kolibrios/kernel/branches/kolibri_pe/core/heap.c
Sergey Semyonov (Serge) f806f6b7f8 fixed:
1) small heap
2) malloc
3) background image

git-svn-id: svn://kolibrios.org@861 a494cfbc-eb01-0410-851d-a64ba20cac60
2008-09-11 20:26:49 +00:00

334 lines
6.7 KiB
C

#include <types.h>
#include <core.h>
#include <spinlock.h>
#include <link.h>
#include <mm.h>
#include <slab.h>
typedef struct
{
link_t link;
link_t adj;
addr_t base;
size_t size;
void* parent;
u32_t reserved;
}md_t;
typedef struct {
SPINLOCK_DECLARE(lock); /**< this lock protects everything below */
u32_t availmask;
link_t list[32];
}heap_t;
slab_cache_t *md_slab;
slab_cache_t *phm_slab;
heap_t lheap;
heap_t sheap;
static inline void _set_lmask(count_t idx)
{ asm volatile ("bts DWORD PTR [_lheap], %0"::"r"(idx):"cc"); }
static inline void _reset_lmask(count_t idx)
{ asm volatile ("btr DWORD PTR [_lheap], %0"::"r"(idx):"cc"); }
static inline void _set_smask(count_t idx)
{ asm volatile ("bts DWORD PTR [_sheap], %0"::"r"(idx):"cc"); }
static inline void _reset_smask(count_t idx)
{ asm volatile ("btr DWORD PTR [_sheap], %0"::"r"(idx):"cc"); }
int __fastcall init_heap(addr_t base, size_t size)
{
md_t *md;
u32_t i;
ASSERT(base != 0);
ASSERT(size != 0)
ASSERT(base & 0x3FFFFF == 0);
ASSERT(size & 0x3FFFFF == 0);
for (i = 0; i < 32; i++)
{
list_initialize(&lheap.list[i]);
list_initialize(&sheap.list[i]);
};
md_slab = slab_cache_create(sizeof(md_t), 32,NULL,NULL,SLAB_CACHE_MAGDEFERRED);
md = (md_t*)slab_alloc(md_slab,0);
list_initialize(&md->adj);
md->base = base;
md->size = size;
md->parent = NULL;
md->reserved = 0;
list_prepend(&md->link, &lheap.list[31]);
lheap.availmask = 0x80000000;
sheap.availmask = 0x00000000;
// phm_slab = slab_cache_create(sizeof(phismem_t), 32,NULL,NULL,SLAB_CACHE_MAGDEFERRED);
return 1;
};
md_t* __fastcall find_large_md(size_t size)
{
md_t *md = NULL;
count_t idx0;
u32_t mask;
ASSERT(size & 0x3FFFFF == 0);
idx0 = (size>>22) - 1 < 32 ? (size>>22) - 1 : 31;
mask = lheap.availmask & ( -1<<idx0 );
if(mask)
{
idx0 = _bsf(mask);
ASSERT( !list_empty(&lheap.list[idx0]))
md = (md_t*)lheap.list[idx0].next;
}
else
return NULL;
list_remove((link_t*)md);
if(list_empty(&lheap.list[idx0]))
_reset_lmask(idx0);
if(md->size > size)
{
count_t idx1;
md_t *new_md = (md_t*)slab_alloc(md_slab,0);
link_initialize(&new_md->link);
list_insert(&new_md->adj, &md->adj);
new_md->base = md->base;
new_md->size = size;
md->base+= size;
md->size-= size;
idx1 = (md->size>>22) - 1 < 32 ? (md->size>>22) - 1 : 31;
list_prepend(&md->link, &lheap.list[idx1]);
_set_lmask(idx1);
return new_md;
}
return md;
}
md_t* __fastcall find_small_md(size_t size)
{
eflags_t efl;
md_t *md = NULL;
count_t idx0;
u32_t mask;
ASSERT(size & 0xFFF == 0);
efl = safe_cli();
idx0 = (size>>12) - 1 < 32 ? (size>>12) - 1 : 31;
mask = sheap.availmask & ( -1<<idx0 );
//printf("smask %x size %x idx0 %x mask %x\n",sheap.availmask, size, idx0, mask);
if(mask)
{
md_t *tmp;
idx0 = _bsf(mask);
ASSERT( !list_empty(&sheap.list[idx0]))
tmp = (md_t*)sheap.list[idx0].next;
while((link_t*)tmp != &sheap.list[idx0])
{
if(tmp->size >= size)
{
//printf("remove tmp %x\n", tmp);
list_remove((link_t*)tmp);
if(list_empty(&sheap.list[idx0]))
_reset_smask(idx0);
md = tmp;
break;
};
tmp = (md_t*)tmp->link.next;
};
};
if( !md)
{
md_t *lmd;
lmd = find_large_md((size+0x3FFFFF)&~0x3FFFFF);
if( !lmd)
{
safe_sti(efl);
return NULL;
};
md = (md_t*)slab_alloc(md_slab,0);
link_initialize(&md->link);
list_initialize(&md->adj);
md->base = lmd->base;
md->size = lmd->size;
md->parent = lmd;
md->reserved = 0;
};
if(md->size > size)
{
count_t idx1;
md_t *new_md = (md_t*)slab_alloc(md_slab,0);
link_initialize(&new_md->link);
list_insert(&new_md->adj, &md->adj);
new_md->base = md->base;
new_md->size = size;
new_md->parent = md->parent;
new_md->reserved = 0;
md->base+= size;
md->size-= size;
idx1 = (md->size>>12) - 1 < 32 ? (md->size>>12) - 1 : 31;
//printf("insert md %x, base %x size %x idx %x\n", md,md->base, md->size,idx1);
if( idx1 < 31)
list_prepend(&md->link, &sheap.list[idx1]);
else
{
if( list_empty(&sheap.list[31]))
list_prepend(&md->link, &sheap.list[31]);
else
{
md_t *tmp = (md_t*)sheap.list[31].next;
while((link_t*)tmp != &sheap.list[31])
{
if(md->base < tmp->base)
break;
tmp = (md_t*)tmp->link.next;
}
list_insert(&md->link, &tmp->link);
};
};
_set_smask(idx1);
safe_sti(efl);
return new_md;
}
safe_sti(efl);
return md;
}
phismem_t* __fastcall phis_alloc(count_t count)
{
phismem_t *phm;
count_t tmp;
phm = (phismem_t*)slab_alloc(phm_slab, 0);
phm->count = count;
tmp = count;
while(tmp)
{
u32_t order;
asm volatile ("bsr %0, %1":"=&r"(order):"r"(tmp):"cc");
asm volatile ("btr %0, %1" :"=r"(tmp):"r"(order):"cc");
phm->frames[order] = core_alloc(order);
};
return phm;
}
#define page_tabs 0xDF800000
void map_phm(addr_t base, phismem_t *phm, u32_t mapflags)
{
count_t count;
addr_t *pte;
count = phm->count;
pte = &((addr_t*)page_tabs)[base>>12];
while(count)
{
u32_t order;
addr_t frame;
count_t size;
asm volatile ("bsr %0, %1":"=&r"(order):"r"(count):"cc");
asm volatile ("btr %0, %1" :"=r"(count):"r"(order):"cc");
frame = phm->frames[order] | mapflags;
size = (1 << order);
while(size--)
{
*pte++ = frame;
frame+= 4096;
}
}
};
void* __fastcall mem_alloc(size_t size, u32_t flags)
{
md_t *md;
phismem_t *phm;
size = (size+4095)&~4095;
md = find_small_md(size);
if( md )
{
phm = phis_alloc(size>>12);
map_phm(md->base, phm, flags);
return (void*)md->base;
}
return NULL;
};
void* __stdcall alloc_kernel_space(size_t size); //__asm__("alloc_kernel_space");
void* __stdcall alloc_kernel_space(size_t size)
{
md_t *md;
size = (size+4095)&~4095;
md = find_small_md(size);
// printf("alloc_kernel_space: %x size %x\n\n",md->base, size);
if( md )
return (void*)md->base;
return NULL;
}
//void* __stdcall kernel_alloc(size_t size)
//{
//
// return NULL;
//}
//*/