forked from KolibriOS/kolibrios
bc0cb70b13
Developer: Roman Shuvalov git-svn-id: svn://kolibrios.org@5235 a494cfbc-eb01-0410-851d-a64ba20cac60
175 lines
2.6 KiB
C
175 lines
2.6 KiB
C
#include "rsmicrolibc.h"
|
|
|
|
// some math and string functions
|
|
|
|
double sqrt( double val ) {
|
|
double result ;
|
|
asm volatile ( "fld %1;"
|
|
"fsqrt;"
|
|
"fstp %0;" : "=g" (result) : "g" (val)
|
|
) ;
|
|
return result;
|
|
};
|
|
|
|
float sqrtf( float f ) {
|
|
return (float) sqrtf(f);
|
|
};
|
|
|
|
|
|
double sin(double val)
|
|
{
|
|
double result ;
|
|
asm volatile ( "fld %1;"
|
|
"fsin;"
|
|
"fstp %0;" : "=g" (result) : "g" (val)
|
|
) ;
|
|
return result;
|
|
}
|
|
|
|
double cos(double val)
|
|
{
|
|
double result ;
|
|
asm volatile ( "fld %1;"
|
|
"fcos;"
|
|
"fstp %0;" : "=g" (result) : "g" (val)
|
|
) ;
|
|
return result;
|
|
}
|
|
|
|
|
|
double exp (double x)
|
|
{
|
|
double result;
|
|
asm ("fldl2e; "
|
|
"fmulp; "
|
|
"fld %%st; "
|
|
"frndint; "
|
|
"fsub %%st,%%st(1); "
|
|
"fxch;"
|
|
"fchs; "
|
|
"f2xm1; "
|
|
"fld1; "
|
|
"faddp; "
|
|
"fxch; "
|
|
"fld1; "
|
|
"fscale; "
|
|
"fstp %%st(1); "
|
|
"fmulp" : "=t"(result) : "0"(x));
|
|
return result;
|
|
}
|
|
|
|
float expf(float x) {
|
|
return (float)(exp(x));
|
|
};
|
|
|
|
|
|
|
|
|
|
double log(double Power)
|
|
{
|
|
|
|
// From here: http://www.codeproject.com/Tips/311714/Natural-Logarithms-and-Exponent
|
|
|
|
double N, P, L, R, A, E;
|
|
E = 2.71828182845905;
|
|
P = Power;
|
|
N = 0.0;
|
|
|
|
// This speeds up the convergence by calculating the integral
|
|
while(P >= E)
|
|
{
|
|
P /= E;
|
|
N++;
|
|
}
|
|
N += (P / E);
|
|
P = Power;
|
|
|
|
do
|
|
{
|
|
A = N;
|
|
L = (P / (exp(N - 1.0)));
|
|
R = ((N - 1.0) * E);
|
|
N = ((L + R) / E);
|
|
} while (!( fabs(N-A)<0.01 ));
|
|
|
|
return N;
|
|
}
|
|
|
|
|
|
float logf(float x) {
|
|
return (float)(log(x));
|
|
};
|
|
|
|
double pow(double x, double p) {
|
|
|
|
if (x < 0.001) {
|
|
return 0.0;
|
|
};
|
|
|
|
return exp(p * log(x));
|
|
};
|
|
float powf(float x, float p) {
|
|
return expf(p * logf(x));
|
|
};
|
|
|
|
|
|
|
|
|
|
int abs(int x) {
|
|
return (x>0) ? x : -x;
|
|
};
|
|
double fabs(double x) {
|
|
return (x>0) ? x : -x;
|
|
};
|
|
|
|
double floor(double x) {
|
|
return (double)((int)x); // <--------- only positive!
|
|
};
|
|
|
|
double round(double x) {
|
|
return floor(x+0.5);
|
|
};
|
|
float roundf(float x) {
|
|
return (float)round(x);
|
|
};
|
|
|
|
|
|
|
|
|
|
void* malloc(unsigned s)
|
|
{
|
|
asm ("int $0x40"::"a"(68), "b"(12), "c"(s) );
|
|
}
|
|
|
|
|
|
void free(void *p)
|
|
{
|
|
asm ("int $0x40"::"a"(68), "b"(13), "c"(p) );
|
|
}
|
|
|
|
void* memset(void *mem, int c, unsigned size)
|
|
{
|
|
unsigned i;
|
|
|
|
for ( i = 0; i < size; i++ )
|
|
*((char *)mem+i) = (char) c;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* memcpy(void *dst, const void *src, unsigned size)
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
for ( i = 0; i < size; i++)
|
|
*(char *)(dst+i) = *(char *)(src+i);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
|