;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Copyright (C) KolibriOS team 2004-2016. All rights reserved. ;; ;; Distributed under terms of the GNU General Public License ;; ;; ;; ;; Realtek 8139 driver for KolibriOS ;; ;; ;; ;; based on RTL8139.asm driver for menuetos ;; ;; and realtek8139.asm for SolarOS by Eugen Brasoveanu ;; ;; ;; ;; Written by hidnplayr@kolibrios.org ;; ;; ;; ;; GNU GENERAL PUBLIC LICENSE ;; ;; Version 2, June 1991 ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; format PE DLL native entry START CURRENT_API = 0x0200 COMPATIBLE_API = 0x0100 API_VERSION = (COMPATIBLE_API shl 16) + CURRENT_API MAX_DEVICES = 16 RBLEN = 3 ; Receive buffer size: 0==8K 1==16k 2==32k 3==64k TXRR = 8 ; total retries = 16+(TXRR*16) TX_MXDMA = 6 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=2048 ERTXTH = 8 ; in unit of 32 bytes e.g:(8*32)=256 RX_MXDMA = 7 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=unlimited RXFTH = 7 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=no threshold __DEBUG__ = 1 __DEBUG_LEVEL__ = 2 ; 1 = verbose, 2 = errors only section '.flat' readable writable executable include '../proc32.inc' include '../struct.inc' include '../macros.inc' include '../fdo.inc' include '../netdrv.inc' REG_IDR0 = 0x00 REG_MAR0 = 0x08 ; multicast filter register 0 REG_MAR4 = 0x0c ; multicast filter register 4 REG_TSD0 = 0x10 ; transmit status of descriptor REG_TSAD0 = 0x20 ; transmit start address of descriptor REG_RBSTART = 0x30 ; RxBuffer start address REG_COMMAND = 0x37 ; command register REG_CAPR = 0x38 ; current address of packet read (word) R/W REG_IMR = 0x3c ; interrupt mask register REG_ISR = 0x3e ; interrupt status register REG_TXCONFIG = 0x40 ; transmit configuration register REG_RXCONFIG = 0x44 ; receive configuration register 0 REG_MPC = 0x4c ; missed packet counter REG_9346CR = 0x50 ; serial eeprom 93C46 command register REG_CONFIG1 = 0x52 ; configuration register 1 REG_MSR = 0x58 ; Media Status register REG_CONFIG4 = 0x5a ; configuration register 4 REG_HLTCLK = 0x5b ; undocumented halt clock register REG_BMCR = 0x62 ; basic mode control register REG_ANAR = 0x66 ; auto negotiation advertisement register REG_9346CR_WE = 11b shl 6 BIT_RUNT = 4 ; total packet length < 64 bytes BIT_LONG = 3 ; total packet length > 4k BIT_CRC = 2 ; crc error occured BIT_FAE = 1 ; frame alignment error occured BIT_ROK = 0 ; received packet is ok BIT_RST = 4 ; reset bit BIT_RE = 3 ; receiver enabled BIT_TE = 2 ; transmitter enabled BUFE = 1 ; rx buffer is empty, no packet stored BIT_ISR_TOK = 2 ; transmit ok BIT_ISR_RER = 1 ; receive error interrupt BIT_ISR_ROK = 0 ; receive ok BIT_TX_MXDMA = 8 ; Max DMA burst size per Tx DMA burst BIT_TXRR = 4 ; Tx Retry count 16+(TXRR*16) BIT_RXFTH = 13 ; Rx fifo threshold BIT_RBLEN = 11 ; Ring buffer length indicator BIT_RX_MXDMA = 8 ; Max DMA burst size per Rx DMA burst BIT_NOWRAP = 7 ; transfered data wrapping BIT_9356SEL = 6 ; eeprom selector 9346/9356 BIT_AER = 5 ; accept error packets BIT_AR = 4 ; accept runt packets BIT_AB = 3 ; accept broadcast packets BIT_AM = 2 ; accept multicast packets BIT_APM = 1 ; accept physical match packets BIT_AAP = 0 ; accept all packets BIT_93C46_EEM1 = 7 ; RTL8139 eeprom operating mode1 BIT_93C46_EEM0 = 6 ; RTL8139 eeprom operating mode0 BIT_93C46_EECS = 3 ; chip select BIT_93C46_EESK = 2 ; serial data clock BIT_93C46_EEDI = 1 ; serial data input BIT_93C46_EEDO = 0 ; serial data output BIT_LWACT = 4 ; see REG_CONFIG1 BIT_SLEEP = 1 ; sleep bit at older chips BIT_PWRDWN = 0 ; power down bit at older chips BIT_PMEn = 0 ; power management enabled BIT_LWPTN = 2 ; see REG_CONFIG4 BIT_ERTXTH = 16 ; early TX threshold BIT_TOK = 15 ; transmit ok BIT_OWN = 13 ; tx DMA operation is completed BIT_ANE = 12 ; auto negotiation enable BIT_TXFD = 8 ; 100base-T full duplex BIT_TX = 7 ; 100base-T BIT_10FD = 6 ; 10base-T full duplex BIT_10 = 5 ; 10base-T BIT_SELECTOR = 0 ; binary encoded selector CSMA/CD=00001 BIT_IFG1 = 25 BIT_IFG0 = 24 RX_CONFIG = (RBLEN shl BIT_RBLEN) or \ (RX_MXDMA shl BIT_RX_MXDMA) or \ (1 shl BIT_NOWRAP) or \ (RXFTH shl BIT_RXFTH) or\ (1 shl BIT_AB) or \ ; Accept broadcast packets (1 shl BIT_APM) or \ ; Accept physical match packets (1 shl BIT_AER) or \ ; Accept error packets (1 shl BIT_AR) or \ ; Accept Runt packets (smaller then 64 bytes) (1 shl BIT_AM) ; Accept multicast packets RX_BUFFER_SIZE = (8192 shl RBLEN);+16+1500 NUM_TX_DESC = 4 ; not user selectable EE_93C46_REG_ETH_ID = 7 ; MAC offset EE_93C46_READ_CMD = (6 shl 6) ; 110b + 6bit address EE_93C56_READ_CMD = (6 shl 8) ; 110b + 8bit address EE_93C46_CMD_LENGTH = 9 ; start bit + cmd + 6bit address EE_93C56_CMD_LENGTH = 11 ; start bit + cmd + 8bit ddress ; See chapter "5.7 Transmit Configuration Register" of RTL8139D(L).pdf VER_RTL8139 = 1100000b VER_RTL8139A = 1110000b VER_RTL8139AG = 1110100b VER_RTL8139B = 1111000b VER_RTL8130 = VER_RTL8139B VER_RTL8139C = 1110100b VER_RTL8100 = 1111010b VER_RTL8100B = 1110101b VER_RTL8139D = VER_RTL8100B VER_RTL8139CP = 1110110b VER_RTL8101 = 1110111b IDX_RTL8139 = 0 IDX_RTL8139A = 1 IDX_RTL8139B = 2 IDX_RTL8139C = 3 IDX_RTL8100 = 4 IDX_RTL8139D = 5 IDX_RTL8139D = 6 IDX_RTL8101 = 7 ISR_SERR = 1 shl 15 ISR_TIMEOUT = 1 shl 14 ISR_LENCHG = 1 shl 13 ISR_FIFOOVW = 1 shl 6 ISR_PUN = 1 shl 5 ISR_RXOVW = 1 shl 4 ISR_TER = 1 shl 3 ISR_TOK = 1 shl 2 ISR_RER = 1 shl 1 ISR_ROK = 1 shl 0 INTERRUPT_MASK = ISR_ROK or \ ISR_RER or \ ISR_TOK or \ ISR_TER or \ ISR_RXOVW or \ ISR_PUN or \ ISR_FIFOOVW or \ ISR_LENCHG or \ ISR_TIMEOUT or \ ISR_SERR TSR_OWN = 1 shl 13 TSR_TUN = 1 shl 14 TSR_TOK = 1 shl 15 TSR_CDH = 1 shl 28 TSR_OWC = 1 shl 29 TSR_TABT = 1 shl 30 TSR_CRS = 1 shl 31 struct device ETH_DEVICE io_addr dd ? pci_bus dd ? pci_dev dd ? irq_line db ? rb 3 ; align 4 rx_buffer dd ? rx_data_offset dd ? curr_tx_desc db ? hw_ver_id db ? rb 2 ; align 4 TX_DESC rd NUM_TX_DESC ends ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; proc START ;; ;; ;; ;; (standard driver proc) ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;; proc START c, reason:dword, cmdline:dword cmp [reason], DRV_ENTRY jne .fail DEBUGF 2,"Loading driver\n" invoke RegService, my_service, service_proc ret .fail: xor eax, eax ret endp ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; proc SERVICE_PROC ;; ;; ;; ;; (standard driver proc) ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;; proc service_proc stdcall, ioctl:dword mov edx, [ioctl] mov eax, [edx + IOCTL.io_code] ;------------------------------------------------------ cmp eax, 0 ;SRV_GETVERSION jne @F cmp [edx + IOCTL.out_size], 4 jb .fail mov eax, [edx + IOCTL.output] mov [eax], dword API_VERSION xor eax, eax ret ;------------------------------------------------------ @@: cmp eax, 1 ;SRV_HOOK jne .fail cmp [edx + IOCTL.inp_size], 3 ; Data input must be at least 3 bytes jb .fail mov eax, [edx + IOCTL.input] cmp byte [eax], 1 ; 1 means device number and bus number (pci) are given jne .fail ; other types arent supported for this card yet ; check if the device is already listed mov esi, device_list mov ecx, [devices] test ecx, ecx jz .firstdevice mov ax, [eax+1] ; get the pci bus and device numbers .nextdevice: mov ebx, [esi] cmp al, byte[ebx + device.pci_bus] jne @f cmp ah, byte[ebx + device.pci_dev] je .find_devicenum ; Device is already loaded, let's find it's device number @@: add esi, 4 loop .nextdevice ; This device doesnt have its own eth_device structure yet, lets create one .firstdevice: cmp [devices], MAX_DEVICES ; First check if the driver can handle one more card jae .fail allocate_and_clear ebx, sizeof.device, .fail ; Allocate the buffer for device structure ; Fill in the direct call addresses into the struct mov [ebx + device.reset], reset mov [ebx + device.transmit], transmit mov [ebx + device.unload], unload mov [ebx + device.name], my_service ; save the pci bus and device numbers mov eax, [edx + IOCTL.input] movzx ecx, byte[eax+1] mov [ebx + device.pci_bus], ecx movzx ecx, byte[eax+2] mov [ebx + device.pci_dev], ecx ; Now, it's time to find the base io addres of the PCI device stdcall PCI_find_io, [ebx + device.pci_bus], [ebx + device.pci_dev] mov [ebx + device.io_addr], eax ; We've found the io address, find IRQ now invoke PciRead8, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.interrupt_line mov [ebx + device.irq_line], al DEBUGF 1, "Hooking into device, dev:%x, bus:%x, irq:%x, I/O addr:%x\n",\ [ebx + device.pci_dev]:1,[ebx + device.pci_bus]:1,[ebx + device.irq_line]:1,[ebx + device.io_addr]:4 ; Allocate the receive buffer invoke CreateRingBuffer, dword (RX_BUFFER_SIZE), dword PG_SW test eax, eax jz .err mov [ebx + device.rx_buffer], eax ; Ok, the eth_device structure is ready, let's probe the device call probe ; this function will output in eax test eax, eax jnz .err ; If an error occured, exit mov eax, [devices] ; Add the device structure to our device list mov [device_list+4*eax], ebx ; (IRQ handler uses this list to find device) inc [devices] ; call reset test eax, eax jnz .destroy mov [ebx + device.type], NET_TYPE_ETH invoke NetRegDev cmp eax, -1 je .destroy ret ; If the device was already loaded, find the device number and return it in eax .find_devicenum: DEBUGF 1, "Trying to find device number of already registered device\n" invoke NetPtrToNum ; This kernel procedure converts a pointer to device struct in ebx ; into a device number in edi mov eax, edi ; Application wants it in eax instead DEBUGF 1, "Kernel says: %u\n", eax ret ; If an error occured, remove all allocated data and exit (returning -1 in eax) .destroy: ; todo: unregister device from device_list ; todo: reset device into virgin state .err: DEBUGF 2, "Error, removing all data !\n" invoke KernelFree, [ebx + device.rx_buffer] invoke KernelFree, ebx .fail: or eax, -1 ret ;------------------------------------------------------ endp ;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;; ;; ;; ;; Actual Hardware dependent code starts here ;; ;; ;; ;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;; align 4 unload: ; TODO: (in this particular order) ; ; - Stop the device ; - Detach int handler ; - Remove device from local list (RTL8139_LIST) ; - call unregister function in kernel ; - Remove all allocated structures and buffers the card used or eax, -1 ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; probe: enables the device (if it really is RTL8139) ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 4 probe: DEBUGF 1, "Probing\n" ; Make the device a bus master invoke PciRead32, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.command or al, PCI_CMD_MASTER invoke PciWrite32, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.command, eax ; get chip version set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_TXCONFIG + 2 in ax, dx shr ah, 2 shr ax, 6 and al, 01111111b ; now find it in our array mov ecx, HW_VER_ARRAY_SIZE-1 .chip_ver_loop: cmp al, [hw_ver_array + ecx] je .chip_ver_found dec ecx jns .chip_ver_loop .unknown: mov ecx, 8 .chip_ver_found: cmp ecx, 8 ja .unknown mov [ebx + device.hw_ver_id], cl mov ecx, [crosslist+ecx*4] mov [ebx + device.name], ecx DEBUGF 1, "Chip version: %s\n", ecx ; wake up the chip set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_HLTCLK mov al, 'R' ; run the clock out dx, al ; unlock config and BMCR registers set_io [ebx + device.io_addr], REG_9346CR mov al, (1 shl BIT_93C46_EEM1) or (1 shl BIT_93C46_EEM0) out dx, al ; enable power management set_io [ebx + device.io_addr], REG_CONFIG1 in al, dx cmp [ebx + device.hw_ver_id], IDX_RTL8139B jae .new_chip ; wake up older chips and al, not ((1 shl BIT_SLEEP) or (1 shl BIT_PWRDWN)) out dx, al jmp .finish_wake_up ; set LWAKE pin to active high (default value). ; it is for Wake-On-LAN functionality of some motherboards. ; this signal is used to inform the motherboard to execute a wake-up process. ; only at newer chips. .new_chip: or al, (1 shl BIT_PMEn) and al, not (1 shl BIT_LWACT) out dx, al set_io [ebx + device.io_addr], REG_CONFIG4 in al, dx and al, not (1 shl BIT_LWPTN) out dx, al ; lock config and BMCR registers .finish_wake_up: xor al, al set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_9346CR out dx, al DEBUGF 1, "probing done!\n" xor eax, eax ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; reset: Set up all registers and descriptors, clear some values ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; reset: DEBUGF 1, "Reset\n" ; attach int handler movzx eax, [ebx + device.irq_line] DEBUGF 1, "Attaching int handler to irq %x\n", eax:1 invoke AttachIntHandler, eax, int_handler, ebx test eax, eax jnz @f DEBUGF 2, "Could not attach int handler!\n" or eax, -1 ret @@: ; reset chip DEBUGF 1, "Resetting chip\n" set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_COMMAND mov al, 1 shl BIT_RST out dx, al mov cx, 1000 ; wait no longer for the reset .wait_for_reset: in al, dx test al, 1 shl BIT_RST jz .reset_completed ; RST remains 1 during reset dec cx jns .wait_for_reset DEBUGF 2, "Reset timeout!\n" .reset_completed: ; Read MAC address call read_mac ; unlock config and BMCR registers set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_9346CR mov al, (1 shl BIT_93C46_EEM1) or (1 shl BIT_93C46_EEM0) out dx, al ; initialize multicast registers (no filtering) mov eax, 0xffffffff set_io [ebx + device.io_addr], REG_MAR0 out dx, eax set_io [ebx + device.io_addr], REG_MAR4 out dx, eax ; enable Rx/Tx mov al, (1 shl BIT_RE) or (1 shl BIT_TE) set_io [ebx + device.io_addr], REG_COMMAND out dx, al ; Rxbuffer size, unlimited dma burst, no wrapping, no rx threshold ; accept broadcast packets, accept physical match packets mov eax, RX_CONFIG set_io [ebx + device.io_addr], REG_RXCONFIG out dx, eax ; 1024 bytes DMA burst, total retries = 16 + 8 * 16 = 144 mov eax, (TX_MXDMA shl BIT_TX_MXDMA) or (TXRR shl BIT_TXRR) or BIT_IFG1 or BIT_IFG0 set_io [ebx + device.io_addr], REG_TXCONFIG out dx, eax ; enable auto negotiation set_io [ebx + device.io_addr], REG_BMCR in ax, dx or ax, (1 shl BIT_ANE) out dx, ax ; set auto negotiation advertisement set_io [ebx + device.io_addr], REG_ANAR in ax, dx or ax, (1 shl BIT_SELECTOR) or (1 shl BIT_10) or (1 shl BIT_10FD) or (1 shl BIT_TX) or (1 shl BIT_TXFD) out dx, ax ; lock config and BMCR registers xor eax, eax set_io [ebx + device.io_addr], REG_9346CR out dx, al ; init RX/TX pointers mov [ebx + device.rx_data_offset], eax mov [ebx + device.curr_tx_desc], al ; set_io [ebx + device.io_addr], REG_CAPR ; out dx, ax ; clear packet/byte counters lea edi, [ebx + device.bytes_tx] mov ecx, 6 rep stosd ; clear missing packet counter set_io [ebx + device.io_addr], REG_MPC out dx, eax ; set RxBuffer address, init RX buffer offset mov eax, [ebx + device.rx_buffer] mov dword[eax], 0 ; clear receive flags for first packet (really needed??) DEBUGF 1, "RX buffer virtual addr=0x%x\n", eax invoke GetPhysAddr DEBUGF 1, "RX buffer physical addr=0x%x\n", eax set_io [ebx + device.io_addr], REG_RBSTART out dx, eax ; enable interrupts set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_IMR mov ax, INTERRUPT_MASK out dx, ax ; Set the mtu, kernel will be able to send now mov [ebx + device.mtu], 1514 call link ; Indicate that we have successfully reset the card xor eax, eax ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Transmit ;; ;; ;; ;; In: pointer to device structure in ebx ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; proc transmit stdcall bufferptr pushf cli mov esi, [bufferptr] DEBUGF 1,"Transmitting packet, buffer:%x, size:%u\n", [bufferptr], [esi + NET_BUFF.length] lea eax, [esi + NET_BUFF.data] DEBUGF 1,"To: %x-%x-%x-%x-%x-%x From: %x-%x-%x-%x-%x-%x Type:%x%x\n",\ [eax+00]:2,[eax+01]:2,[eax+02]:2,[eax+03]:2,[eax+04]:2,[eax+05]:2,\ [eax+06]:2,[eax+07]:2,[eax+08]:2,[eax+09]:2,[eax+10]:2,[eax+11]:2,\ [eax+13]:2,[eax+12]:2 cmp [esi + NET_BUFF.length], 1514 ja .fail cmp [esi + NET_BUFF.length], 60 jb .fail ; check if we own the current discriptor set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_TSD0 movzx ecx, [ebx + device.curr_tx_desc] shl ecx, 2 add edx, ecx in eax, dx test eax, (1 shl BIT_OWN) jz .wait_to_send .send_packet: ; Set the buffer address set_io [ebx + device.io_addr], REG_TSAD0 mov [ebx + device.TX_DESC+ecx], esi mov eax, esi add eax, [eax + NET_BUFF.offset] invoke GetPhysAddr out dx, eax ; And the size of the buffer set_io [ebx + device.io_addr], REG_TSD0 mov eax, [esi + NET_BUFF.length] or eax, (ERTXTH shl BIT_ERTXTH) ; Early threshold out dx, eax ; get next descriptor inc [ebx + device.curr_tx_desc] and [ebx + device.curr_tx_desc], NUM_TX_DESC-1 ; Update stats inc [ebx + device.packets_tx] mov ecx, [esi + NET_BUFF.length] add dword [ebx + device.bytes_tx], ecx adc dword [ebx + device.bytes_tx+4], 0 DEBUGF 1, "Packet Sent!\n" popf xor eax, eax ret .wait_to_send: DEBUGF 1, "Waiting for timeout\n" push edx mov esi, 30 invoke Sleep pop edx in ax, dx test ax, (1 shl BIT_OWN) jnz .send_packet pusha call reset ; if chip hung, reset it popa jmp .send_packet .fail: DEBUGF 2, "transmit failed!\n" invoke NetFree, [bufferptr] popf or eax, -1 ret endp ;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Interrupt handler ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;; align 4 int_handler: push ebx esi edi DEBUGF 1, "INT\n" ; find pointer of device wich made IRQ occur mov ecx, [devices] test ecx, ecx jz .nothing mov esi, device_list .nextdevice: mov ebx, [esi] set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_ISR in ax, dx ; Get interrupt status out dx, ax ; send it back to ACK test ax, ax jnz .got_it .continue: add esi, 4 dec ecx jnz .nextdevice .nothing: pop edi esi ebx xor eax, eax ret ; If no device was found, abort (The irq was probably for a device, not registered to this driver) .got_it: DEBUGF 1, "Device: %x Status: %x\n", ebx, ax ;---------------------------------------------------- ; Received packet ok? test ax, ISR_ROK jz @f push ax .receive: set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_COMMAND in al, dx test al, BUFE ; test if RX buffer is empty jnz .finish DEBUGF 1, "RX:\n" mov eax, [ebx + device.rx_buffer] add eax, [ebx + device.rx_data_offset] test byte [eax], (1 shl BIT_ROK) ; check if packet is ok jz .reset_rx ; packet is ok, copy it movzx ecx, word [eax+2] ; packet length sub cx, 4 ; don't copy CRC ; Update stats add dword [ebx + device.bytes_rx], ecx adc dword [ebx + device.bytes_rx + 4], 0 inc [ebx + device.packets_rx] DEBUGF 1, "Received %u bytes\n", ecx push ebx eax ecx add ecx, NET_BUFF.data invoke NetAlloc, ecx ; Allocate a buffer to put packet into pop ecx test eax, eax ; Test if we allocated succesfully jz .abort mov [eax + NET_BUFF.length], ecx mov [eax + NET_BUFF.device], ebx mov [eax + NET_BUFF.offset], NET_BUFF.data lea edi, [eax + NET_BUFF.data] ; Where we will copy too mov esi, [esp] ; The buffer we will copy from add esi, 4 ; Dont copy CRC push .abort ; return addr for Eth_input push eax ; buffer ptr for Eth_input .copy: shr ecx, 1 jnc .nb movsb .nb: shr ecx, 1 jnc .nw movsw .nw: jz .nd rep movsd .nd: jmp [EthInput] ; Send it to kernel .abort: pop eax ebx ; update eth_data_start_offset movzx eax, word [eax+2] ; packet length add eax, [ebx + device.rx_data_offset] add eax, 4+3 ; packet header is 4 bytes long + dword alignment and eax, not 3 ; dword alignment cmp eax, RX_BUFFER_SIZE jb .no_wrap DEBUGF 1, "Wrapping\n" sub eax, RX_BUFFER_SIZE .no_wrap: mov [ebx + device.rx_data_offset], eax DEBUGF 1, "New RX ptr: %d\n", eax set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_CAPR ; update 'Current Address of Packet Read register' sub eax, 0x10 ; value 0x10 is a constant for CAPR out dx, ax jmp .receive ; check for multiple packets .reset_rx: test byte [eax], (1 shl BIT_CRC) jz .no_crc_error DEBUGF 2, "RX: CRC error!\n" .no_crc_error: test byte [eax], (1 shl BIT_FAE) jz .no_fae_error DEBUGF 2, "RX: Frame alignment error!\n" .no_fae_error: DEBUGF 1, "Reset RX\n" in al, dx ; read command register push ax and al, not (1 shl BIT_RE) ; Clear the RE bit out dx, al pop ax out dx, al ; write original command back add edx, REG_RXCONFIG - REG_COMMAND ; Restore RX configuration mov ax, RX_CONFIG out dx, ax .finish: pop ax ;---------------------------------------------------- ; Transmit ok / Transmit error @@: test ax, ISR_TOK + ISR_TER jz @f DEBUGF 1, "Transmit done!\n" push ax mov ecx, (NUM_TX_DESC-1)*4 .txdescloop: set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_TSD0 add edx, ecx in eax, dx test eax, TSR_OWN ; DMA operation completed jz .notthisone cmp [ebx + device.TX_DESC+ecx], 0 je .notthisone DEBUGF 1, "TSD: 0x%x\n", eax test eax, TSR_TUN jz .no_bun DEBUGF 2, "TX: FIFO Buffer underrun!\n" .no_bun: test eax, TSR_OWC jz .no_owc DEBUGF 2, "TX: OWC!\n" .no_owc: test eax, TSR_TABT jz .no_tabt DEBUGF 2, "TX: TABT!\n" .no_tabt: test eax, TSR_CRS jz .no_csl DEBUGF 2, "TX: Carrier Sense Lost!\n" .no_csl: test eax, TSR_TOK jz .no_tok DEBUGF 1, "TX: Transmit OK!\n" .no_tok: DEBUGF 1, "free transmit buffer 0x%x\n", [ebx + device.TX_DESC+ecx]:8 push ecx ebx invoke NetFree, [ebx + device.TX_DESC+ecx] pop ebx ecx mov [ebx + device.TX_DESC+ecx], 0 .notthisone: sub ecx, 4 jae .txdescloop pop ax ;---------------------------------------------------- ; Rx buffer overflow ? @@: test ax, ISR_RXOVW jz @f push ax DEBUGF 2, "RX:buffer overflow!\n" set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_ISR mov ax, ISR_FIFOOVW or ISR_RXOVW or ISR_ROK out dx, ax pop ax ;---------------------------------------------------- ; Packet underrun? @@: test ax, ISR_PUN jz @f DEBUGF 1, "Packet underrun or link changed!\n" call link ;---------------------------------------------------- ; Receive FIFO overflow ? @@: test ax, ISR_FIFOOVW jz @f push ax DEBUGF 2, "RX fifo overflow!\n" set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_ISR mov ax, ISR_FIFOOVW or ISR_RXOVW or ISR_ROK out dx, ax pop ax ;---------------------------------------------------- ; cable length changed ? @@: test ax, ISR_LENCHG jz .fail DEBUGF 2, "Cable length changed!\n" call link .fail: pop edi esi ebx xor eax, eax inc eax ret ;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Check link status ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;; align 4 link: DEBUGF 1, "Checking link status:\n" set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_MSR in ax, dx test al, 1 shl 2 ; 0 = link ok 1 = link fail jnz .notconnected mov ecx, ETH_LINK_10M test al, 1 shl 3 ; 0 = 100 Mbps 1 = 10 Mbps jnz @f mov ecx, ETH_LINK_100M @@: set_io [ebx + device.io_addr], REG_BMCR in ax, dx test ax, 1 shl 8 ; Duplex mode jz @f or ecx, ETH_LINK_FD @@: mov [ebx + device.state], ecx invoke NetLinkChanged DEBUGF 2, "link is up\n" ret .notconnected: mov [ebx + device.state], ETH_LINK_DOWN invoke NetLinkChanged DEBUGF 2, "link is down\n" ret ;;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Write MAC address ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;; align 4 write_mac: ; in: mac pushed onto stack (as 3 words) DEBUGF 1, "Writing MAC\n" ; disable all in command registers set_io [ebx + device.io_addr], 0 set_io [ebx + device.io_addr], REG_9346CR xor eax, eax out dx, al set_io [ebx + device.io_addr], REG_IMR xor eax, eax out dx, ax set_io [ebx + device.io_addr], REG_ISR mov eax, -1 out dx, ax ; enable writing set_io [ebx + device.io_addr], REG_9346CR mov eax, REG_9346CR_WE out dx, al ; write the mac ... set_io [ebx + device.io_addr], REG_IDR0 pop eax out dx, eax set_io [ebx + device.io_addr], REG_IDR0+4 xor eax, eax pop ax out dx, eax ; disable writing set_io [ebx + device.io_addr], REG_9346CR xor eax, eax out dx, al DEBUGF 1, "MAC write ok!\n" ; Notice this procedure does not ret, but continues to read_mac instead. ;;;;;;;;;;;;;;;;;;;;;; ;; ;; ;; Read MAC address ;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;; read_mac: DEBUGF 1, "Reading MAC:\n" set_io [ebx + device.io_addr], 0 lea edi, [ebx + device.mac] in eax, dx stosd add edx, 4 in ax, dx stosw DEBUGF 1, "%x-%x-%x-%x-%x-%x\n",[edi-6]:2,[edi-5]:2,[edi-4]:2,[edi-3]:2,[edi-2]:2,[edi-1]:2 ret ; End of code data fixups end data include '../peimport.inc' my_service db 'RTL8139',0 ; max 16 chars include zero device_1 db 'Realtek 8139',0 device_2 db 'Realtek 8139A',0 device_3 db 'Realtek 8139B',0 device_4 db 'Realtek 8139C',0 device_5 db 'Realtek 8100',0 device_6 db 'Realtek 8139D',0 device_7 db 'Realtek 8139CP',0 device_8 db 'Realtek 8101',0 device_unknown db 'Unknown RTL8139 clone', 0 crosslist: dd device_1 dd device_2 dd device_3 dd device_4 dd device_5 dd device_6 dd device_7 dd device_8 dd device_unknown hw_ver_array: ; This array is used by the probe routine to find out wich version of the RTL8139 we are working with db VER_RTL8139 db VER_RTL8139A db VER_RTL8139B db VER_RTL8139C db VER_RTL8100 db VER_RTL8139D db VER_RTL8139CP db VER_RTL8101 db 0 HW_VER_ARRAY_SIZE = $-hw_ver_array include_debug_strings ; All data wich FDO uses will be included here align 4 devices dd 0 device_list rd MAX_DEVICES ; This list contains all pointers to device structures the driver is handling