kolibrios/drivers/video/drm/radeon/radeon_display.c
Sergey Semyonov (Serge) 3c7b2b4679 init modeset
git-svn-id: svn://kolibrios.org@1125 a494cfbc-eb01-0410-851d-a64ba20cac60
2009-07-04 13:29:02 +00:00

715 lines
21 KiB
C

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
//#include <asm/div64.h>
#include "drm_crtc_helper.h"
#include "drm_edid.h"
static int radeon_ddc_dump(struct drm_connector *connector);
static void avivo_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
DRM_DEBUG("%d\n", radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUT_RW_SELECT, radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUT_RW_MODE, 0);
WREG32(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f);
WREG8(AVIVO_DC_LUT_RW_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(AVIVO_DC_LUT_30_COLOR,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
WREG32(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id);
}
static void legacy_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
uint32_t dac2_cntl;
dac2_cntl = RREG32(RADEON_DAC_CNTL2);
if (radeon_crtc->crtc_id == 0)
dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL;
else
dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL;
WREG32(RADEON_DAC_CNTL2, dac2_cntl);
WREG8(RADEON_PALETTE_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(RADEON_PALETTE_30_DATA,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
}
void radeon_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
if (!crtc->enabled)
return;
if (ASIC_IS_AVIVO(rdev))
avivo_crtc_load_lut(crtc);
else
legacy_crtc_load_lut(crtc);
}
/** Sets the color ramps on behalf of RandR */
void radeon_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (regno == 0)
DRM_DEBUG("gamma set %d\n", radeon_crtc->crtc_id);
radeon_crtc->lut_r[regno] = red >> 6;
radeon_crtc->lut_g[regno] = green >> 6;
radeon_crtc->lut_b[regno] = blue >> 6;
}
static void radeon_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
int i, j;
if (size != 256) {
return;
}
if (crtc->fb == NULL) {
return;
}
if (crtc->fb->depth == 16) {
for (i = 0; i < 64; i++) {
if (i <= 31) {
for (j = 0; j < 8; j++) {
radeon_crtc->lut_r[i * 8 + j] = red[i] >> 6;
radeon_crtc->lut_b[i * 8 + j] = blue[i] >> 6;
}
}
for (j = 0; j < 4; j++)
radeon_crtc->lut_g[i * 4 + j] = green[i] >> 6;
}
} else {
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = red[i] >> 6;
radeon_crtc->lut_g[i] = green[i] >> 6;
radeon_crtc->lut_b[i] = blue[i] >> 6;
}
}
radeon_crtc_load_lut(crtc);
}
static void radeon_crtc_destroy(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->mode_set.mode) {
drm_mode_destroy(crtc->dev, radeon_crtc->mode_set.mode);
}
drm_crtc_cleanup(crtc);
kfree(radeon_crtc);
}
static const struct drm_crtc_funcs radeon_crtc_funcs = {
// .cursor_set = radeon_crtc_cursor_set,
// .cursor_move = radeon_crtc_cursor_move,
.gamma_set = radeon_crtc_gamma_set,
// .set_config = drm_crtc_helper_set_config,
.destroy = radeon_crtc_destroy,
};
static void radeon_crtc_init(struct drm_device *dev, int index)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc;
int i;
ENTRY();
radeon_crtc = kzalloc(sizeof(struct radeon_crtc) + (RADEONFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (radeon_crtc == NULL)
return;
drm_crtc_init(dev, &radeon_crtc->base, &radeon_crtc_funcs);
drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256);
radeon_crtc->crtc_id = index;
radeon_crtc->mode_set.crtc = &radeon_crtc->base;
radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1);
radeon_crtc->mode_set.num_connectors = 0;
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = i << 2;
radeon_crtc->lut_g[i] = i << 2;
radeon_crtc->lut_b[i] = i << 2;
}
if (rdev->is_atom_bios && (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom))
radeon_atombios_init_crtc(dev, radeon_crtc);
else
radeon_legacy_init_crtc(dev, radeon_crtc);
LEAVE();
}
static const char *encoder_names[34] = {
"NONE",
"INTERNAL_LVDS",
"INTERNAL_TMDS1",
"INTERNAL_TMDS2",
"INTERNAL_DAC1",
"INTERNAL_DAC2",
"INTERNAL_SDVOA",
"INTERNAL_SDVOB",
"SI170B",
"CH7303",
"CH7301",
"INTERNAL_DVO1",
"EXTERNAL_SDVOA",
"EXTERNAL_SDVOB",
"TITFP513",
"INTERNAL_LVTM1",
"VT1623",
"HDMI_SI1930",
"HDMI_INTERNAL",
"INTERNAL_KLDSCP_TMDS1",
"INTERNAL_KLDSCP_DVO1",
"INTERNAL_KLDSCP_DAC1",
"INTERNAL_KLDSCP_DAC2",
"SI178",
"MVPU_FPGA",
"INTERNAL_DDI",
"VT1625",
"HDMI_SI1932",
"DP_AN9801",
"DP_DP501",
"INTERNAL_UNIPHY",
"INTERNAL_KLDSCP_LVTMA",
"INTERNAL_UNIPHY1",
"INTERNAL_UNIPHY2",
};
static const char *connector_names[13] = {
"Unknown",
"VGA",
"DVI-I",
"DVI-D",
"DVI-A",
"Composite",
"S-video",
"LVDS",
"Component",
"DIN",
"DisplayPort",
"HDMI-A",
"HDMI-B",
};
static void radeon_print_display_setup(struct drm_device *dev)
{
struct drm_connector *connector;
struct radeon_connector *radeon_connector;
struct drm_encoder *encoder;
struct radeon_encoder *radeon_encoder;
uint32_t devices;
int i = 0;
DRM_INFO("Radeon Display Connectors\n");
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
radeon_connector = to_radeon_connector(connector);
DRM_INFO("Connector %d:\n", i);
DRM_INFO(" %s\n", connector_names[connector->connector_type]);
if (radeon_connector->ddc_bus)
DRM_INFO(" DDC: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
radeon_connector->ddc_bus->rec.mask_clk_reg,
radeon_connector->ddc_bus->rec.mask_data_reg,
radeon_connector->ddc_bus->rec.a_clk_reg,
radeon_connector->ddc_bus->rec.a_data_reg,
radeon_connector->ddc_bus->rec.put_clk_reg,
radeon_connector->ddc_bus->rec.put_data_reg,
radeon_connector->ddc_bus->rec.get_clk_reg,
radeon_connector->ddc_bus->rec.get_data_reg);
DRM_INFO(" Encoders:\n");
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
radeon_encoder = to_radeon_encoder(encoder);
devices = radeon_encoder->devices & radeon_connector->devices;
if (devices) {
if (devices & ATOM_DEVICE_CRT1_SUPPORT)
DRM_INFO(" CRT1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CRT2_SUPPORT)
DRM_INFO(" CRT2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_LCD1_SUPPORT)
DRM_INFO(" LCD1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP1_SUPPORT)
DRM_INFO(" DFP1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP2_SUPPORT)
DRM_INFO(" DFP2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP3_SUPPORT)
DRM_INFO(" DFP3: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP4_SUPPORT)
DRM_INFO(" DFP4: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP5_SUPPORT)
DRM_INFO(" DFP5: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_TV1_SUPPORT)
DRM_INFO(" TV1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CV_SUPPORT)
DRM_INFO(" CV: %s\n", encoder_names[radeon_encoder->encoder_id]);
}
}
i++;
}
}
bool radeon_setup_enc_conn(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct drm_connector *drm_connector;
bool ret = false;
ENTRY();
if (rdev->bios) {
if (rdev->is_atom_bios) {
if (rdev->family >= CHIP_R600)
ret = radeon_get_atom_connector_info_from_object_table(dev);
else
ret = radeon_get_atom_connector_info_from_supported_devices_table(dev);
} else
ret = radeon_get_legacy_connector_info_from_bios(dev);
} else {
if (!ASIC_IS_AVIVO(rdev))
ret = radeon_get_legacy_connector_info_from_table(dev);
}
if (ret) {
radeon_print_display_setup(dev);
list_for_each_entry(drm_connector, &dev->mode_config.connector_list, head)
radeon_ddc_dump(drm_connector);
}
LEAVE();
return ret;
}
int radeon_ddc_get_modes(struct radeon_connector *radeon_connector)
{
struct edid *edid;
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(&radeon_connector->base, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
if (edid) {
/* update digital bits here */
if (edid->input & DRM_EDID_INPUT_DIGITAL)
radeon_connector->use_digital = 1;
else
radeon_connector->use_digital = 0;
drm_mode_connector_update_edid_property(&radeon_connector->base, edid);
ret = drm_add_edid_modes(&radeon_connector->base, edid);
kfree(edid);
return ret;
}
drm_mode_connector_update_edid_property(&radeon_connector->base, NULL);
return -1;
}
static int radeon_ddc_dump(struct drm_connector *connector)
{
struct edid *edid;
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(connector, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
if (edid) {
kfree(edid);
}
return ret;
}
static inline uint32_t radeon_div(uint64_t n, uint32_t d)
{
uint64_t mod;
n += d / 2;
mod = do_div(n, d);
return n;
}
void radeon_compute_pll(struct radeon_pll *pll,
uint64_t freq,
uint32_t *dot_clock_p,
uint32_t *fb_div_p,
uint32_t *frac_fb_div_p,
uint32_t *ref_div_p,
uint32_t *post_div_p,
int flags)
{
uint32_t min_ref_div = pll->min_ref_div;
uint32_t max_ref_div = pll->max_ref_div;
uint32_t min_fractional_feed_div = 0;
uint32_t max_fractional_feed_div = 0;
uint32_t best_vco = pll->best_vco;
uint32_t best_post_div = 1;
uint32_t best_ref_div = 1;
uint32_t best_feedback_div = 1;
uint32_t best_frac_feedback_div = 0;
uint32_t best_freq = -1;
uint32_t best_error = 0xffffffff;
uint32_t best_vco_diff = 1;
uint32_t post_div;
DRM_DEBUG("PLL freq %llu %u %u\n", freq, pll->min_ref_div, pll->max_ref_div);
freq = freq * 1000;
if (flags & RADEON_PLL_USE_REF_DIV)
min_ref_div = max_ref_div = pll->reference_div;
else {
while (min_ref_div < max_ref_div-1) {
uint32_t mid = (min_ref_div + max_ref_div) / 2;
uint32_t pll_in = pll->reference_freq / mid;
if (pll_in < pll->pll_in_min)
max_ref_div = mid;
else if (pll_in > pll->pll_in_max)
min_ref_div = mid;
else
break;
}
}
if (flags & RADEON_PLL_USE_FRAC_FB_DIV) {
min_fractional_feed_div = pll->min_frac_feedback_div;
max_fractional_feed_div = pll->max_frac_feedback_div;
}
for (post_div = pll->min_post_div; post_div <= pll->max_post_div; ++post_div) {
uint32_t ref_div;
if ((flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1))
continue;
/* legacy radeons only have a few post_divs */
if (flags & RADEON_PLL_LEGACY) {
if ((post_div == 5) ||
(post_div == 7) ||
(post_div == 9) ||
(post_div == 10) ||
(post_div == 11) ||
(post_div == 13) ||
(post_div == 14) ||
(post_div == 15))
continue;
}
for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) {
uint32_t feedback_div, current_freq = 0, error, vco_diff;
uint32_t pll_in = pll->reference_freq / ref_div;
uint32_t min_feed_div = pll->min_feedback_div;
uint32_t max_feed_div = pll->max_feedback_div + 1;
if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max)
continue;
while (min_feed_div < max_feed_div) {
uint32_t vco;
uint32_t min_frac_feed_div = min_fractional_feed_div;
uint32_t max_frac_feed_div = max_fractional_feed_div + 1;
uint32_t frac_feedback_div;
uint64_t tmp;
feedback_div = (min_feed_div + max_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * feedback_div;
vco = radeon_div(tmp, ref_div);
if (vco < pll->pll_out_min) {
min_feed_div = feedback_div + 1;
continue;
} else if (vco > pll->pll_out_max) {
max_feed_div = feedback_div;
continue;
}
while (min_frac_feed_div < max_frac_feed_div) {
frac_feedback_div = (min_frac_feed_div + max_frac_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * 10000 * feedback_div;
tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div;
current_freq = radeon_div(tmp, ref_div * post_div);
error = abs(current_freq - freq);
vco_diff = abs(vco - best_vco);
if ((best_vco == 0 && error < best_error) ||
(best_vco != 0 &&
(error < best_error - 100 ||
(abs(error - best_error) < 100 && vco_diff < best_vco_diff)))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (current_freq == freq) {
if (best_freq == -1) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (((flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_REF_DIV) && (ref_div > best_ref_div)) ||
((flags & RADEON_PLL_PREFER_LOW_FB_DIV) && (feedback_div < best_feedback_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_FB_DIV) && (feedback_div > best_feedback_div)) ||
((flags & RADEON_PLL_PREFER_LOW_POST_DIV) && (post_div < best_post_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_POST_DIV) && (post_div > best_post_div))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
}
}
if (current_freq < freq)
min_frac_feed_div = frac_feedback_div + 1;
else
max_frac_feed_div = frac_feedback_div;
}
if (current_freq < freq)
min_feed_div = feedback_div + 1;
else
max_feed_div = feedback_div;
}
}
}
*dot_clock_p = best_freq / 10000;
*fb_div_p = best_feedback_div;
*frac_fb_div_p = best_frac_feedback_div;
*ref_div_p = best_ref_div;
*post_div_p = best_post_div;
}
#if 0
static void radeon_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
radeonfb_remove(dev, fb);
// if (radeon_fb->obj) {
// radeon_gem_object_unpin(radeon_fb->obj);
// mutex_lock(&dev->struct_mutex);
// drm_gem_object_unreference(radeon_fb->obj);
// mutex_unlock(&dev->struct_mutex);
// }
drm_framebuffer_cleanup(fb);
kfree(radeon_fb);
}
static int radeon_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
return NULL;
// return drm_gem_handle_create(file_priv, radeon_fb->obj, handle);
}
static const struct drm_framebuffer_funcs radeon_fb_funcs = {
.destroy = radeon_user_framebuffer_destroy,
.create_handle = radeon_user_framebuffer_create_handle,
};
#endif
struct drm_framebuffer *
radeon_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd *mode_cmd,
struct drm_gem_object *obj)
{
struct radeon_framebuffer *radeon_fb;
radeon_fb = kzalloc(sizeof(*radeon_fb), GFP_KERNEL);
if (radeon_fb == NULL) {
return NULL;
}
// drm_framebuffer_init(dev, &radeon_fb->base, &radeon_fb_funcs);
// drm_helper_mode_fill_fb_struct(&radeon_fb->base, mode_cmd);
radeon_fb->obj = obj;
return &radeon_fb->base;
}
static struct drm_framebuffer *
radeon_user_framebuffer_create(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_mode_fb_cmd *mode_cmd)
{
struct drm_gem_object *obj;
return NULL;
// obj = drm_gem_object_lookup(dev, file_priv, mode_cmd->handle);
//
// return radeon_framebuffer_create(dev, mode_cmd, obj);
}
static const struct drm_mode_config_funcs radeon_mode_funcs = {
// .fb_create = radeon_user_framebuffer_create,
// .fb_changed = radeonfb_probe,
};
int radeon_modeset_init(struct radeon_device *rdev)
{
dbgprintf("%s\n",__FUNCTION__);
int num_crtc = 2, i;
int ret;
drm_mode_config_init(rdev->ddev);
rdev->mode_info.mode_config_initialized = true;
rdev->ddev->mode_config.funcs = (void *)&radeon_mode_funcs;
if (ASIC_IS_AVIVO(rdev)) {
rdev->ddev->mode_config.max_width = 8192;
rdev->ddev->mode_config.max_height = 8192;
} else {
rdev->ddev->mode_config.max_width = 4096;
rdev->ddev->mode_config.max_height = 4096;
}
rdev->ddev->mode_config.fb_base = rdev->mc.aper_base;
/* allocate crtcs - TODO single crtc */
for (i = 0; i < num_crtc; i++) {
radeon_crtc_init(rdev->ddev, i);
}
/* okay we should have all the bios connectors */
ret = radeon_setup_enc_conn(rdev->ddev);
if (!ret) {
return ret;
}
drm_helper_initial_config(rdev->ddev);
dbgprintf("done %s\n",__FUNCTION__);
return 0;
}
void radeon_modeset_fini(struct radeon_device *rdev)
{
if (rdev->mode_info.mode_config_initialized) {
drm_mode_config_cleanup(rdev->ddev);
rdev->mode_info.mode_config_initialized = false;
}
}
void radeon_init_disp_bandwidth(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct drm_display_mode *modes[2];
int pixel_bytes[2];
struct drm_crtc *crtc;
pixel_bytes[0] = pixel_bytes[1] = 0;
modes[0] = modes[1] = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (crtc->enabled && crtc->fb) {
modes[radeon_crtc->crtc_id] = &crtc->mode;
pixel_bytes[radeon_crtc->crtc_id] = crtc->fb->bits_per_pixel / 8;
}
}
if (ASIC_IS_AVIVO(rdev)) {
radeon_init_disp_bw_avivo(dev,
modes[0],
pixel_bytes[0],
modes[1],
pixel_bytes[1]);
} else {
radeon_init_disp_bw_legacy(dev,
modes[0],
pixel_bytes[0],
modes[1],
pixel_bytes[1]);
}
}