kolibrios/contrib/sdk/samples/Mesa/engdemo.c
Sergey Semyonov (Serge) 754f9336f0 upload sdk
git-svn-id: svn://kolibrios.org@4349 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-12-15 08:09:20 +00:00

1677 lines
40 KiB
C

/*
* Demo of off-screen Mesa rendering
*
* See Mesa/include/GL/osmesa.h for documentation of the OSMesa functions.
*
* If you want to render BIG images you'll probably have to increase
* MAX_WIDTH and MAX_Height in src/config.h.
*
* This program is in the public domain.
*
* Brian Paul
*
* PPM output provided by Joerg Schmalzl.
* ASCII PPM output added by Brian Paul.
*
* Usage: osdemo [filename]
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define GL_GLEXT_PROTOTYPES
#include "GL/osmesa.h"
#include <GL/glext.h>
#include "GL/glu.h"
#include "shaderutil.h"
static int Width = 500;
static int Height = 400;
int check_events();
GLfloat view_rotx = 20.0, view_roty = 30.0, view_rotz = 0.0;
GLfloat angle = 0.0;
GLboolean animate = GL_TRUE; /* Animation */
GLfloat eyesep = 5.0; /* Eye separation. */
GLfloat fix_point = 40.0; /* Fixation point distance. */
GLfloat left, right, asp; /* Stereo frustum params. */
void init( void );
void reshape( int width, int height );
void draw( void );
void idle();
void Key(unsigned char key, int x, int y);
typedef union __attribute__((packed))
{
uint32_t val;
struct
{
uint8_t state;
uint8_t code;
uint16_t ctrl_key;
};
}oskey_t;
static inline oskey_t get_key(void)
{
oskey_t val;
__asm__ __volatile__(
"int $0x40"
:"=eax"(val)
:"a"(2));
return val;
}
struct blit_call
{
int dstx;
int dsty;
int w;
int h;
int srcx;
int srcy;
int srcw;
int srch;
unsigned char *bitmap;
int stride;
};
static inline uint32_t wait_os_event(int time)
{
uint32_t val;
__asm__ __volatile__(
"int $0x40"
:"=a"(val)
:"a"(23),"b"(time));
return val;
};
static inline uint32_t get_os_button()
{
uint32_t val;
__asm__ __volatile__(
"int $0x40"
:"=a"(val)
:"a"(17));
return val>>8;
};
static inline void DrawWindow(int x, int y, int w, int h, char *name,
uint32_t workcolor, uint32_t style)
{
__asm__ __volatile__(
"int $0x40"
::"a"(0),
"b"((x << 16) | (w & 0xFFFF)),
"c"((y << 16) | (h & 0xFFFF)),
"d"((style << 24) | (workcolor & 0xFFFFFF)),
"D"(name));
};
static inline void Blit(void *bitmap, int dst_x, int dst_y,
int src_x, int src_y, int w, int h,
int src_w, int src_h, int stride)
{
volatile struct blit_call bc;
bc.dstx = dst_x;
bc.dsty = dst_y;
bc.w = w;
bc.h = h;
bc.srcx = src_x;
bc.srcy = src_y;
bc.srcw = src_w;
bc.srch = src_h;
bc.stride = stride;
bc.bitmap = bitmap;
__asm__ __volatile__(
"int $0x40"
::"a"(73),"b"(0),"c"(&bc.dstx));
};
#define XK_Left 176
#define XK_Right 179
#define XK_Up 178
#define XK_Down 177
int main(int argc, char *argv[])
{
OSMesaContext ctx;
void *buffer;
char *filename = NULL;
int ev;
int repeat=1;
/* Create an RGBA-mode context */
/* specify Z, stencil, accum sizes */
ctx = OSMesaCreateContextExt( OSMESA_RGBA, 16, 0, 0, NULL );
if (!ctx) {
printf("OSMesaCreateContext failed!\n");
return 0;
}
/* Allocate the image buffer */
buffer = malloc( Width * Height * 4 * sizeof(GLubyte) );
if (!buffer) {
printf("Alloc image buffer failed!\n");
return 0;
}
// __asm__ __volatile__("int3");
/* Bind the buffer to the context and make it current */
if (!OSMesaMakeCurrent( ctx, buffer, GL_UNSIGNED_BYTE, Width, Height )) {
printf("OSMesaMakeCurrent failed!\n");
return 0;
}
{
int z, s, a;
glGetIntegerv(GL_DEPTH_BITS, &z);
glGetIntegerv(GL_STENCIL_BITS, &s);
glGetIntegerv(GL_ACCUM_RED_BITS, &a);
printf("Depth=%d Stencil=%d Accum=%d\n", z, s, a);
}
reshape(Width, Height);
init();
draw();
printf("all done\n");
DrawWindow(10, 10, Width+9, Height+26, "OpenGL Engine Demo", 0x000000, 0x74);
Blit(buffer, 5, 22, 0, 0, Width, Height, Width,Height,Width*4);
while(repeat)
{
oskey_t key;
ev = wait_os_event(1);
switch(ev)
{
case 1:
DrawWindow(10, 10, Width+9, Width+26, NULL, 0x000000,0x74);
Blit(buffer, 5, 22, 0, 0, Width, Height, Width,Height,Width*4);
continue;
case 2:
key = get_key();
Key(key.code, 0, 0);
draw();
Blit(buffer, 5, 22, 0, 0, Width, Height, Width,Height,Width*4);
continue;
case 3:
if(get_os_button()==1)
repeat=0;
continue;
};
idle();
// angle += 70.0 * 0.05; /* 70 degrees per second */
// if (angle > 3600.0)
// angle -= 3600.0;
draw();
Blit(buffer, 5, 22, 0, 0, Width, Height, Width,Height,Width*4);
};
/* free the image buffer */
free( buffer );
/* destroy the context */
OSMesaDestroyContext( ctx );
return 0;
}
void exit(int code)
{
_exit(code);
}
#if 0
static char *FragProgFile = "CH11-toyball.frag";
static char *VertProgFile = "CH11-toyball.vert";
/* program/shader objects */
static GLuint fragShader;
static GLuint vertShader;
static GLuint program;
static struct uniform_info Uniforms[] = {
{ "LightDir", 1, GL_FLOAT_VEC4, { 0.57737, 0.57735, 0.57735, 0.0 }, -1 },
{ "HVector", 1, GL_FLOAT_VEC4, { 0.32506, 0.32506, 0.88808, 0.0 }, -1 },
{ "BallCenter", 1, GL_FLOAT_VEC4, { 0.0, 0.0, 0.0, 1.0 }, -1 },
{ "SpecularColor", 1, GL_FLOAT_VEC4, { 0.4, 0.4, 0.4, 60.0 }, -1 },
{ "Red", 1, GL_FLOAT_VEC4, { 0.6, 0.0, 0.0, 1.0 }, -1 },
{ "Blue", 1, GL_FLOAT_VEC4, { 0.0, 0.3, 0.6, 1.0 }, -1 },
{ "Yellow", 1, GL_FLOAT_VEC4, { 0.6, 0.5, 0.0, 1.0 }, -1 },
{ "HalfSpace0", 1, GL_FLOAT_VEC4, { 1.0, 0.0, 0.0, 0.2 }, -1 },
{ "HalfSpace1", 1, GL_FLOAT_VEC4, { 0.309016994, 0.951056516, 0.0, 0.2 }, -1 },
{ "HalfSpace2", 1, GL_FLOAT_VEC4, { -0.809016994, 0.587785252, 0.0, 0.2 }, -1 },
{ "HalfSpace3", 1, GL_FLOAT_VEC4, { -0.809016994, -0.587785252, 0.0, 0.2 }, -1 },
{ "HalfSpace4", 1, GL_FLOAT_VEC4, { 0.309116994, -0.951056516, 0.0, 0.2 }, -1 },
{ "InOrOutInit", 1, GL_FLOAT, { -3.0, 0, 0, 0 }, -1 },
{ "StripeWidth", 1, GL_FLOAT, { 0.3, 0, 0, 0 }, -1 },
{ "FWidth", 1, GL_FLOAT, { 0.005, 0, 0, 0 }, -1 },
END_OF_UNIFORMS
};
static GLint win = 0;
static GLboolean Anim = GL_FALSE;
static GLfloat TexRot = 0.0;
static GLfloat xRot = 0.0f, yRot = 0.0f, zRot = 0.0f;
void Idle(void)
{
TexRot += 2.0;
if (TexRot > 360.0)
TexRot -= 360.0;
}
void draw(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(xRot, 1.0f, 0.0f, 0.0f);
glRotatef(yRot, 0.0f, 1.0f, 0.0f);
glRotatef(zRot, 0.0f, 0.0f, 1.0f);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glRotatef(TexRot, 0.0f, 1.0f, 0.0f);
glMatrixMode(GL_MODELVIEW);
glutSolidSphere(2.0, 20, 10);
glPopMatrix();
}
void
reshape(int width, int height)
{
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 25.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -15.0f);
}
static void
CleanUp(void)
{
glDeleteShader(fragShader);
glDeleteShader(vertShader);
glDeleteProgram(program);
glutDestroyWindow(win);
}
void init(void)
{
// if (!ShadersSupported())
// exit(1);
vertShader = CompileShaderFile(GL_VERTEX_SHADER, VertProgFile);
fragShader = CompileShaderFile(GL_FRAGMENT_SHADER, FragProgFile);
program = LinkShaders(vertShader, fragShader);
glUseProgram(program);
SetUniformValues(program, Uniforms);
PrintUniforms(Uniforms);
assert(glGetError() == 0);
glClearColor(0.4f, 0.4f, 0.8f, 0.0f);
glEnable(GL_DEPTH_TEST);
glColor3f(1, 0, 0);
}
#endif
#if 0
static float Zrot = 0.0;
void draw( void )
{
glClearColor(0.3, 0.3, 0.3, 1);
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glEnable(GL_VERTEX_PROGRAM_NV);
glLoadIdentity();
glRotatef(Zrot, 0, 0, 1);
glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 0, GL_MODELVIEW, GL_IDENTITY_NV);
glPushMatrix();
glVertexAttrib3fNV(3, 1, 0.5, 0.25);
glBegin(GL_TRIANGLES);
#if 1
glVertexAttrib3fNV(3, 1.0, 0.0, 0.0);
glVertexAttrib2fNV(0, -0.5, -0.5);
glVertexAttrib3fNV(3, 0.0, 1.0, 0.0);
glVertexAttrib2fNV(0, 0.5, -0.5);
glVertexAttrib3fNV(3, 0.0, 0.0, 1.0);
glVertexAttrib2fNV(0, 0, 0.5);
#else
glVertex2f( -1, -1);
glVertex2f( 1, -1);
glVertex2f( 0, 1);
#endif
glEnd();
glPopMatrix();
}
void reshape( int width, int height )
{
glViewport( 0, 0, width, height );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
/* glFrustum( -2.0, 2.0, -2.0, 2.0, 5.0, 25.0 );*/
glOrtho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
/*glTranslatef( 0.0, 0.0, -15.0 );*/
}
void idle()
{
Zrot-=4.0;
};
void init( void )
{
static const char *prog1 =
"!!VP1.0\n"
"MOV o[COL0], v[COL0];\n"
#if 0
"MOV o[HPOS], v[OPOS];\n"
#else
"DP4 o[HPOS].x, v[OPOS], c[0];\n"
"DP4 o[HPOS].y, v[OPOS], c[1];\n"
"DP4 o[HPOS].z, v[OPOS], c[2];\n"
"DP4 o[HPOS].w, v[OPOS], c[3];\n"
#endif
"END\n";
// if (!glutExtensionSupported("GL_NV_vertex_program")) {
// printf("Sorry, this program requires GL_NV_vertex_program\n");
// exit(1);
// }
glLoadProgramNV(GL_VERTEX_PROGRAM_NV, 1,
strlen(prog1),
(const GLubyte *) prog1);
assert(glIsProgramNV(1));
glBindProgramNV(GL_VERTEX_PROGRAM_NV, 1);
printf("glGetError = %x\n", (int) glGetError());
}
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define DEG_TO_RAD(DEG) ((DEG) * M_PI / 180.0)
#define TEXTURE_FILE "reflect.rgb"
/* Target engine speed: */
const int RPM = 100.0;
static int Win = 0;
/**
* Engine description.
*/
typedef struct
{
const char *Name;
int Pistons;
int Cranks;
float V_Angle;
float PistonRadius;
float PistonHeight;
float WristPinRadius;
float Throw;
float CrankPlateThickness;
float CrankPinRadius;
float CrankJournalRadius;
float CrankJournalLength;
float ConnectingRodLength;
float ConnectingRodThickness;
/* display list IDs */
GLuint CrankList;
GLuint ConnRodList;
GLuint PistonList;
GLuint BlockList;
} Engine;
typedef struct
{
float CurQuat[4];
float Distance;
/* When mouse is moving: */
GLboolean Rotating, Translating;
GLint StartX, StartY;
float StartDistance;
} ViewInfo;
typedef enum
{
LIT,
WIREFRAME,
TEXTURED
} RenderMode;
typedef struct
{
RenderMode Mode;
GLboolean Anim;
GLboolean Wireframe;
GLboolean Blend;
GLboolean Antialias;
GLboolean Texture;
GLboolean UseLists;
GLboolean DrawBox;
GLboolean ShowInfo;
GLboolean ShowBlock;
} RenderInfo;
static GLUquadric *Q;
static GLfloat Theta = 0.0;
static const GLfloat PistonColor[4] = { 1.0, 0.5, 0.5, 1.0 };
static const GLfloat ConnRodColor[4] = { 0.7, 1.0, 0.7, 1.0 };
static const GLfloat CrankshaftColor[4] = { 0.7, 0.7, 1.0, 1.0 };
static const GLfloat BlockColor[4] = {0.8, 0.8, 0.8, 0.75 };
static GLuint TextureObj;
static GLint WinWidth = 800, WinHeight = 500;
static ViewInfo View;
static RenderInfo Render;
void build_rotmatrix(float m[4][4], const float q[4])
{
m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
m[0][3] = 0.0;
m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
m[1][3] = 0.0;
m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
m[2][3] = 0.0;
m[3][0] = 0.0;
m[3][1] = 0.0;
m[3][2] = 0.0;
m[3][3] = 1.0;
}
#define NUM_ENGINES 3
static Engine Engines[NUM_ENGINES] =
{
{
"V-6",
6, /* Pistons */
3, /* Cranks */
90.0, /* V_Angle */
0.5, /* PistonRadius */
0.6, /* PistonHeight */
0.1, /* WristPinRadius */
0.5, /* Throw */
0.2, /* CrankPlateThickness */
0.25, /* CrankPinRadius */
0.3, /* CrankJournalRadius */
0.4, /* CrankJournalLength */
1.5, /* ConnectingRodLength */
0.1, /* ConnectingRodThickness */
0, /* CrankList */
0, /* ConnRodList */
0, /* PistonList */
0 /* BlockList */
},
{
"Inline-4",
4, /* Pistons */
4, /* Cranks */
0.0, /* V_Angle */
0.5, /* PistonRadius */
0.6, /* PistonHeight */
0.1, /* WristPinRadius */
0.5, /* Throw */
0.2, /* CrankPlateThickness */
0.25, /* CrankPinRadius */
0.3, /* CrankJournalRadius */
0.4, /* CrankJournalLength */
1.5, /* ConnectingRodLength */
0.1, /* ConnectingRodThickness */
0, /* CrankList */
0, /* ConnRodList */
0, /* PistonList */
0 /* BlockList */
},
{
"Boxer-6",
6, /* Pistons */
3, /* Cranks */
180.0,/* V_Angle */
0.5, /* PistonRadius */
0.6, /* PistonHeight */
0.1, /* WristPinRadius */
0.5, /* Throw */
0.2, /* CrankPlateThickness */
0.25, /* CrankPinRadius */
0.3, /* CrankJournalRadius */
0.4, /* CrankJournalLength */
1.5, /* ConnectingRodLength */
0.1, /* ConnectingRodThickness */
0, /* CrankList */
0, /* ConnRodList */
0, /* PistonList */
0 /* BlockList */
}
};
static int CurEngine = 0;
static void
InitViewInfo(ViewInfo *view)
{
view->Rotating = GL_FALSE;
view->Translating = GL_FALSE;
view->StartX = view->StartY = 0;
view->Distance = 12.0;
view->StartDistance = 0.0;
view->CurQuat[0] = -0.194143;
view->CurQuat[1] = 0.507848;
view->CurQuat[2] = 0.115245;
view->CurQuat[3] = 0.831335;
}
static void
InitRenderInfo(RenderInfo *render)
{
render->Mode = LIT;
render->Anim = GL_TRUE;
render->Wireframe = GL_FALSE;
render->Blend = GL_FALSE;
render->Antialias = GL_FALSE;
render->Texture = GL_FALSE;
render->DrawBox = GL_FALSE;
render->ShowInfo = GL_TRUE;
render->ShowBlock = GL_FALSE;
render->UseLists = GL_FALSE;
}
/**
* Set GL for given rendering mode.
*/
static void
SetRenderState(RenderMode mode)
{
static const GLfloat gray2[4] = { 0.2, 0.2, 0.2, 1.0 };
static const GLfloat gray4[4] = { 0.4, 0.4, 0.4, 1.0 };
/* defaults */
glDisable(GL_LIGHTING);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, gray2);
switch (mode) {
case LIT:
glEnable(GL_LIGHTING);
break;
case WIREFRAME:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glLineWidth(1.5);
break;
case TEXTURED:
glEnable(GL_LIGHTING);
glEnable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, gray4);
break;
default:
;
}
}
/**
* Animate the engine parts.
*/
void idle(void)
{
/* convert degrees per millisecond to RPM: */
const float m = 360.0 / 1000.0 / 60.0;
static GLfloat t;
t+=10;
Theta = ((int) (t * RPM * m)) % 360;
}
/**
* Compute piston's position along its stroke.
*/
static float
PistonStrokePosition(float throwDist, float crankAngle, float connRodLength)
{
float x = throwDist * cos(DEG_TO_RAD(crankAngle));
float y = throwDist * sin(DEG_TO_RAD(crankAngle));
float pos = y + sqrt(connRodLength * connRodLength - x * x);
return pos;
}
/**
* Compute position of nth piston along the crankshaft.
*/
static float
PistonShaftPosition(const Engine *eng, int piston)
{
const int i = piston / (eng->Pistons / eng->Cranks);
float z;
assert(piston < eng->Pistons);
z = 1.5 * eng->CrankJournalLength + eng->CrankPlateThickness
+ i * (2.0 * (eng->CrankJournalLength + eng->CrankPlateThickness));
if (eng->Pistons > eng->Cranks) {
if (piston & 1)
z += eng->ConnectingRodThickness;
else
z -= eng->ConnectingRodThickness;
}
return z;
}
/**
* Compute distance between two adjacent pistons
*/
static float
PistonSpacing(const Engine *eng)
{
const int pistonsPerCrank = eng->Pistons / eng->Cranks;
const float z0 = PistonShaftPosition(eng, 0);
const float z1 = PistonShaftPosition(eng, pistonsPerCrank);
return z1 - z0;
}
/**
* (x0, y0) = position of big end on crankshaft
* (x1, y1) = position of small end on piston
*/
static void
ComputeConnectingRodPosition(float throwDist, float crankAngle,
float connRodLength,
float *x0, float *y0, float *x1, float *y1)
{
*x0 = throwDist * cos(DEG_TO_RAD(crankAngle));
*y0 = throwDist * sin(DEG_TO_RAD(crankAngle));
*x1 = 0.0;
*y1 = PistonStrokePosition(throwDist, crankAngle, connRodLength);
}
/**
* Compute total length of the crankshaft.
*/
static float
CrankshaftLength(const Engine *eng)
{
float len = (eng->Cranks * 2 + 1) * eng->CrankJournalLength
+ 2 * eng->Cranks * eng->CrankPlateThickness;
return len;
}
/**
* Draw a piston.
* Axis of piston = Z axis. Wrist pin is centered on (0, 0, 0).
*/
static void
DrawPiston(const Engine *eng)
{
const int slices = 30, stacks = 4, loops = 4;
const float innerRadius = 0.9 * eng->PistonRadius;
const float innerHeight = eng->PistonHeight - 0.15;
const float wristPinLength = 1.8 * eng->PistonRadius;
assert(Q);
glPushMatrix();
glTranslatef(0, 0, -1.1 * eng->WristPinRadius);
gluQuadricOrientation(Q, GLU_INSIDE);
/* bottom rim */
gluDisk(Q, innerRadius, eng->PistonRadius, slices, 1/*loops*/);
/* inner cylinder */
gluCylinder(Q, innerRadius, innerRadius, innerHeight, slices, stacks);
/* inside top */
glPushMatrix();
glTranslatef(0, 0, innerHeight);
gluDisk(Q, 0, innerRadius, slices, loops);
glPopMatrix();
gluQuadricOrientation(Q, GLU_OUTSIDE);
/* outer cylinder */
gluCylinder(Q, eng->PistonRadius, eng->PistonRadius, eng->PistonHeight,
slices, stacks);
/* top */
glTranslatef(0, 0, eng->PistonHeight);
gluDisk(Q, 0, eng->PistonRadius, slices, loops);
glPopMatrix();
/* wrist pin */
glPushMatrix();
glTranslatef(0, 0.5 * wristPinLength, 0.0);
glRotatef(90, 1, 0, 0);
gluCylinder(Q, eng->WristPinRadius, eng->WristPinRadius, wristPinLength,
slices, stacks);
glPopMatrix();
}
/**
* Draw piston at particular position.
*/
static void
DrawPositionedPiston(const Engine *eng, float crankAngle)
{
const float pos = PistonStrokePosition(eng->Throw, crankAngle,
eng->ConnectingRodLength);
glPushMatrix();
glRotatef(-90, 1, 0, 0);
glTranslatef(0, 0, pos);
if (eng->PistonList)
glCallList(eng->PistonList);
else
DrawPiston(eng);
glPopMatrix();
}
/**
* Draw connector plate. Used for crankshaft and connecting rods.
*/
static void
DrawConnector(float length, float thickness,
float bigEndRadius, float smallEndRadius)
{
const float bigRadius = 1.2 * bigEndRadius;
const float smallRadius = 1.2 * smallEndRadius;
const float z0 = -0.5 * thickness, z1 = -z0;
GLfloat points[36][2], normals[36][2];
int i;
/* compute vertex locations, normals */
for (i = 0; i < 36; i++) {
const int angle = i * 10;
float x = cos(DEG_TO_RAD(angle));
float y = sin(DEG_TO_RAD(angle));
normals[i][0] = x;
normals[i][1] = y;
if (angle >= 0 && angle <= 180) {
x *= smallRadius;
y = y * smallRadius + length;
}
else {
x *= bigRadius;
y *= bigRadius;
}
points[i][0] = x;
points[i][1] = y;
}
/* front face */
glNormal3f(0, 0, 1);
glBegin(GL_POLYGON);
for (i = 0; i < 36; i++) {
glVertex3f(points[i][0], points[i][1], z1);
}
glEnd();
/* back face */
glNormal3f(0, 0, -1);
glBegin(GL_POLYGON);
for (i = 0; i < 36; i++) {
glVertex3f(points[35-i][0], points[35-i][1], z0);
}
glEnd();
/* edge */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= 36; i++) {
const int j = i % 36;
glNormal3f(normals[j][0], normals[j][1], 0);
glVertex3f(points[j][0], points[j][1], z1);
glVertex3f(points[j][0], points[j][1], z0);
}
glEnd();
}
/**
* Draw a crankshaft. Shaft lies along +Z axis, starting at zero.
*/
static void
DrawCrankshaft(const Engine *eng)
{
const int slices = 20, stacks = 2;
const int n = eng->Cranks * 4 + 1;
const float phiStep = 360 / eng->Cranks;
float phi = -90.0;
int i;
float z = 0.0;
for (i = 0; i < n; i++) {
glPushMatrix();
glTranslatef(0, 0, z);
if (i & 1) {
/* draw a crank plate */
glRotatef(phi, 0, 0, 1);
glTranslatef(0, 0, 0.5 * eng->CrankPlateThickness);
DrawConnector(eng->Throw, eng->CrankPlateThickness,
eng->CrankJournalRadius, eng->CrankPinRadius);
z += 0.2;
if (i % 4 == 3)
phi += phiStep;
}
else if (i % 4 == 0) {
/* draw crank journal segment */
gluCylinder(Q, eng->CrankJournalRadius, eng->CrankJournalRadius,
eng->CrankJournalLength, slices, stacks);
z += eng->CrankJournalLength;
}
else if (i % 4 == 2) {
/* draw crank pin segment */
glRotatef(phi, 0, 0, 1);
glTranslatef(0, eng->Throw, 0);
gluCylinder(Q, eng->CrankPinRadius, eng->CrankPinRadius,
eng->CrankJournalLength, slices, stacks);
z += eng->CrankJournalLength;
}
glPopMatrix();
}
}
/**
* Draw crankshaft at a particular rotation.
* \param crankAngle current crankshaft rotation, in radians
*/
static void
DrawPositionedCrankshaft(const Engine *eng, float crankAngle)
{
glPushMatrix();
glRotatef(crankAngle, 0, 0, 1);
if (eng->CrankList)
glCallList(eng->CrankList);
else
DrawCrankshaft(eng);
glPopMatrix();
}
/**
* Draw a connecting rod at particular position.
* \param eng description of connecting rod to draw
* \param crankAngle current crankshaft rotation, in radians
*/
static void
DrawPositionedConnectingRod(const Engine *eng, float crankAngle)
{
float x0, y0, x1, y1;
float d, phi;
ComputeConnectingRodPosition(eng->Throw, crankAngle,
eng->ConnectingRodLength,
&x0, &y0, &x1, &y1);
d = sqrt(eng->ConnectingRodLength * eng->ConnectingRodLength - x0 * x0);
phi = atan(x0 / d) * 180.0 / M_PI;
glPushMatrix();
glTranslatef(x0, y0, 0);
glRotatef(phi, 0, 0, 1);
if (eng->ConnRodList)
glCallList(eng->ConnRodList);
else
DrawConnector(eng->ConnectingRodLength, eng->ConnectingRodThickness,
eng->CrankPinRadius, eng->WristPinRadius);
glPopMatrix();
}
/**
* Draw a square with a hole in middle.
*/
static void
SquareWithHole(float squareSize, float holeRadius)
{
int i;
glBegin(GL_QUAD_STRIP);
glNormal3f(0, 0, 1);
for (i = 0; i <= 360; i += 5) {
const float x1 = holeRadius * cos(DEG_TO_RAD(i));
const float y1 = holeRadius * sin(DEG_TO_RAD(i));
float x2 = 0.0F, y2 = 0.0F;
if (i > 315 || i <= 45) {
x2 = squareSize;
y2 = squareSize * tan(DEG_TO_RAD(i));
}
else if (i > 45 && i <= 135) {
x2 = -squareSize * tan(DEG_TO_RAD(i - 90));
y2 = squareSize;
}
else if (i > 135 && i <= 225) {
x2 = -squareSize;
y2 = -squareSize * tan(DEG_TO_RAD(i-180));
}
else if (i > 225 && i <= 315) {
x2 = squareSize * tan(DEG_TO_RAD(i - 270));
y2 = -squareSize;
}
glVertex2f(x1, y1); /* inner circle */
glVertex2f(x2, y2); /* outer square */
}
glEnd();
}
/**
* Draw block with hole through middle.
* Hole is centered on Z axis.
* Bottom of block is at z=0, top of block is at z = blockHeight.
* index is in [0, count - 1] to determine which block faces are drawn.
*/
static void
DrawBlockWithHole(float blockSize, float blockHeight, float holeRadius,
int index, int count)
{
const int slices = 30, stacks = 4;
const float x = blockSize;
const float y = blockSize;
const float z0 = 0;
const float z1 = blockHeight;
assert(index < count);
assert(Q);
gluQuadricOrientation(Q, GLU_INSIDE);
glBegin(GL_QUADS);
/* +X face */
glNormal3f(1, 0, 0);
glVertex3f( x, -y, z0);
glVertex3f( x, y, z0);
glVertex3f( x, y, z1);
glVertex3f( x, -y, z1);
/* -X face */
glNormal3f(-1, 0, 0);
glVertex3f(-x, -y, z1);
glVertex3f(-x, y, z1);
glVertex3f(-x, y, z0);
glVertex3f(-x, -y, z0);
if (index == 0) {
/* +Y face */
glNormal3f(0, 1, 0);
glVertex3f(-x, y, z1);
glVertex3f( x, y, z1);
glVertex3f( x, y, z0);
glVertex3f(-x, y, z0);
}
if (index == count - 1) {
/* -Y face */
glNormal3f(0, -1, 0);
glVertex3f(-x, -y, z0);
glVertex3f( x, -y, z0);
glVertex3f( x, -y, z1);
glVertex3f(-x, -y, z1);
}
glEnd();
/* cylinder / hole */
gluCylinder(Q, holeRadius, holeRadius, blockHeight, slices, stacks);
/* face at z0 */
glPushMatrix();
glRotatef(180, 1, 0, 0);
SquareWithHole(blockSize, holeRadius);
glPopMatrix();
/* face at z1 */
glTranslatef(0, 0, z1);
SquareWithHole(blockSize, holeRadius);
gluQuadricOrientation(Q, GLU_OUTSIDE);
}
/**
* Draw the engine block.
*/
static void
DrawEngineBlock(const Engine *eng)
{
const float blockHeight = eng->Throw + 1.5 * eng->PistonHeight;
const float cylRadius = 1.01 * eng->PistonRadius;
const float blockSize = 0.5 * PistonSpacing(eng);
const int pistonsPerCrank = eng->Pistons / eng->Cranks;
int i;
for (i = 0; i < eng->Pistons; i++) {
const float z = PistonShaftPosition(eng, i);
const int crank = i / pistonsPerCrank;
int k;
glPushMatrix();
glTranslatef(0, 0, z);
/* additional rotation for kth piston per crank */
k = i % pistonsPerCrank;
glRotatef(k * -eng->V_Angle, 0, 0, 1);
/* the block */
glRotatef(-90, 1, 0, 0);
glTranslatef(0, 0, eng->Throw * 2);
DrawBlockWithHole(blockSize, blockHeight, cylRadius,
crank, eng->Cranks);
glPopMatrix();
}
}
/**
* Generate display lists for engine parts.
*/
static void
GenerateDisplayLists(Engine *eng)
{
eng->CrankList = glGenLists(1);
glNewList(eng->CrankList, GL_COMPILE);
DrawCrankshaft(eng);
glEndList();
eng->ConnRodList = glGenLists(1);
glNewList(eng->ConnRodList, GL_COMPILE);
DrawConnector(eng->ConnectingRodLength, eng->ConnectingRodThickness,
eng->CrankPinRadius, eng->WristPinRadius);
glEndList();
eng->PistonList = glGenLists(1);
glNewList(eng->PistonList, GL_COMPILE);
DrawPiston(eng);
glEndList();
eng->BlockList = glGenLists(1);
glNewList(eng->BlockList, GL_COMPILE);
DrawEngineBlock(eng);
glEndList();
}
/**
* Free engine display lists (render with immediate mode).
*/
static void
FreeDisplayLists(Engine *eng)
{
glDeleteLists(eng->CrankList, 1);
eng->CrankList = 0;
glDeleteLists(eng->ConnRodList, 1);
eng->ConnRodList = 0;
glDeleteLists(eng->PistonList, 1);
eng->PistonList = 0;
glDeleteLists(eng->BlockList, 1);
eng->BlockList = 0;
}
/**
* Draw complete engine.
* \param eng description of engine to draw
* \param crankAngle current crankshaft angle, in radians
*/
static void
DrawEngine(const Engine *eng, float crankAngle)
{
const float crankDelta = 360.0 / eng->Cranks;
const float crankLen = CrankshaftLength(eng);
const int pistonsPerCrank = eng->Pistons / eng->Cranks;
int i;
glPushMatrix();
glRotatef(eng->V_Angle * 0.5, 0, 0, 1);
glTranslatef(0, 0, -0.5 * crankLen);
/* crankshaft */
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, CrankshaftColor);
glColor4fv(CrankshaftColor);
DrawPositionedCrankshaft(eng, crankAngle);
for (i = 0; i < eng->Pistons; i++) {
const float z = PistonShaftPosition(eng, i);
const int crank = i / pistonsPerCrank;
float rot = crankAngle + crank * crankDelta;
int k;
glPushMatrix();
glTranslatef(0, 0, z);
/* additional rotation for kth piston per crank */
k = i % pistonsPerCrank;
glRotatef(k * -eng->V_Angle, 0, 0, 1);
rot += k * eng->V_Angle;
/* piston */
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, PistonColor);
glColor4fv(PistonColor);
DrawPositionedPiston(eng, rot);
/* connecting rod */
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, ConnRodColor);
glColor4fv(ConnRodColor);
DrawPositionedConnectingRod(eng, rot);
glPopMatrix();
}
if (Render.ShowBlock) {
const GLboolean blend = glIsEnabled(GL_BLEND);
glDepthMask(GL_FALSE);
if (!blend) {
glEnable(GL_BLEND);
}
glEnable(GL_CULL_FACE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, BlockColor);
glColor4fv(BlockColor);
if (eng->CrankList)
glCallList(eng->BlockList);
else
DrawEngineBlock(eng);
glDisable(GL_CULL_FACE);
glDepthMask(GL_TRUE);
if (!blend) {
glDisable(GL_BLEND);
}
}
glPopMatrix();
}
static void
DrawBox(void)
{
const float xmin = -3.0, xmax = 3.0;
const float ymin = -1.0, ymax = 3.0;
const float zmin = -4.0, zmax = 4.0;
const float step = 0.5;
const float d = 0.01;
float x, y, z;
GLboolean lit = glIsEnabled(GL_LIGHTING);
GLboolean tex = glIsEnabled(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);
glDisable(GL_TEXTURE_2D);
glLineWidth(1.0);
glColor3f(1, 1, 1);
/* Z min */
glBegin(GL_LINES);
for (x = xmin; x <= xmax; x += step) {
glVertex3f(x, ymin, zmin);
glVertex3f(x, ymax, zmin);
}
glEnd();
glBegin(GL_LINES);
for (y = ymin; y <= ymax; y += step) {
glVertex3f(xmin, y, zmin);
glVertex3f(xmax, y, zmin);
}
glEnd();
/* Y min */
glBegin(GL_LINES);
for (x = xmin; x <= xmax; x += step) {
glVertex3f(x, ymin, zmin);
glVertex3f(x, ymin, zmax);
}
glEnd();
glBegin(GL_LINES);
for (z = zmin; z <= zmax; z += step) {
glVertex3f(xmin, ymin, z);
glVertex3f(xmax, ymin, z);
}
glEnd();
/* X min */
glBegin(GL_LINES);
for (y = ymin; y <= ymax; y += step) {
glVertex3f(xmin, y, zmin);
glVertex3f(xmin, y, zmax);
}
glEnd();
glBegin(GL_LINES);
for (z = zmin; z <= zmax; z += step) {
glVertex3f(xmin, ymin, z);
glVertex3f(xmin, ymax, z);
}
glEnd();
glColor3f(0.4, 0.4, 0.6);
glBegin(GL_QUADS);
/* xmin */
glVertex3f(xmin-d, ymin, zmin);
glVertex3f(xmin-d, ymax, zmin);
glVertex3f(xmin-d, ymax, zmax);
glVertex3f(xmin-d, ymin, zmax);
/* ymin */
glVertex3f(xmin, ymin-d, zmin);
glVertex3f(xmax, ymin-d, zmin);
glVertex3f(xmax, ymin-d, zmax);
glVertex3f(xmin, ymin-d, zmax);
/* zmin */
glVertex3f(xmin, ymin, zmin-d);
glVertex3f(xmax, ymin, zmin-d);
glVertex3f(xmax, ymax, zmin-d);
glVertex3f(xmin, ymax, zmin-d);
glEnd();
if (lit)
glEnable(GL_LIGHTING);
if (tex)
glEnable(GL_TEXTURE_2D);
}
/*
static void
PrintString(const char *s)
{
while (*s) {
glutBitmapCharacter(GLUT_BITMAP_8_BY_13, (int) *s);
s++;
}
}
*/
void draw(void)
{
int fps;
GLfloat rot[4][4];
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glTranslatef(0.0, 0.0, -View.Distance);
build_rotmatrix(rot, View.CurQuat);
glMultMatrixf(&rot[0][0]);
glPushMatrix();
glTranslatef(0, -0.75, 0);
if (Render.DrawBox)
DrawBox();
DrawEngine(Engines + CurEngine, Theta);
glPopMatrix();
glPopMatrix();
}
/**
* Handle window resize.
*/
void reshape(int width, int height)
{
float ar = (float) width / height;
float s = 0.5;
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-ar * s, ar * s, -s, s, 2.0, 50.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
WinWidth = width;
WinHeight = height;
}
#if 0
/**
* Handle mouse button.
*/
static void
Mouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON) {
if (state == GLUT_DOWN) {
View.StartX = x;
View.StartY = y;
View.Rotating = GL_TRUE;
}
else if (state == GLUT_UP) {
View.Rotating = GL_FALSE;
}
}
else if (button == GLUT_MIDDLE_BUTTON) {
if (state == GLUT_DOWN) {
View.StartX = x;
View.StartY = y;
View.StartDistance = View.Distance;
View.Translating = GL_TRUE;
}
else if (state == GLUT_UP) {
View.Translating = GL_FALSE;
}
}
}
/**
* Handle mouse motion
*/
static void
Motion(int x, int y)
{
int i;
if (View.Rotating) {
float x0 = (2.0 * View.StartX - WinWidth) / WinWidth;
float y0 = (WinHeight - 2.0 * View.StartY) / WinHeight;
float x1 = (2.0 * x - WinWidth) / WinWidth;
float y1 = (WinHeight - 2.0 * y) / WinHeight;
float q[4];
trackball(q, x0, y0, x1, y1);
View.StartX = x;
View.StartY = y;
for (i = 0; i < 1; i++)
add_quats(q, View.CurQuat, View.CurQuat);
}
else if (View.Translating) {
float dz = 0.01 * (y - View.StartY);
View.Distance = View.StartDistance + dz;
}
}
#endif
/**
** Menu Callbacks
**/
static void
OptChangeEngine(void)
{
CurEngine = (CurEngine + 1) % NUM_ENGINES;
}
static void
OptRenderMode(void)
{
Render.Mode++;
if (Render.Mode > TEXTURED)
Render.Mode = 0;
SetRenderState(Render.Mode);
}
static void
OptDisplayLists(void)
{
int i;
Render.UseLists = !Render.UseLists;
if (Render.UseLists) {
for (i = 0; i < NUM_ENGINES; i++) {
GenerateDisplayLists(Engines + i);
}
}
else {
for (i = 0; i < NUM_ENGINES; i++) {
FreeDisplayLists(Engines + i);
}
}
}
static void
OptShowBlock(void)
{
Render.ShowBlock = !Render.ShowBlock;
}
static void
OptShowInfo(void)
{
Render.ShowInfo = !Render.ShowInfo;
}
static void
OptShowBox(void)
{
Render.DrawBox = !Render.DrawBox;
}
static void
OptRotate(void)
{
Theta += 5.0;
}
/**
* Define menu entries (w/ keyboard shortcuts)
*/
typedef struct
{
const char *Text;
const char Key;
void (*Function)(void);
} MenuInfo;
static const MenuInfo MenuItems[] = {
{ "Change Engine", 'e', OptChangeEngine },
{ "Rendering Style", 'm', OptRenderMode },
{ "Display Lists", 'd', OptDisplayLists },
{ "Show Block", 98, OptShowBlock }, /* b */
{ "Show Box", 'x', OptShowBox },
{ NULL, 'r', OptRotate },
{ NULL, 0, NULL }
};
/**
* Handle keyboard event.
*/
void Key(unsigned char key, int x, int y)
{
int i;
(void) x; (void) y;
for (i = 0; MenuItems[i].Key; i++)
{
if (MenuItems[i].Key == key)
{
MenuItems[i].Function();
break;
}
}
}
static void LoadTexture(void)
{
GLboolean convolve = GL_FALSE;
glGenTextures(1, &TextureObj);
glBindTexture(GL_TEXTURE_2D, TextureObj);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
if (convolve) {
#define FILTER_SIZE 7
/* use convolution to blur the texture to simulate a dull finish
* on the object.
*/
GLubyte *img;
GLenum format;
GLint w, h;
GLfloat filter[FILTER_SIZE][FILTER_SIZE][4];
for (h = 0; h < FILTER_SIZE; h++) {
for (w = 0; w < FILTER_SIZE; w++) {
const GLfloat k = 1.0 / (FILTER_SIZE * FILTER_SIZE);
filter[h][w][0] = k;
filter[h][w][1] = k;
filter[h][w][2] = k;
filter[h][w][3] = k;
}
}
glEnable(GL_CONVOLUTION_2D);
glConvolutionParameteri(GL_CONVOLUTION_2D,
GL_CONVOLUTION_BORDER_MODE, GL_CONSTANT_BORDER);
glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGBA,
FILTER_SIZE, FILTER_SIZE,
GL_RGBA, GL_FLOAT, filter);
img = LoadRGBImage(TEXTURE_FILE, &w, &h, &format);
if (!img) {
printf("Error: couldn't load texture image file %s\n", TEXTURE_FILE);
exit(1);
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0,
format, GL_UNSIGNED_BYTE, img);
free(img);
}
else {
if (!LoadRGBMipmaps(TEXTURE_FILE, GL_RGB)) {
printf("Error: couldn't load texture image file %s\n", TEXTURE_FILE);
exit(1);
}
}
}
void init(void)
{
const GLfloat lightColor[4] = { 0.7, 0.7, 0.7, 1.0 };
const GLfloat specular[4] = { 0.8, 0.8, 0.8, 1.0 };
const GLfloat backColor[4] = { 1, 1, 0, 0 };
Q = gluNewQuadric();
gluQuadricNormals(Q, GLU_SMOOTH);
LoadTexture();
glClearColor(0.3, 0.3, 0.3, 0.0);
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor);
glMaterialf(GL_FRONT, GL_SHININESS, 40);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular);
glEnable(GL_NORMALIZE);
glMaterialfv(GL_BACK, GL_DIFFUSE, backColor);
#if 0
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, 1);
#endif
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
InitViewInfo(&View);
InitRenderInfo(&Render);
}
int atexit(void (*func)(void))
{
return 0;
};
/*
#define GL_NO_ERROR 0x0
#define GL_INVALID_ENUM 0x0500
#define GL_INVALID_VALUE 0x0501
#define GL_INVALID_OPERATION 0x0502
#define GL_STACK_OVERFLOW 0x0503
#define GL_STACK_UNDERFLOW 0x0504
#define GL_OUT_OF_MEMORY 0x0505
*/