kolibrios/drivers/video/drm/i915/i915_gem_gtt.c

1024 lines
28 KiB
C
Raw Normal View History

/*
* Copyright © 2010 Daniel Vetter
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#define AGP_NORMAL_MEMORY 0
#define AGP_USER_TYPES (1 << 16)
#define AGP_USER_MEMORY (AGP_USER_TYPES)
#define AGP_USER_CACHED_MEMORY (AGP_USER_TYPES + 1)
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
typedef uint32_t gen6_gtt_pte_t;
/* PPGTT stuff */
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PDE_VALID (1 << 0)
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_VALID (1 << 0)
#define GEN6_PTE_UNCACHED (1 << 1)
#define HSW_PTE_UNCACHED (0)
#define GEN6_PTE_CACHE_LLC (2 << 1)
#define GEN6_PTE_CACHE_LLC_MLC (3 << 1)
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
static inline gen6_gtt_pte_t gen6_pte_encode(struct drm_device *dev,
dma_addr_t addr,
enum i915_cache_level level)
{
gen6_gtt_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_LLC_MLC:
/* Haswell doesn't set L3 this way */
if (IS_HASWELL(dev))
pte |= GEN6_PTE_CACHE_LLC;
else
pte |= GEN6_PTE_CACHE_LLC_MLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
if (IS_HASWELL(dev))
pte |= HSW_PTE_UNCACHED;
else
pte |= GEN6_PTE_UNCACHED;
break;
default:
BUG();
}
return pte;
}
static int gen6_ppgtt_enable(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t pd_offset;
struct intel_ring_buffer *ring;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
gen6_gtt_pte_t __iomem *pd_addr;
uint32_t pd_entry;
int i;
pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
for (i = 0; i < ppgtt->num_pd_entries; i++) {
dma_addr_t pt_addr;
pt_addr = ppgtt->pt_dma_addr[i];
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, pd_addr + i);
}
readl(pd_addr);
pd_offset = ppgtt->pd_offset;
pd_offset /= 64; /* in cachelines, */
pd_offset <<= 16;
if (INTEL_INFO(dev)->gen == 6) {
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
} else if (INTEL_INFO(dev)->gen >= 7) {
uint32_t ecochk, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
ecochk = I915_READ(GAM_ECOCHK);
if (IS_HASWELL(dev)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
I915_WRITE(GAM_ECOCHK, ecochk);
/* GFX_MODE is per-ring on gen7+ */
}
for_each_ring(ring, dev_priv, i) {
if (INTEL_INFO(dev)->gen >= 7)
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
}
return 0;
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_hw_ppgtt *ppgtt,
unsigned first_entry,
unsigned num_entries)
{
gen6_gtt_pte_t *pt_vaddr, scratch_pte;
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
unsigned last_pte, i;
scratch_pte = gen6_pte_encode(ppgtt->dev,
ppgtt->scratch_page_dma_addr,
I915_CACHE_LLC);
pt_vaddr = AllocKernelSpace(4096);
if(pt_vaddr == NULL)
return;
while (num_entries) {
last_pte = first_pte + num_entries;
if (last_pte > I915_PPGTT_PT_ENTRIES)
last_pte = I915_PPGTT_PT_ENTRIES;
MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
for (i = first_pte; i < last_pte; i++)
pt_vaddr[i] = scratch_pte;
num_entries -= last_pte - first_pte;
first_pte = 0;
act_pt++;
};
FreeKernelSpace(pt_vaddr);
}
static void gen6_ppgtt_insert_entries(struct i915_hw_ppgtt *ppgtt,
struct sg_table *pages,
unsigned first_entry,
enum i915_cache_level cache_level)
{
gen6_gtt_pte_t *pt_vaddr;
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
struct sg_page_iter sg_iter;
dma_addr_t page_addr;
pt_vaddr = AllocKernelSpace(4096);
if(pt_vaddr == NULL)
return;
MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
dma_addr_t page_addr;
page_addr = sg_page_iter_dma_address(&sg_iter);
pt_vaddr[act_pte] = gen6_pte_encode(ppgtt->dev, page_addr,
cache_level);
if (++act_pte == I915_PPGTT_PT_ENTRIES) {
act_pt++;
MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
act_pte = 0;
}
}
FreeKernelSpace(pt_vaddr);
}
static void gen6_ppgtt_cleanup(struct i915_hw_ppgtt *ppgtt)
{
int i;
if (ppgtt->pt_dma_addr) {
for (i = 0; i < ppgtt->num_pd_entries; i++)
pci_unmap_page(ppgtt->dev->pdev,
ppgtt->pt_dma_addr[i],
4096, PCI_DMA_BIDIRECTIONAL);
}
kfree(ppgtt->pt_dma_addr);
for (i = 0; i < ppgtt->num_pd_entries; i++)
__free_page(ppgtt->pt_pages[i]);
kfree(ppgtt->pt_pages);
kfree(ppgtt);
}
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_device *dev = ppgtt->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned first_pd_entry_in_global_pt;
int i;
int ret = -ENOMEM;
/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
* entries. For aliasing ppgtt support we just steal them at the end for
* now. */
first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
ppgtt->num_pd_entries = I915_PPGTT_PD_ENTRIES;
ppgtt->enable = gen6_ppgtt_enable;
ppgtt->clear_range = gen6_ppgtt_clear_range;
ppgtt->insert_entries = gen6_ppgtt_insert_entries;
ppgtt->cleanup = gen6_ppgtt_cleanup;
ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
GFP_KERNEL);
if (!ppgtt->pt_pages)
return -ENOMEM;
for (i = 0; i < ppgtt->num_pd_entries; i++) {
ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
if (!ppgtt->pt_pages[i])
goto err_pt_alloc;
}
ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
GFP_KERNEL);
if (!ppgtt->pt_dma_addr)
goto err_pt_alloc;
for (i = 0; i < ppgtt->num_pd_entries; i++) {
dma_addr_t pt_addr;
pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
PCI_DMA_BIDIRECTIONAL);
ppgtt->pt_dma_addr[i] = pt_addr;
}
ppgtt->clear_range(ppgtt, 0,
ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
return 0;
err_pd_pin:
if (ppgtt->pt_dma_addr) {
for (i--; i >= 0; i--)
pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
4096, PCI_DMA_BIDIRECTIONAL);
}
err_pt_alloc:
kfree(ppgtt->pt_dma_addr);
for (i = 0; i < ppgtt->num_pd_entries; i++) {
if (ppgtt->pt_pages[i])
__free_page(ppgtt->pt_pages[i]);
}
kfree(ppgtt->pt_pages);
return ret;
}
static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt;
int ret;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return -ENOMEM;
ppgtt->dev = dev;
ppgtt->scratch_page_dma_addr = dev_priv->gtt.scratch_page_dma;
if (INTEL_INFO(dev)->gen < 8)
ret = gen6_ppgtt_init(ppgtt);
else
BUG();
if (ret)
kfree(ppgtt);
else
dev_priv->mm.aliasing_ppgtt = ppgtt;
return ret;
}
void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
if (!ppgtt)
return;
ppgtt->cleanup(ppgtt);
dev_priv->mm.aliasing_ppgtt = NULL;
}
void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
ppgtt->insert_entries(ppgtt, obj->pages,
obj->gtt_space->start >> PAGE_SHIFT,
cache_level);
}
void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_object *obj)
{
ppgtt->clear_range(ppgtt,
obj->gtt_space->start >> PAGE_SHIFT,
obj->base.size >> PAGE_SHIFT);
}
extern int intel_iommu_gfx_mapped;
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static inline bool needs_idle_maps(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
static bool do_idling(struct drm_i915_private *dev_priv)
{
bool ret = dev_priv->mm.interruptible;
if (unlikely(dev_priv->gtt.do_idle_maps)) {
dev_priv->mm.interruptible = false;
if (i915_gpu_idle(dev_priv->dev)) {
DRM_ERROR("Couldn't idle GPU\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
return ret;
}
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
{
if (unlikely(dev_priv->gtt.do_idle_maps))
dev_priv->mm.interruptible = interruptible;
}
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
/* First fill our portion of the GTT with scratch pages */
dev_priv->gtt.gtt_clear_range(dev, dev_priv->gtt.start / PAGE_SIZE,
dev_priv->gtt.total / PAGE_SIZE);
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
i915_gem_clflush_object(obj);
i915_gem_gtt_bind_object(obj, obj->cache_level);
}
i915_gem_chipset_flush(dev);
}
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
{
if (obj->has_dma_mapping)
return 0;
if (!dma_map_sg(&obj->base.dev->pdev->dev,
obj->pages->sgl, obj->pages->nents,
PCI_DMA_BIDIRECTIONAL))
return -ENOSPC;
return 0;
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct drm_device *dev,
struct sg_table *st,
unsigned int first_entry,
enum i915_cache_level level)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen6_gtt_pte_t __iomem *gtt_entries =
(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
int i = 0;
struct sg_page_iter sg_iter;
dma_addr_t addr;
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
addr = sg_page_iter_dma_address(&sg_iter);
iowrite32(gen6_pte_encode(dev, addr, level), &gtt_entries[i]);
i++;
}
/* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readl(&gtt_entries[i-1])
!= gen6_pte_encode(dev, addr, level));
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void gen6_ggtt_clear_range(struct drm_device *dev,
unsigned int first_entry,
unsigned int num_entries)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
int i;
// if (WARN(num_entries > max_entries,
// "First entry = %d; Num entries = %d (max=%d)\n",
// first_entry, num_entries, max_entries))
if (num_entries > max_entries)
num_entries = max_entries;
scratch_pte = gen6_pte_encode(dev, dev_priv->gtt.scratch_page_dma,
I915_CACHE_LLC);
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
readl(gtt_base);
}
static void i915_ggtt_insert_entries(struct drm_device *dev,
struct sg_table *st,
unsigned int pg_start,
enum i915_cache_level cache_level)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(st, pg_start, flags);
}
static void i915_ggtt_clear_range(struct drm_device *dev,
unsigned int first_entry,
unsigned int num_entries)
{
intel_gtt_clear_range(first_entry, num_entries);
}
void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->gtt.gtt_insert_entries(dev, obj->pages,
obj->gtt_space->start >> PAGE_SHIFT,
cache_level);
obj->has_global_gtt_mapping = 1;
}
void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->gtt.gtt_clear_range(obj->base.dev,
obj->gtt_space->start >> PAGE_SHIFT,
obj->base.size >> PAGE_SHIFT);
obj->has_global_gtt_mapping = 0;
}
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool interruptible;
interruptible = do_idling(dev_priv);
if (!obj->has_dma_mapping)
dma_unmap_sg(&dev->pdev->dev,
obj->pages->sgl, obj->pages->nents,
PCI_DMA_BIDIRECTIONAL);
undo_idling(dev_priv, interruptible);
}
static void i915_gtt_color_adjust(struct drm_mm_node *node,
unsigned long color,
unsigned long *start,
unsigned long *end)
{
if (node->color != color)
*start += 4096;
if (!list_empty(&node->node_list)) {
node = list_entry(node->node_list.next,
struct drm_mm_node,
node_list);
if (node->allocated && node->color != color)
*end -= 4096;
}
}
void i915_gem_setup_global_gtt(struct drm_device *dev,
unsigned long start,
unsigned long mappable_end,
unsigned long end)
{
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_mm_node *entry;
struct drm_i915_gem_object *obj;
unsigned long hole_start, hole_end;
BUG_ON(mappable_end > end);
/* Subtract the guard page ... */
drm_mm_init(&dev_priv->mm.gtt_space, start, end - start - PAGE_SIZE);
if (!HAS_LLC(dev))
dev_priv->mm.gtt_space.color_adjust = i915_gtt_color_adjust;
/* Mark any preallocated objects as occupied */
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
DRM_DEBUG_KMS("reserving preallocated space: %x + %zx\n",
obj->gtt_offset, obj->base.size);
BUG_ON(obj->gtt_space != I915_GTT_RESERVED);
obj->gtt_space = drm_mm_create_block(&dev_priv->mm.gtt_space,
obj->gtt_offset,
obj->base.size,
false);
obj->has_global_gtt_mapping = 1;
}
dev_priv->gtt.start = start;
dev_priv->gtt.total = end - start;
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &dev_priv->mm.gtt_space,
hole_start, hole_end) {
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
dev_priv->gtt.gtt_clear_range(dev, hole_start / PAGE_SIZE,
(hole_end-hole_start) / PAGE_SIZE);
}
/* And finally clear the reserved guard page */
dev_priv->gtt.gtt_clear_range(dev, end / PAGE_SIZE - 1, 1);
}
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
if (i915_enable_ppgtt >= 0)
return i915_enable_ppgtt;
#ifdef CONFIG_INTEL_IOMMU
/* Disable ppgtt on SNB if VT-d is on. */
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
return false;
#endif
return true;
}
void i915_gem_init_global_gtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long gtt_size, mappable_size;
gtt_size = dev_priv->gtt.total;
mappable_size = dev_priv->gtt.mappable_end;
#if 0
if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
int ret;
if (INTEL_INFO(dev)->gen <= 7) {
/* PPGTT pdes are stolen from global gtt ptes, so shrink the
* aperture accordingly when using aliasing ppgtt. */
gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
}
// gtt_size -= LFB_SIZE;
i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size);
ret = i915_gem_init_aliasing_ppgtt(dev);
if (!ret)
return;
DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
drm_mm_takedown(&dev_priv->mm.gtt_space);
gtt_size += I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
}
#endif
i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size);
}
static int setup_scratch_page(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct page *page;
dma_addr_t dma_addr;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return -ENOMEM;
get_page(page);
set_pages_uc(page, 1);
#ifdef CONFIG_INTEL_IOMMU
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, dma_addr))
return -EINVAL;
#else
dma_addr = page_to_phys(page);
#endif
dev_priv->gtt.scratch_page = page;
dev_priv->gtt.scratch_page_dma = dma_addr;
return 0;
}
static void teardown_scratch_page(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
set_pages_wb(dev_priv->gtt.scratch_page, 1);
pci_unmap_page(dev->pdev, dev_priv->gtt.scratch_page_dma,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
put_page(dev_priv->gtt.scratch_page);
__free_page(dev_priv->gtt.scratch_page);
}
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
return snb_gmch_ctl << 25; /* 32 MB units */
}
static int gen6_gmch_probe(struct drm_device *dev,
size_t *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
unsigned long *mappable_end)
{
struct drm_i915_private *dev_priv = dev->dev_private;
phys_addr_t gtt_bus_addr;
unsigned int gtt_size;
u16 snb_gmch_ctl;
int ret;
*mappable_base = pci_resource_start(dev->pdev, 2);
*mappable_end = pci_resource_len(dev->pdev, 2);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
DRM_ERROR("Unknown GMADR size (%lx)\n",
dev_priv->gtt.mappable_end);
return -ENXIO;
}
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
/* For Modern GENs the PTEs and register space are split in the BAR */
gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
(pci_resource_len(dev->pdev, 0) / 2);
dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
if (!dev_priv->gtt.gsm) {
DRM_ERROR("Failed to map the gtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(dev);
if (ret)
DRM_ERROR("Scratch setup failed\n");
dev_priv->gtt.gtt_clear_range = gen6_ggtt_clear_range;
dev_priv->gtt.gtt_insert_entries = gen6_ggtt_insert_entries;
return ret;
}
static void gen6_gmch_remove(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
iounmap(dev_priv->gtt.gsm);
teardown_scratch_page(dev_priv->dev);
}
static int i915_gmch_probe(struct drm_device *dev,
size_t *gtt_total,
size_t *stolen,
phys_addr_t *mappable_base,
unsigned long *mappable_end)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
dev_priv->gtt.gtt_clear_range = i915_ggtt_clear_range;
dev_priv->gtt.gtt_insert_entries = i915_ggtt_insert_entries;
return 0;
}
static void i915_gmch_remove(struct drm_device *dev)
{
// intel_gmch_remove();
}
int i915_gem_gtt_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_gtt *gtt = &dev_priv->gtt;
int ret;
if (INTEL_INFO(dev)->gen <= 5) {
dev_priv->gtt.gtt_probe = i915_gmch_probe;
dev_priv->gtt.gtt_remove = i915_gmch_remove;
} else {
dev_priv->gtt.gtt_probe = gen6_gmch_probe;
dev_priv->gtt.gtt_remove = gen6_gmch_remove;
}
ret = dev_priv->gtt.gtt_probe(dev, &dev_priv->gtt.total,
&dev_priv->gtt.stolen_size,
&gtt->mappable_base,
&gtt->mappable_end);
if (ret)
return ret;
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_INFO("Memory usable by graphics device = %zdM\n",
dev_priv->gtt.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %ldM\n",
dev_priv->gtt.mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n",
dev_priv->gtt.stolen_size >> 20);
return 0;
}
struct scatterlist *sg_next(struct scatterlist *sg)
{
if (sg_is_last(sg))
return NULL;
sg++;
if (unlikely(sg_is_chain(sg)))
sg = sg_chain_ptr(sg);
return sg;
}
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
sg_free_fn *free_fn)
{
struct scatterlist *sgl, *next;
if (unlikely(!table->sgl))
return;
sgl = table->sgl;
while (table->orig_nents) {
unsigned int alloc_size = table->orig_nents;
unsigned int sg_size;
/*
* If we have more than max_ents segments left,
* then assign 'next' to the sg table after the current one.
* sg_size is then one less than alloc size, since the last
* element is the chain pointer.
*/
if (alloc_size > max_ents) {
next = sg_chain_ptr(&sgl[max_ents - 1]);
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else {
sg_size = alloc_size;
next = NULL;
}
table->orig_nents -= sg_size;
kfree(sgl);
sgl = next;
}
table->sgl = NULL;
}
void sg_free_table(struct sg_table *table)
{
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
}
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
struct scatterlist *sg, *prv;
unsigned int left;
unsigned int max_ents = SG_MAX_SINGLE_ALLOC;
#ifndef ARCH_HAS_SG_CHAIN
BUG_ON(nents > max_ents);
#endif
memset(table, 0, sizeof(*table));
left = nents;
prv = NULL;
do {
unsigned int sg_size, alloc_size = left;
if (alloc_size > max_ents) {
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else
sg_size = alloc_size;
left -= sg_size;
sg = kmalloc(alloc_size * sizeof(struct scatterlist), gfp_mask);
if (unlikely(!sg)) {
/*
* Adjust entry count to reflect that the last
* entry of the previous table won't be used for
* linkage. Without this, sg_kfree() may get
* confused.
*/
if (prv)
table->nents = ++table->orig_nents;
goto err;
}
sg_init_table(sg, alloc_size);
table->nents = table->orig_nents += sg_size;
/*
* If this is the first mapping, assign the sg table header.
* If this is not the first mapping, chain previous part.
*/
if (prv)
sg_chain(prv, max_ents, sg);
else
table->sgl = sg;
/*
* If no more entries after this one, mark the end
*/
if (!left)
sg_mark_end(&sg[sg_size - 1]);
prv = sg;
} while (left);
return 0;
err:
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
return -ENOMEM;
}
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
{
unsigned int i;
for (i = 0; i < nents; i++)
sgl[i].sg_magic = SG_MAGIC;
}
#endif
sg_mark_end(&sgl[nents - 1]);
}
void __sg_page_iter_start(struct sg_page_iter *piter,
struct scatterlist *sglist, unsigned int nents,
unsigned long pgoffset)
{
piter->__pg_advance = 0;
piter->__nents = nents;
piter->sg = sglist;
piter->sg_pgoffset = pgoffset;
}
static int sg_page_count(struct scatterlist *sg)
{
return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
}
bool __sg_page_iter_next(struct sg_page_iter *piter)
{
if (!piter->__nents || !piter->sg)
return false;
piter->sg_pgoffset += piter->__pg_advance;
piter->__pg_advance = 1;
while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
piter->sg_pgoffset -= sg_page_count(piter->sg);
piter->sg = sg_next(piter->sg);
if (!--piter->__nents || !piter->sg)
return false;
}
return true;
}
EXPORT_SYMBOL(__sg_page_iter_next);