax,3 add [edi+deflate_state.compressed_len],eax end if jmp .end4 .end3: ;else mov eax,DYN_TREES shl 1 add eax,[last] stdcall send_bits, edi, eax, 3 mov eax,[max_blindex] inc eax push eax mov eax,[edi+deflate_state.d_desc.max_code] inc eax push eax mov eax,[edi+deflate_state.l_desc.max_code] inc eax stdcall send_all_trees, edi, eax ;, ..., ... mov eax,edi add eax,deflate_state.dyn_dtree push eax add eax,deflate_state.dyn_ltree-deflate_state.dyn_dtree stdcall compress_block, edi, eax ;, ... if DEBUG eq 1 mov eax,[edi+deflate_state.opt_len] add eax,3 add [edi+deflate_state.compressed_len],eax end if .end4: ; Assert (s->compressed_len == s->bits_sent, "bad compressed size"); ; The above check is made mod 2^32, for files larger than 512 MB ; and uLong implemented on 32 bits. stdcall init_block,edi cmp dword[last],0 je @f ;if (..) stdcall bi_windup,edi if DEBUG eq 1 add [edi+deflate_state.compressed_len],7 ;align on byte boundary end if @@: ; Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, ; s->compressed_len-7*last)); ret endp ; =========================================================================== ; Save the match info and tally the frequency counts. Return true if ; the current block must be flushed. ;int (s, dist, lc) ; deflate_state* s ; unsigned dist ;distance of matched string ; unsigned lc ;match length-MIN_MATCH or unmatched char (if dist==0) align 4 proc _tr_tally uses ebx edi, s:dword, dist:dword, lc:dword mov edi,[s] mov eax,[edi+deflate_state.last_lit] shl eax,1 add eax,[edi+deflate_state.d_buf] mov ebx,[dist] mov word[eax],bx mov eax,[edi+deflate_state.last_lit] add eax,[edi+deflate_state.l_buf] mov ebx,[lc] mov byte[eax],bl inc dword[edi+deflate_state.last_lit] cmp dword[dist],0 jne @f ;if (..==0) ; lc is the unmatched char mov eax,[lc] inc word[edi+sizeof.ct_data*eax+deflate_state.dyn_ltree+Freq] jmp .end0 align 4 @@: ;else inc dword[edi+deflate_state.matches] ; Here, lc is the match length - MIN_MATCH dec dword[dist] ;dist = match distance - 1 MAX_DIST edi cmp word[dist],ax jge @f cmp word[lc],MAX_MATCH-MIN_MATCH jg @f d_code [dist] cmp ax,D_CODES jl .end2 @@: zlib_assert '_tr_tally: bad match' ;Assert(..<.. && ..<=.. && ..<..) .end2: mov eax,[lc] movzx eax,byte[eax+_length_code] inc word[edi+sizeof.ct_data*eax+deflate_state.dyn_ltree+sizeof.ct_data*(LITERALS+1)+Freq] d_code [dist] inc word[edi+sizeof.ct_data*eax+deflate_state.dyn_dtree+Freq] .end0: if TRUNCATE_BLOCK eq 1 ; Try to guess if it is profitable to stop the current block here mov eax,[edi+deflate_state.last_lit] and eax,0x1fff jnz .end1 cmp word[edi+deflate_state.level],2 jle .end1 ;if (..==0 && ..>..) ; Compute an upper bound for the compressed length ; ulg out_length = (ulg)s->last_lit*8L; ; ulg in_length = (ulg)((long)s->strstart - s->block_start); ; int dcode; ; for (dcode = 0; dcode < D_CODES; dcode++) { ; out_length += (ulg)s->dyn_dtree[dcode].Freq * ; (5L+extra_dbits[dcode]); ; } ; out_length >>= 3; ; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", ; s->last_lit, in_length, out_length, ; 100L - out_length*100L/in_length)); ; if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; .end1: end if mov ebx,[edi+deflate_state.lit_bufsize] dec ebx xor eax,eax cmp [edi+deflate_state.last_lit],ebx sete al ;return (..==..) ; We avoid equality with lit_bufsize because of wraparound at 64K ; on 16 bit machines and because stored blocks are restricted to ; 64K-1 bytes. ret endp ; =========================================================================== ; Send the block data compressed using the given Huffman trees ;void (s, ltree, dtree) ; deflate_state* s ; ct_data *ltree ;literal tree ; ct_data *dtree ;distance tree align 4 proc compress_block uses eax edi, s:dword, ltree:dword, dtree:dword locals dist dd ? ;unsigned ;distance of matched string lc dd ? ;int ;match length or unmatched char (if dist == 0) lx dd 0 ;unsigned ;running index in l_buf u_code dd ? ;unsigned ;the code to send endl mov edi,[s] cmp dword[edi+deflate_state.last_lit],0 je .end0 ;if (..!=0) .cycle0: ; do mov eax,[lx] shl eax,1 add eax,[edi+deflate_state.d_buf] movzx eax,word[eax] mov [dist],eax mov eax,[lx] add eax,[edi+deflate_state.l_buf] movzx eax,byte[eax] mov [lc],eax inc dword[lx] cmp dword[dist],0 jne @f ;if (..==0) send_code edi, [lc], [ltree] ;send a literal byte ; Tracecv(isgraph(lc), (stderr," '%c' ", lc)); jmp .end1 @@: ;else ; Here, lc is the match length - MIN_MATCH mov eax,[lc] add eax,_length_code movzx eax,byte[eax] mov [u_code],eax add eax,LITERALS+1 send_code edi, eax, [ltree] ;send the length code mov eax,[u_code] mov eax,[4*eax+extra_lbits] test eax,eax jz @f ;if (..!=0) push eax ;extra mov eax,[u_code] mov eax,[4*eax+base_length] sub [lc],eax stdcall send_bits, edi, [lc] ;, ... ;send the extra length bits @@: dec dword[dist] ;dist is now the match distance - 1 d_code [dist] mov [u_code],eax cmp eax,D_CODES jl @f zlib_assert 'bad d_code' ;Assert(..<..) @@: send_code edi, [u_code], [dtree] ;send the distance code mov eax,[u_code] mov eax,[4*eax+extra_dbits] test eax,eax jz .end1 ;if (..!=0) push eax ;extra mov eax,[u_code] mov eax,[4*eax+base_dist] sub [dist],eax stdcall send_bits, edi, [dist] ;, ... ;send the extra distance bits .end1: ;literal or match pair ? ; Check that the overlay between pending_buf and d_buf+l_buf is ok: mov eax,[lx] shl eax,1 add eax,[edi+deflate_state.lit_bufsize] cmp [edi+deflate_state.pending],eax jl @f zlib_assert 'pendingBuf overflow' ;Assert(..<..) @@: mov eax,[edi+deflate_state.last_lit] cmp [lx],eax jb .cycle0 ;while (..<..) align 4 .end0: send_code edi, END_BLOCK, [ltree] ret endp ; =========================================================================== ; Check if the data type is TEXT or BINARY, using the following algorithm: ; - TEXT if the two conditions below are satisfied: ; a) There are no non-portable control characters belonging to the ; "black list" (0..6, 14..25, 28..31). ; b) There is at least one printable character belonging to the ; "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). ; - BINARY otherwise. ; - The following partially-portable control characters form a ; "gray list" that is ignored in this detection algorithm: ; (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). ; IN assertion: the fields Freq of dyn_ltree are set. ;int (deflate_state* s) align 4 proc detect_data_type uses ebx ecx edi, s:dword ; black_mask is the bit mask of black-listed bytes ; set bits 0..6, 14..25, and 28..31 ; 0xf3ffc07f = binary 11110011111111111100000001111111 locals black_mask dd 0xf3ffc07f endl mov edi,[s] ; Check for non-textual ("black-listed") bytes. xor ecx,ecx mov ebx,edi add ebx,deflate_state.dyn_ltree+Freq .cycle0: cmp ecx,31 jg .cycle0end ;for (..;..<=..;..,..) bt dword[black_mask],0 jnc @f cmp word[ebx],0 je @f ;if (..&.. && ..!=0) mov eax,Z_BINARY jmp .end_f @@: shr dword[black_mask],1 add ebx,sizeof.ct_data inc ecx jmp .cycle0 .cycle0end: ; Check for textual ("white-listed") bytes. mov ebx,edi add ebx,deflate_state.dyn_ltree+Freq+9*sizeof.ct_data cmp word[ebx],0 jne @f add ebx,sizeof.ct_data cmp word[ebx],0 jne @f add ebx,3*sizeof.ct_data cmp word[ebx],0 je .end0 @@: ;if (..!=0 || ..!=0 || ..!= 0) mov eax,Z_TEXT jmp .end_f .end0: mov ecx,32 mov ebx,edi add ebx,deflate_state.dyn_ltree+Freq+32*sizeof.ct_data .cycle1: cmp ecx,LITERALS jge .cycle1end ;for (..;..<..;..,..) cmp word[ebx],0 je @f ;if (..!=0) mov eax,Z_TEXT jmp .end_f @@: add ebx,sizeof.ct_data inc ecx jmp .cycle1 .cycle1end: ; There are no "black-listed" or "white-listed" bytes: ; this stream either is empty or has tolerated ("gray-listed") bytes only. mov eax,Z_BINARY .end_f: ret endp ; =========================================================================== ; Reverse the first len bits of a code, using straightforward code (a faster ; method would use a table) ; IN assertion: 1 <= len <= 15 ;unsigned (code, len) ; unsigned code ;the value to invert ; int len ;its bit length align 4 proc bi_reverse uses ebx, p1code:dword, len:dword xor eax,eax @@: ;do mov ebx,[p1code] and ebx,1 or eax,ebx shr dword[p1code],1 shl eax,1 dec dword[len] cmp dword[len],0 jg @b ;while (..>..) shr eax,1 ret endp ; =========================================================================== ; Flush the bit buffer, keeping at most 7 bits in it. ;void (deflate_state* s) align 4 proc bi_flush uses eax ecx edi, s:dword mov edi,[s] cmp dword[edi+deflate_state.bi_valid],16 jne @f ;if (..==..) mov cx,[edi+deflate_state.bi_buf] put_short edi,cx mov word[edi+deflate_state.bi_buf],0 mov dword[edi+deflate_state.bi_valid],0 jmp .end0 @@: ;else if (..>=..) cmp dword[edi+deflate_state.bi_valid],8 jl .end0 mov cl,byte[edi+deflate_state.bi_buf] put_byte edi,cl shr word[edi+deflate_state.bi_buf],8 sub dword[edi+deflate_state.bi_valid],8 .end0: ret endp ; =========================================================================== ; Flush the bit buffer and align the output on a byte boundary ;void (deflate_state* s) align 4 proc bi_windup uses eax ecx edi, s:dword mov edi,[s] cmp dword[edi+deflate_state.bi_valid],8 jle @f ;if (..>..) mov cx,[edi+deflate_state.bi_buf] put_short edi, cx jmp .end0 @@: ;else if (..>0) cmp dword[edi+deflate_state.bi_valid],0 jle .end0 mov cl,byte[edi+deflate_state.bi_buf] put_byte edi, cl .end0: mov word[edi+deflate_state.bi_buf],0 mov dword[edi+deflate_state.bi_valid],0 if DEBUG eq 1 mov eax,[edi+deflate_state.bits_sent] add eax,7 and eax,not 7 mov [edi+deflate_state.bits_sent],eax end if ret endp ; =========================================================================== ; Copy a stored block, storing first the length and its ; one's complement if requested. ;void (s, buf, len, header) ; deflate_state* s ; charf *buf ;the input data ; unsigned len ;its length ; int header ;true if block header must be written align 4 proc copy_block uses eax ebx ecx edi esi, s:dword, buf:dword, len:dword, p4header:dword mov edi,[s] stdcall bi_windup,edi ;align on byte boundary cmp dword[p4header],0 je @f ;if (..) mov ecx,[len] put_short edi, cx not cx put_short edi, cx if DEBUG eq 1 add dword[edi+deflate_state.bits_sent],2*16 end if @@: if DEBUG eq 1 mov ecx,[len] shl ecx,3 add [edi+deflate_state.bits_sent],ecx end if mov ecx,[len] ; test ecx,ecx ; jz .end_f mov esi,[buf] jmp .end0 align 4 @@: ;while (len--) lodsb mov bl,al put_byte edi, bl .end0: loop @b ; .end_f: ret endp