forked from KolibriOS/kolibrios
6bc316c46e
git-svn-id: svn://kolibrios.org@6883 a494cfbc-eb01-0410-851d-a64ba20cac60
223 lines
6.4 KiB
NASM
223 lines
6.4 KiB
NASM
; crc32.asm -- compute the CRC-32 of a data stream
|
|
; Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
|
|
; For conditions of distribution and use, see copyright notice in zlib.inc
|
|
|
|
; Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
|
; CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
|
; tables for updating the shift register in one step with three exclusive-ors
|
|
; instead of four steps with four exclusive-ors. This results in about a
|
|
; factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
|
|
|
|
|
; Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
|
|
; protection on the static variables used to control the first-use generation
|
|
; of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
|
|
; first call get_crc_table() to initialize the tables before allowing more than
|
|
; one thread to use crc32().
|
|
|
|
; Definitions for doing the crc four data bytes at a time.
|
|
|
|
if DYNAMIC_CRC_TABLE eq 1
|
|
|
|
align 4
|
|
crc_table_empty dd 1
|
|
|
|
; Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
|
; x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
|
|
|
; Polynomials over GF(2) are represented in binary, one bit per coefficient,
|
|
; with the lowest powers in the most significant bit. Then adding polynomials
|
|
; is just exclusive-or, and multiplying a polynomial by x is a right shift by
|
|
; one. If we call the above polynomial p, and represent a byte as the
|
|
; polynomial q, also with the lowest power in the most significant bit (so the
|
|
; byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
|
|
; where a mod b means the remainder after dividing a by b.
|
|
|
|
; This calculation is done using the shift-register method of multiplying and
|
|
; taking the remainder. The register is initialized to zero, and for each
|
|
; incoming bit, x^32 is added mod p to the register if the bit is a one (where
|
|
; x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
|
|
; x (which is shifting right by one and adding x^32 mod p if the bit shifted
|
|
; out is a one). We start with the highest power (least significant bit) of
|
|
; q and repeat for all eight bits of q.
|
|
|
|
; The first table is simply the CRC of all possible eight bit values. This is
|
|
; all the information needed to generate CRCs on data a byte at a time for all
|
|
; combinations of CRC register values and incoming bytes. The remaining tables
|
|
; allow for word-at-a-time CRC calculation for both big-endian and little-
|
|
; endian machines, where a word is four bytes.
|
|
|
|
;void ()
|
|
align 4
|
|
proc make_crc_table uses ecx edx edi
|
|
zlib_debug 'make_crc_table'
|
|
|
|
; generate a crc for every 8-bit value
|
|
xor edx, edx
|
|
mov edi, crc_table
|
|
.1:
|
|
mov ecx, 8
|
|
mov eax, edx
|
|
.2:
|
|
shr eax, 1
|
|
jnc @f
|
|
xor eax, 0xEDB88320
|
|
@@:
|
|
loop .2
|
|
stosd
|
|
inc dl
|
|
jnz .1
|
|
|
|
mov dword[crc_table_empty],0
|
|
ret
|
|
endp
|
|
|
|
else ;!DYNAMIC_CRC_TABLE
|
|
; ========================================================================
|
|
; Tables of CRC-32s of all single-byte values, made by make_crc_table().
|
|
|
|
;include 'crc32.inc'
|
|
end if ;DYNAMIC_CRC_TABLE
|
|
|
|
; =========================================================================
|
|
; This function can be used by asm versions of crc32()
|
|
|
|
;const z_crc_t* ()
|
|
align 4
|
|
proc get_crc_table
|
|
if DYNAMIC_CRC_TABLE eq 1
|
|
cmp dword[crc_table_empty],0
|
|
je @f ;if (..)
|
|
call make_crc_table
|
|
@@:
|
|
end if
|
|
mov eax,crc_table
|
|
ret
|
|
endp
|
|
|
|
; =========================================================================
|
|
;unsigned long (unsigned long crc, unsigned char *buf, uInt len)
|
|
align 4
|
|
proc calc_crc32 uses ecx esi, p1crc:dword, buf:dword, len:dword
|
|
xor eax,eax
|
|
mov esi,[buf]
|
|
|
|
cmp esi,Z_NULL
|
|
je .end_f ;if (..==0) return 0
|
|
|
|
if DYNAMIC_CRC_TABLE eq 1
|
|
cmp dword[crc_table_empty],0
|
|
je @f ;if (..)
|
|
call make_crc_table
|
|
@@:
|
|
end if
|
|
|
|
mov eax,[p1crc]
|
|
mov ecx,[len]
|
|
push edx
|
|
call crc_continue
|
|
pop edx
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
GF2_DIM equ 32 ;dimension of GF(2) vectors (length of CRC)
|
|
|
|
; =========================================================================
|
|
;unsigned long (unsigned long *mat, unsigned long vec)
|
|
align 4
|
|
proc gf2_matrix_times, mat:dword, vec:dword
|
|
; unsigned long sum;
|
|
|
|
; sum = 0;
|
|
; while (vec) {
|
|
; if (vec & 1)
|
|
; sum ^= *mat;
|
|
; vec >>= 1;
|
|
; mat++;
|
|
; }
|
|
; return sum;
|
|
ret
|
|
endp
|
|
|
|
; =========================================================================
|
|
;local void (unsigned long *square, unsigned long *mat)
|
|
align 4
|
|
proc gf2_matrix_square, square:dword, mat:dword
|
|
; int n;
|
|
|
|
; for (n = 0; n < GF2_DIM; n++)
|
|
; square[n] = gf2_matrix_times(mat, mat[n]);
|
|
ret
|
|
endp
|
|
|
|
; =========================================================================
|
|
;uLong (uLong crc1, uLong crc2, z_off64_t len2)
|
|
align 4
|
|
proc crc32_combine_, crc1:dword, crc2:dword, len2:dword
|
|
; int n;
|
|
; unsigned long row;
|
|
; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
|
; unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
|
|
|
; degenerate case (also disallow negative lengths)
|
|
; if (len2 <= 0)
|
|
; return crc1;
|
|
|
|
; put operator for one zero bit in odd
|
|
; odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
|
|
; row = 1;
|
|
; for (n = 1; n < GF2_DIM; n++) {
|
|
; odd[n] = row;
|
|
; row <<= 1;
|
|
; }
|
|
|
|
; put operator for two zero bits in even
|
|
; gf2_matrix_square(even, odd);
|
|
|
|
; put operator for four zero bits in odd
|
|
; gf2_matrix_square(odd, even);
|
|
|
|
; apply len2 zeros to crc1 (first square will put the operator for one
|
|
; zero byte, eight zero bits, in even)
|
|
; do {
|
|
; apply zeros operator for this bit of len2
|
|
; gf2_matrix_square(even, odd);
|
|
; if (len2 & 1)
|
|
; crc1 = gf2_matrix_times(even, crc1);
|
|
; len2 >>= 1;
|
|
|
|
; if no more bits set, then done
|
|
; if (len2 == 0)
|
|
; break;
|
|
|
|
; another iteration of the loop with odd and even swapped
|
|
; gf2_matrix_square(odd, even);
|
|
; if (len2 & 1)
|
|
; crc1 = gf2_matrix_times(odd, crc1);
|
|
; len2 >>= 1;
|
|
|
|
; if no more bits set, then done
|
|
; } while (len2 != 0);
|
|
|
|
; return combined crc
|
|
; crc1 ^= crc2;
|
|
; return crc1;
|
|
ret
|
|
endp
|
|
|
|
; =========================================================================
|
|
;uLong (uLong crc1, uLong crc2, z_off_t len2)
|
|
align 4
|
|
proc crc32_combine, crc1:dword, crc2:dword, len2:dword
|
|
stdcall crc32_combine_, [crc1], [crc2], [len2]
|
|
ret
|
|
endp
|
|
|
|
;uLong (uLong crc1, uLong crc2, z_off64_t len2)
|
|
align 4
|
|
proc crc32_combine64, crc1:dword, crc2:dword, len2:dword
|
|
stdcall crc32_combine_, [crc1], [crc2], [len2]
|
|
ret
|
|
endp
|