kolibrios/drivers/video/drm/radeon/r100.c

1395 lines
38 KiB
C
Raw Normal View History

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
//#include <linux/seq_file.h>
//#include "drmP.h"
//#include "drm.h"
#include "radeon_drm.h"
#include "radeon_microcode.h"
#include "radeon_reg.h"
#include "radeon.h"
/* This files gather functions specifics to:
* r100,rv100,rs100,rv200,rs200,r200,rv250,rs300,rv280
*
* Some of these functions might be used by newer ASICs.
*/
void r100_hdp_reset(struct radeon_device *rdev);
void r100_gpu_init(struct radeon_device *rdev);
int r100_gui_wait_for_idle(struct radeon_device *rdev);
int r100_mc_wait_for_idle(struct radeon_device *rdev);
void r100_gpu_wait_for_vsync(struct radeon_device *rdev);
void r100_gpu_wait_for_vsync2(struct radeon_device *rdev);
int r100_debugfs_mc_info_init(struct radeon_device *rdev);
#if 0
/*
* PCI GART
*/
void r100_pci_gart_tlb_flush(struct radeon_device *rdev)
{
/* TODO: can we do somethings here ? */
/* It seems hw only cache one entry so we should discard this
* entry otherwise if first GPU GART read hit this entry it
* could end up in wrong address. */
}
int r100_pci_gart_enable(struct radeon_device *rdev)
{
uint32_t tmp;
int r;
/* Initialize common gart structure */
r = radeon_gart_init(rdev);
if (r) {
return r;
}
if (rdev->gart.table.ram.ptr == NULL) {
rdev->gart.table_size = rdev->gart.num_gpu_pages * 4;
r = radeon_gart_table_ram_alloc(rdev);
if (r) {
return r;
}
}
/* discard memory request outside of configured range */
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS;
WREG32(RADEON_AIC_CNTL, tmp);
/* set address range for PCI address translate */
WREG32(RADEON_AIC_LO_ADDR, rdev->mc.gtt_location);
tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1;
WREG32(RADEON_AIC_HI_ADDR, tmp);
/* Enable bus mastering */
tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS;
WREG32(RADEON_BUS_CNTL, tmp);
/* set PCI GART page-table base address */
WREG32(RADEON_AIC_PT_BASE, rdev->gart.table_addr);
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_PCIGART_TRANSLATE_EN;
WREG32(RADEON_AIC_CNTL, tmp);
r100_pci_gart_tlb_flush(rdev);
rdev->gart.ready = true;
return 0;
}
void r100_pci_gart_disable(struct radeon_device *rdev)
{
uint32_t tmp;
/* discard memory request outside of configured range */
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS;
WREG32(RADEON_AIC_CNTL, tmp & ~RADEON_PCIGART_TRANSLATE_EN);
WREG32(RADEON_AIC_LO_ADDR, 0);
WREG32(RADEON_AIC_HI_ADDR, 0);
}
int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr)
{
if (i < 0 || i > rdev->gart.num_gpu_pages) {
return -EINVAL;
}
rdev->gart.table.ram.ptr[i] = cpu_to_le32((uint32_t)addr);
return 0;
}
int r100_gart_enable(struct radeon_device *rdev)
{
if (rdev->flags & RADEON_IS_AGP) {
r100_pci_gart_disable(rdev);
return 0;
}
return r100_pci_gart_enable(rdev);
}
/*
* MC
*/
void r100_mc_disable_clients(struct radeon_device *rdev)
{
uint32_t ov0_scale_cntl, crtc_ext_cntl, crtc_gen_cntl, crtc2_gen_cntl;
/* FIXME: is this function correct for rs100,rs200,rs300 ? */
// if (r100_gui_wait_for_idle(rdev)) {
// printk(KERN_WARNING "Failed to wait GUI idle while "
// "programming pipes. Bad things might happen.\n");
// }
/* stop display and memory access */
ov0_scale_cntl = RREG32(RADEON_OV0_SCALE_CNTL);
WREG32(RADEON_OV0_SCALE_CNTL, ov0_scale_cntl & ~RADEON_SCALER_ENABLE);
crtc_ext_cntl = RREG32(RADEON_CRTC_EXT_CNTL);
WREG32(RADEON_CRTC_EXT_CNTL, crtc_ext_cntl | RADEON_CRTC_DISPLAY_DIS);
crtc_gen_cntl = RREG32(RADEON_CRTC_GEN_CNTL);
r100_gpu_wait_for_vsync(rdev);
WREG32(RADEON_CRTC_GEN_CNTL,
(crtc_gen_cntl & ~(RADEON_CRTC_CUR_EN | RADEON_CRTC_ICON_EN)) |
RADEON_CRTC_DISP_REQ_EN_B | RADEON_CRTC_EXT_DISP_EN);
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
crtc2_gen_cntl = RREG32(RADEON_CRTC2_GEN_CNTL);
r100_gpu_wait_for_vsync2(rdev);
WREG32(RADEON_CRTC2_GEN_CNTL,
(crtc2_gen_cntl &
~(RADEON_CRTC2_CUR_EN | RADEON_CRTC2_ICON_EN)) |
RADEON_CRTC2_DISP_REQ_EN_B);
}
udelay(500);
}
void r100_mc_setup(struct radeon_device *rdev)
{
uint32_t tmp;
int r;
r = r100_debugfs_mc_info_init(rdev);
if (r) {
DRM_ERROR("Failed to register debugfs file for R100 MC !\n");
}
/* Write VRAM size in case we are limiting it */
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size);
tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1;
tmp = REG_SET(RADEON_MC_FB_TOP, tmp >> 16);
tmp |= REG_SET(RADEON_MC_FB_START, rdev->mc.vram_location >> 16);
WREG32(RADEON_MC_FB_LOCATION, tmp);
/* Enable bus mastering */
tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS;
WREG32(RADEON_BUS_CNTL, tmp);
if (rdev->flags & RADEON_IS_AGP) {
tmp = rdev->mc.gtt_location + rdev->mc.gtt_size - 1;
tmp = REG_SET(RADEON_MC_AGP_TOP, tmp >> 16);
tmp |= REG_SET(RADEON_MC_AGP_START, rdev->mc.gtt_location >> 16);
WREG32(RADEON_MC_AGP_LOCATION, tmp);
WREG32(RADEON_AGP_BASE, rdev->mc.agp_base);
} else {
WREG32(RADEON_MC_AGP_LOCATION, 0x0FFFFFFF);
WREG32(RADEON_AGP_BASE, 0);
}
tmp = RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL;
tmp |= (7 << 28);
WREG32(RADEON_HOST_PATH_CNTL, tmp | RADEON_HDP_SOFT_RESET | RADEON_HDP_READ_BUFFER_INVALIDATE);
(void)RREG32(RADEON_HOST_PATH_CNTL);
WREG32(RADEON_HOST_PATH_CNTL, tmp);
(void)RREG32(RADEON_HOST_PATH_CNTL);
}
int r100_mc_init(struct radeon_device *rdev)
{
int r;
if (r100_debugfs_rbbm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for RBBM !\n");
}
r100_gpu_init(rdev);
/* Disable gart which also disable out of gart access */
r100_pci_gart_disable(rdev);
/* Setup GPU memory space */
rdev->mc.vram_location = 0xFFFFFFFFUL;
rdev->mc.gtt_location = 0xFFFFFFFFUL;
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r) {
printk(KERN_WARNING "[drm] Disabling AGP\n");
rdev->flags &= ~RADEON_IS_AGP;
rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024;
} else {
rdev->mc.gtt_location = rdev->mc.agp_base;
}
}
r = radeon_mc_setup(rdev);
if (r) {
return r;
}
r100_mc_disable_clients(rdev);
if (r100_mc_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait MC idle while "
"programming pipes. Bad things might happen.\n");
}
r100_mc_setup(rdev);
return 0;
}
void r100_mc_fini(struct radeon_device *rdev)
{
r100_pci_gart_disable(rdev);
radeon_gart_table_ram_free(rdev);
radeon_gart_fini(rdev);
}
/*
* Fence emission
*/
void r100_fence_ring_emit(struct radeon_device *rdev,
struct radeon_fence *fence)
{
/* Who ever call radeon_fence_emit should call ring_lock and ask
* for enough space (today caller are ib schedule and buffer move) */
/* Wait until IDLE & CLEAN */
radeon_ring_write(rdev, PACKET0(0x1720, 0));
radeon_ring_write(rdev, (1 << 16) | (1 << 17));
/* Emit fence sequence & fire IRQ */
radeon_ring_write(rdev, PACKET0(rdev->fence_drv.scratch_reg, 0));
radeon_ring_write(rdev, fence->seq);
radeon_ring_write(rdev, PACKET0(RADEON_GEN_INT_STATUS, 0));
radeon_ring_write(rdev, RADEON_SW_INT_FIRE);
}
/*
* Writeback
*/
int r100_wb_init(struct radeon_device *rdev)
{
int r;
if (rdev->wb.wb_obj == NULL) {
r = radeon_object_create(rdev, NULL, 4096,
true,
RADEON_GEM_DOMAIN_GTT,
false, &rdev->wb.wb_obj);
if (r) {
DRM_ERROR("radeon: failed to create WB buffer (%d).\n", r);
return r;
}
r = radeon_object_pin(rdev->wb.wb_obj,
RADEON_GEM_DOMAIN_GTT,
&rdev->wb.gpu_addr);
if (r) {
DRM_ERROR("radeon: failed to pin WB buffer (%d).\n", r);
return r;
}
r = radeon_object_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb);
if (r) {
DRM_ERROR("radeon: failed to map WB buffer (%d).\n", r);
return r;
}
}
WREG32(0x774, rdev->wb.gpu_addr);
WREG32(0x70C, rdev->wb.gpu_addr + 1024);
WREG32(0x770, 0xff);
return 0;
}
void r100_wb_fini(struct radeon_device *rdev)
{
if (rdev->wb.wb_obj) {
radeon_object_kunmap(rdev->wb.wb_obj);
radeon_object_unpin(rdev->wb.wb_obj);
radeon_object_unref(&rdev->wb.wb_obj);
rdev->wb.wb = NULL;
rdev->wb.wb_obj = NULL;
}
}
int r100_copy_blit(struct radeon_device *rdev,
uint64_t src_offset,
uint64_t dst_offset,
unsigned num_pages,
struct radeon_fence *fence)
{
uint32_t cur_pages;
uint32_t stride_bytes = PAGE_SIZE;
uint32_t pitch;
uint32_t stride_pixels;
unsigned ndw;
int num_loops;
int r = 0;
/* radeon limited to 16k stride */
stride_bytes &= 0x3fff;
/* radeon pitch is /64 */
pitch = stride_bytes / 64;
stride_pixels = stride_bytes / 4;
num_loops = DIV_ROUND_UP(num_pages, 8191);
/* Ask for enough room for blit + flush + fence */
ndw = 64 + (10 * num_loops);
r = radeon_ring_lock(rdev, ndw);
if (r) {
DRM_ERROR("radeon: moving bo (%d) asking for %u dw.\n", r, ndw);
return -EINVAL;
}
while (num_pages > 0) {
cur_pages = num_pages;
if (cur_pages > 8191) {
cur_pages = 8191;
}
num_pages -= cur_pages;
/* pages are in Y direction - height
page width in X direction - width */
radeon_ring_write(rdev, PACKET3(PACKET3_BITBLT_MULTI, 8));
radeon_ring_write(rdev,
RADEON_GMC_SRC_PITCH_OFFSET_CNTL |
RADEON_GMC_DST_PITCH_OFFSET_CNTL |
RADEON_GMC_SRC_CLIPPING |
RADEON_GMC_DST_CLIPPING |
RADEON_GMC_BRUSH_NONE |
(RADEON_COLOR_FORMAT_ARGB8888 << 8) |
RADEON_GMC_SRC_DATATYPE_COLOR |
RADEON_ROP3_S |
RADEON_DP_SRC_SOURCE_MEMORY |
RADEON_GMC_CLR_CMP_CNTL_DIS |
RADEON_GMC_WR_MSK_DIS);
radeon_ring_write(rdev, (pitch << 22) | (src_offset >> 10));
radeon_ring_write(rdev, (pitch << 22) | (dst_offset >> 10));
radeon_ring_write(rdev, (0x1fff) | (0x1fff << 16));
radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, (0x1fff) | (0x1fff << 16));
radeon_ring_write(rdev, num_pages);
radeon_ring_write(rdev, num_pages);
radeon_ring_write(rdev, cur_pages | (stride_pixels << 16));
}
radeon_ring_write(rdev, PACKET0(RADEON_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(rdev, RADEON_RB2D_DC_FLUSH_ALL);
radeon_ring_write(rdev, PACKET0(RADEON_WAIT_UNTIL, 0));
radeon_ring_write(rdev,
RADEON_WAIT_2D_IDLECLEAN |
RADEON_WAIT_HOST_IDLECLEAN |
RADEON_WAIT_DMA_GUI_IDLE);
if (fence) {
r = radeon_fence_emit(rdev, fence);
}
radeon_ring_unlock_commit(rdev);
return r;
}
/*
* CP
*/
void r100_ring_start(struct radeon_device *rdev)
{
int r;
r = radeon_ring_lock(rdev, 2);
if (r) {
return;
}
radeon_ring_write(rdev, PACKET0(RADEON_ISYNC_CNTL, 0));
radeon_ring_write(rdev,
RADEON_ISYNC_ANY2D_IDLE3D |
RADEON_ISYNC_ANY3D_IDLE2D |
RADEON_ISYNC_WAIT_IDLEGUI |
RADEON_ISYNC_CPSCRATCH_IDLEGUI);
radeon_ring_unlock_commit(rdev);
}
#endif
static void r100_cp_load_microcode(struct radeon_device *rdev)
{
int i;
dbgprintf("%s\n\r",__FUNCTION__);
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"programming pipes. Bad things might happen.\n");
}
WREG32(RADEON_CP_ME_RAM_ADDR, 0);
if ((rdev->family == CHIP_R100) || (rdev->family == CHIP_RV100) ||
(rdev->family == CHIP_RV200) || (rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
DRM_INFO("Loading R100 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, R100_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, R100_cp_microcode[i][0]);
}
} else if ((rdev->family == CHIP_R200) ||
(rdev->family == CHIP_RV250) ||
(rdev->family == CHIP_RV280) ||
(rdev->family == CHIP_RS300)) {
DRM_INFO("Loading R200 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, R200_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, R200_cp_microcode[i][0]);
}
} else if ((rdev->family == CHIP_R300) ||
(rdev->family == CHIP_R350) ||
(rdev->family == CHIP_RV350) ||
(rdev->family == CHIP_RV380) ||
(rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
DRM_INFO("Loading R300 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, R300_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, R300_cp_microcode[i][0]);
}
} else if ((rdev->family == CHIP_R420) ||
(rdev->family == CHIP_R423) ||
(rdev->family == CHIP_RV410)) {
DRM_INFO("Loading R400 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, R420_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, R420_cp_microcode[i][0]);
}
} else if ((rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740)) {
DRM_INFO("Loading RS690/RS740 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, RS690_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, RS690_cp_microcode[i][0]);
}
} else if (rdev->family == CHIP_RS600) {
DRM_INFO("Loading RS600 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, RS600_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, RS600_cp_microcode[i][0]);
}
} else if ((rdev->family == CHIP_RV515) ||
(rdev->family == CHIP_R520) ||
(rdev->family == CHIP_RV530) ||
(rdev->family == CHIP_R580) ||
(rdev->family == CHIP_RV560) ||
(rdev->family == CHIP_RV570)) {
DRM_INFO("Loading R500 Microcode\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_ME_RAM_DATAH, R520_cp_microcode[i][1]);
WREG32(RADEON_CP_ME_RAM_DATAL, R520_cp_microcode[i][0]);
}
}
}
int r100_cp_init(struct radeon_device *rdev, unsigned ring_size)
{
unsigned rb_bufsz;
unsigned rb_blksz;
unsigned max_fetch;
unsigned pre_write_timer;
unsigned pre_write_limit;
unsigned indirect2_start;
unsigned indirect1_start;
uint32_t tmp;
int r;
dbgprintf("%s\n\r",__FUNCTION__);
// if (r100_debugfs_cp_init(rdev)) {
// DRM_ERROR("Failed to register debugfs file for CP !\n");
// }
/* Reset CP */
tmp = RREG32(RADEON_CP_CSQ_STAT);
if ((tmp & (1 << 31))) {
DRM_INFO("radeon: cp busy (0x%08X) resetting\n", tmp);
WREG32(RADEON_CP_CSQ_MODE, 0);
WREG32(RADEON_CP_CSQ_CNTL, 0);
WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_CP);
tmp = RREG32(RADEON_RBBM_SOFT_RESET);
mdelay(2);
WREG32(RADEON_RBBM_SOFT_RESET, 0);
tmp = RREG32(RADEON_RBBM_SOFT_RESET);
mdelay(2);
tmp = RREG32(RADEON_CP_CSQ_STAT);
if ((tmp & (1 << 31))) {
DRM_INFO("radeon: cp reset failed (0x%08X)\n", tmp);
}
} else {
DRM_INFO("radeon: cp idle (0x%08X)\n", tmp);
}
/* Align ring size */
rb_bufsz = drm_order(ring_size / 8);
ring_size = (1 << (rb_bufsz + 1)) * 4;
r100_cp_load_microcode(rdev);
r = radeon_ring_init(rdev, ring_size);
if (r) {
return r;
}
/* Each time the cp read 1024 bytes (16 dword/quadword) update
* the rptr copy in system ram */
rb_blksz = 9;
/* cp will read 128bytes at a time (4 dwords) */
max_fetch = 1;
rdev->cp.align_mask = 16 - 1;
/* Write to CP_RB_WPTR will be delayed for pre_write_timer clocks */
pre_write_timer = 64;
/* Force CP_RB_WPTR write if written more than one time before the
* delay expire
*/
pre_write_limit = 0;
/* Setup the cp cache like this (cache size is 96 dwords) :
* RING 0 to 15
* INDIRECT1 16 to 79
* INDIRECT2 80 to 95
* So ring cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords))
* indirect1 cache size is 64dwords (> (2 * max_fetch = 2 * 4dwords))
* indirect2 cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords))
* Idea being that most of the gpu cmd will be through indirect1 buffer
* so it gets the bigger cache.
*/
indirect2_start = 80;
indirect1_start = 16;
/* cp setup */
WREG32(0x718, pre_write_timer | (pre_write_limit << 28));
WREG32(RADEON_CP_RB_CNTL,
#ifdef __BIG_ENDIAN
RADEON_BUF_SWAP_32BIT |
#endif
REG_SET(RADEON_RB_BUFSZ, rb_bufsz) |
REG_SET(RADEON_RB_BLKSZ, rb_blksz) |
REG_SET(RADEON_MAX_FETCH, max_fetch) |
RADEON_RB_NO_UPDATE);
/* Set ring address */
DRM_INFO("radeon: ring at 0x%016lX\n", (unsigned long)rdev->cp.gpu_addr);
WREG32(RADEON_CP_RB_BASE, rdev->cp.gpu_addr);
/* Force read & write ptr to 0 */
tmp = RREG32(RADEON_CP_RB_CNTL);
WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA);
WREG32(RADEON_CP_RB_RPTR_WR, 0);
WREG32(RADEON_CP_RB_WPTR, 0);
WREG32(RADEON_CP_RB_CNTL, tmp);
udelay(10);
rdev->cp.rptr = RREG32(RADEON_CP_RB_RPTR);
rdev->cp.wptr = RREG32(RADEON_CP_RB_WPTR);
/* Set cp mode to bus mastering & enable cp*/
WREG32(RADEON_CP_CSQ_MODE,
REG_SET(RADEON_INDIRECT2_START, indirect2_start) |
REG_SET(RADEON_INDIRECT1_START, indirect1_start));
WREG32(0x718, 0);
WREG32(0x744, 0x00004D4D);
WREG32(RADEON_CP_CSQ_CNTL, RADEON_CSQ_PRIBM_INDBM);
radeon_ring_start(rdev);
r = radeon_ring_test(rdev);
if (r) {
DRM_ERROR("radeon: cp isn't working (%d).\n", r);
return r;
}
rdev->cp.ready = true;
return 0;
}
#if 0
void r100_cp_fini(struct radeon_device *rdev)
{
/* Disable ring */
rdev->cp.ready = false;
WREG32(RADEON_CP_CSQ_CNTL, 0);
radeon_ring_fini(rdev);
DRM_INFO("radeon: cp finalized\n");
}
void r100_cp_disable(struct radeon_device *rdev)
{
/* Disable ring */
rdev->cp.ready = false;
WREG32(RADEON_CP_CSQ_MODE, 0);
WREG32(RADEON_CP_CSQ_CNTL, 0);
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"programming pipes. Bad things might happen.\n");
}
}
#endif
int r100_cp_reset(struct radeon_device *rdev)
{
uint32_t tmp;
bool reinit_cp;
int i;
dbgprintf("%s\n\r",__FUNCTION__);
reinit_cp = rdev->cp.ready;
rdev->cp.ready = false;
WREG32(RADEON_CP_CSQ_MODE, 0);
WREG32(RADEON_CP_CSQ_CNTL, 0);
WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_CP);
(void)RREG32(RADEON_RBBM_SOFT_RESET);
udelay(200);
WREG32(RADEON_RBBM_SOFT_RESET, 0);
/* Wait to prevent race in RBBM_STATUS */
mdelay(1);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS);
if (!(tmp & (1 << 16))) {
DRM_INFO("CP reset succeed (RBBM_STATUS=0x%08X)\n",
tmp);
if (reinit_cp) {
return r100_cp_init(rdev, rdev->cp.ring_size);
}
return 0;
}
DRM_UDELAY(1);
}
tmp = RREG32(RADEON_RBBM_STATUS);
DRM_ERROR("Failed to reset CP (RBBM_STATUS=0x%08X)!\n", tmp);
return -1;
}
#if 0
/*
* CS functions
*/
int r100_cs_parse_packet0(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
const unsigned *auth, unsigned n,
radeon_packet0_check_t check)
{
unsigned reg;
unsigned i, j, m;
unsigned idx;
int r;
idx = pkt->idx + 1;
reg = pkt->reg;
/* Check that register fall into register range
* determined by the number of entry (n) in the
* safe register bitmap.
*/
if (pkt->one_reg_wr) {
if ((reg >> 7) > n) {
return -EINVAL;
}
} else {
if (((reg + (pkt->count << 2)) >> 7) > n) {
return -EINVAL;
}
}
for (i = 0; i <= pkt->count; i++, idx++) {
j = (reg >> 7);
m = 1 << ((reg >> 2) & 31);
if (auth[j] & m) {
r = check(p, pkt, idx, reg);
if (r) {
return r;
}
}
if (pkt->one_reg_wr) {
if (!(auth[j] & m)) {
break;
}
} else {
reg += 4;
}
}
return 0;
}
void r100_cs_dump_packet(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt)
{
struct radeon_cs_chunk *ib_chunk;
volatile uint32_t *ib;
unsigned i;
unsigned idx;
ib = p->ib->ptr;
ib_chunk = &p->chunks[p->chunk_ib_idx];
idx = pkt->idx;
for (i = 0; i <= (pkt->count + 1); i++, idx++) {
DRM_INFO("ib[%d]=0x%08X\n", idx, ib[idx]);
}
}
/**
* r100_cs_packet_parse() - parse cp packet and point ib index to next packet
* @parser: parser structure holding parsing context.
* @pkt: where to store packet informations
*
* Assume that chunk_ib_index is properly set. Will return -EINVAL
* if packet is bigger than remaining ib size. or if packets is unknown.
**/
int r100_cs_packet_parse(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
unsigned idx)
{
struct radeon_cs_chunk *ib_chunk = &p->chunks[p->chunk_ib_idx];
uint32_t header = ib_chunk->kdata[idx];
if (idx >= ib_chunk->length_dw) {
DRM_ERROR("Can not parse packet at %d after CS end %d !\n",
idx, ib_chunk->length_dw);
return -EINVAL;
}
pkt->idx = idx;
pkt->type = CP_PACKET_GET_TYPE(header);
pkt->count = CP_PACKET_GET_COUNT(header);
switch (pkt->type) {
case PACKET_TYPE0:
pkt->reg = CP_PACKET0_GET_REG(header);
pkt->one_reg_wr = CP_PACKET0_GET_ONE_REG_WR(header);
break;
case PACKET_TYPE3:
pkt->opcode = CP_PACKET3_GET_OPCODE(header);
break;
case PACKET_TYPE2:
pkt->count = -1;
break;
default:
DRM_ERROR("Unknown packet type %d at %d !\n", pkt->type, idx);
return -EINVAL;
}
if ((pkt->count + 1 + pkt->idx) >= ib_chunk->length_dw) {
DRM_ERROR("Packet (%d:%d:%d) end after CS buffer (%d) !\n",
pkt->idx, pkt->type, pkt->count, ib_chunk->length_dw);
return -EINVAL;
}
return 0;
}
/**
* r100_cs_packet_next_reloc() - parse next packet which should be reloc packet3
* @parser: parser structure holding parsing context.
* @data: pointer to relocation data
* @offset_start: starting offset
* @offset_mask: offset mask (to align start offset on)
* @reloc: reloc informations
*
* Check next packet is relocation packet3, do bo validation and compute
* GPU offset using the provided start.
**/
int r100_cs_packet_next_reloc(struct radeon_cs_parser *p,
struct radeon_cs_reloc **cs_reloc)
{
struct radeon_cs_chunk *ib_chunk;
struct radeon_cs_chunk *relocs_chunk;
struct radeon_cs_packet p3reloc;
unsigned idx;
int r;
if (p->chunk_relocs_idx == -1) {
DRM_ERROR("No relocation chunk !\n");
return -EINVAL;
}
*cs_reloc = NULL;
ib_chunk = &p->chunks[p->chunk_ib_idx];
relocs_chunk = &p->chunks[p->chunk_relocs_idx];
r = r100_cs_packet_parse(p, &p3reloc, p->idx);
if (r) {
return r;
}
p->idx += p3reloc.count + 2;
if (p3reloc.type != PACKET_TYPE3 || p3reloc.opcode != PACKET3_NOP) {
DRM_ERROR("No packet3 for relocation for packet at %d.\n",
p3reloc.idx);
r100_cs_dump_packet(p, &p3reloc);
return -EINVAL;
}
idx = ib_chunk->kdata[p3reloc.idx + 1];
if (idx >= relocs_chunk->length_dw) {
DRM_ERROR("Relocs at %d after relocations chunk end %d !\n",
idx, relocs_chunk->length_dw);
r100_cs_dump_packet(p, &p3reloc);
return -EINVAL;
}
/* FIXME: we assume reloc size is 4 dwords */
*cs_reloc = p->relocs_ptr[(idx / 4)];
return 0;
}
static int r100_packet0_check(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt)
{
struct radeon_cs_chunk *ib_chunk;
struct radeon_cs_reloc *reloc;
volatile uint32_t *ib;
uint32_t tmp;
unsigned reg;
unsigned i;
unsigned idx;
bool onereg;
int r;
ib = p->ib->ptr;
ib_chunk = &p->chunks[p->chunk_ib_idx];
idx = pkt->idx + 1;
reg = pkt->reg;
onereg = false;
if (CP_PACKET0_GET_ONE_REG_WR(ib_chunk->kdata[pkt->idx])) {
onereg = true;
}
for (i = 0; i <= pkt->count; i++, idx++, reg += 4) {
switch (reg) {
/* FIXME: only allow PACKET3 blit? easier to check for out of
* range access */
case RADEON_DST_PITCH_OFFSET:
case RADEON_SRC_PITCH_OFFSET:
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
tmp = ib_chunk->kdata[idx] & 0x003fffff;
tmp += (((u32)reloc->lobj.gpu_offset) >> 10);
ib[idx] = (ib_chunk->kdata[idx] & 0xffc00000) | tmp;
break;
case RADEON_RB3D_DEPTHOFFSET:
case RADEON_RB3D_COLOROFFSET:
case R300_RB3D_COLOROFFSET0:
case R300_ZB_DEPTHOFFSET:
case R200_PP_TXOFFSET_0:
case R200_PP_TXOFFSET_1:
case R200_PP_TXOFFSET_2:
case R200_PP_TXOFFSET_3:
case R200_PP_TXOFFSET_4:
case R200_PP_TXOFFSET_5:
case RADEON_PP_TXOFFSET_0:
case RADEON_PP_TXOFFSET_1:
case RADEON_PP_TXOFFSET_2:
case R300_TX_OFFSET_0:
case R300_TX_OFFSET_0+4:
case R300_TX_OFFSET_0+8:
case R300_TX_OFFSET_0+12:
case R300_TX_OFFSET_0+16:
case R300_TX_OFFSET_0+20:
case R300_TX_OFFSET_0+24:
case R300_TX_OFFSET_0+28:
case R300_TX_OFFSET_0+32:
case R300_TX_OFFSET_0+36:
case R300_TX_OFFSET_0+40:
case R300_TX_OFFSET_0+44:
case R300_TX_OFFSET_0+48:
case R300_TX_OFFSET_0+52:
case R300_TX_OFFSET_0+56:
case R300_TX_OFFSET_0+60:
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset);
break;
default:
/* FIXME: we don't want to allow anyothers packet */
break;
}
if (onereg) {
/* FIXME: forbid onereg write to register on relocate */
break;
}
}
return 0;
}
int r100_cs_track_check_pkt3_indx_buffer(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
struct radeon_object *robj)
{
struct radeon_cs_chunk *ib_chunk;
unsigned idx;
ib_chunk = &p->chunks[p->chunk_ib_idx];
idx = pkt->idx + 1;
if ((ib_chunk->kdata[idx+2] + 1) > radeon_object_size(robj)) {
DRM_ERROR("[drm] Buffer too small for PACKET3 INDX_BUFFER "
"(need %u have %lu) !\n",
ib_chunk->kdata[idx+2] + 1,
radeon_object_size(robj));
return -EINVAL;
}
return 0;
}
static int r100_packet3_check(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt)
{
struct radeon_cs_chunk *ib_chunk;
struct radeon_cs_reloc *reloc;
unsigned idx;
unsigned i, c;
volatile uint32_t *ib;
int r;
ib = p->ib->ptr;
ib_chunk = &p->chunks[p->chunk_ib_idx];
idx = pkt->idx + 1;
switch (pkt->opcode) {
case PACKET3_3D_LOAD_VBPNTR:
c = ib_chunk->kdata[idx++];
for (i = 0; i < (c - 1); i += 2, idx += 3) {
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset);
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx+2] = ib_chunk->kdata[idx+2] + ((u32)reloc->lobj.gpu_offset);
}
if (c & 1) {
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset);
}
break;
case PACKET3_INDX_BUFFER:
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx+1] = ib_chunk->kdata[idx+1] + ((u32)reloc->lobj.gpu_offset);
r = r100_cs_track_check_pkt3_indx_buffer(p, pkt, reloc->robj);
if (r) {
return r;
}
break;
case 0x23:
/* FIXME: cleanup */
/* 3D_RNDR_GEN_INDX_PRIM on r100/r200 */
r = r100_cs_packet_next_reloc(p, &reloc);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode);
r100_cs_dump_packet(p, pkt);
return r;
}
ib[idx] = ib_chunk->kdata[idx] + ((u32)reloc->lobj.gpu_offset);
break;
case PACKET3_3D_DRAW_IMMD:
/* triggers drawing using in-packet vertex data */
case PACKET3_3D_DRAW_IMMD_2:
/* triggers drawing using in-packet vertex data */
case PACKET3_3D_DRAW_VBUF_2:
/* triggers drawing of vertex buffers setup elsewhere */
case PACKET3_3D_DRAW_INDX_2:
/* triggers drawing using indices to vertex buffer */
case PACKET3_3D_DRAW_VBUF:
/* triggers drawing of vertex buffers setup elsewhere */
case PACKET3_3D_DRAW_INDX:
/* triggers drawing using indices to vertex buffer */
case PACKET3_NOP:
break;
default:
DRM_ERROR("Packet3 opcode %x not supported\n", pkt->opcode);
return -EINVAL;
}
return 0;
}
int r100_cs_parse(struct radeon_cs_parser *p)
{
struct radeon_cs_packet pkt;
int r;
do {
r = r100_cs_packet_parse(p, &pkt, p->idx);
if (r) {
return r;
}
p->idx += pkt.count + 2;
switch (pkt.type) {
case PACKET_TYPE0:
r = r100_packet0_check(p, &pkt);
break;
case PACKET_TYPE2:
break;
case PACKET_TYPE3:
r = r100_packet3_check(p, &pkt);
break;
default:
DRM_ERROR("Unknown packet type %d !\n",
pkt.type);
return -EINVAL;
}
if (r) {
return r;
}
} while (p->idx < p->chunks[p->chunk_ib_idx].length_dw);
return 0;
}
/*
* Global GPU functions
*/
void r100_errata(struct radeon_device *rdev)
{
rdev->pll_errata = 0;
if (rdev->family == CHIP_RV200 || rdev->family == CHIP_RS200) {
rdev->pll_errata |= CHIP_ERRATA_PLL_DUMMYREADS;
}
if (rdev->family == CHIP_RV100 ||
rdev->family == CHIP_RS100 ||
rdev->family == CHIP_RS200) {
rdev->pll_errata |= CHIP_ERRATA_PLL_DELAY;
}
}
#endif
/* Wait for vertical sync on primary CRTC */
void r100_gpu_wait_for_vsync(struct radeon_device *rdev)
{
uint32_t crtc_gen_cntl, tmp;
int i;
crtc_gen_cntl = RREG32(RADEON_CRTC_GEN_CNTL);
if ((crtc_gen_cntl & RADEON_CRTC_DISP_REQ_EN_B) ||
!(crtc_gen_cntl & RADEON_CRTC_EN)) {
return;
}
/* Clear the CRTC_VBLANK_SAVE bit */
WREG32(RADEON_CRTC_STATUS, RADEON_CRTC_VBLANK_SAVE_CLEAR);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_CRTC_STATUS);
if (tmp & RADEON_CRTC_VBLANK_SAVE) {
return;
}
DRM_UDELAY(1);
}
}
/* Wait for vertical sync on secondary CRTC */
void r100_gpu_wait_for_vsync2(struct radeon_device *rdev)
{
uint32_t crtc2_gen_cntl, tmp;
int i;
crtc2_gen_cntl = RREG32(RADEON_CRTC2_GEN_CNTL);
if ((crtc2_gen_cntl & RADEON_CRTC2_DISP_REQ_EN_B) ||
!(crtc2_gen_cntl & RADEON_CRTC2_EN))
return;
/* Clear the CRTC_VBLANK_SAVE bit */
WREG32(RADEON_CRTC2_STATUS, RADEON_CRTC2_VBLANK_SAVE_CLEAR);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_CRTC2_STATUS);
if (tmp & RADEON_CRTC2_VBLANK_SAVE) {
return;
}
DRM_UDELAY(1);
}
}
int r100_rbbm_fifo_wait_for_entry(struct radeon_device *rdev, unsigned n)
{
unsigned i;
uint32_t tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_FIFOCNT_MASK;
if (tmp >= n) {
return 0;
}
DRM_UDELAY(1);
}
return -1;
}
int r100_gui_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
uint32_t tmp;
if (r100_rbbm_fifo_wait_for_entry(rdev, 64)) {
printk(KERN_WARNING "radeon: wait for empty RBBM fifo failed !"
" Bad things might happen.\n");
}
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS);
if (!(tmp & (1 << 31))) {
return 0;
}
DRM_UDELAY(1);
}
return -1;
}
int r100_mc_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
uint32_t tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(0x0150);
if (tmp & (1 << 2)) {
return 0;
}
DRM_UDELAY(1);
}
return -1;
}
void r100_gpu_init(struct radeon_device *rdev)
{
/* TODO: anythings to do here ? pipes ? */
r100_hdp_reset(rdev);
}
void r100_hdp_reset(struct radeon_device *rdev)
{
uint32_t tmp;
dbgprintf("%s\n\r",__FUNCTION__);
tmp = RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL;
tmp |= (7 << 28);
WREG32(RADEON_HOST_PATH_CNTL, tmp | RADEON_HDP_SOFT_RESET | RADEON_HDP_READ_BUFFER_INVALIDATE);
(void)RREG32(RADEON_HOST_PATH_CNTL);
udelay(200);
WREG32(RADEON_RBBM_SOFT_RESET, 0);
WREG32(RADEON_HOST_PATH_CNTL, tmp);
(void)RREG32(RADEON_HOST_PATH_CNTL);
}
int r100_rb2d_reset(struct radeon_device *rdev)
{
uint32_t tmp;
int i;
dbgprintf("%s\n\r",__FUNCTION__);
WREG32(RADEON_RBBM_SOFT_RESET, RADEON_SOFT_RESET_E2);
(void)RREG32(RADEON_RBBM_SOFT_RESET);
udelay(200);
WREG32(RADEON_RBBM_SOFT_RESET, 0);
/* Wait to prevent race in RBBM_STATUS */
mdelay(1);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS);
if (!(tmp & (1 << 26))) {
DRM_INFO("RB2D reset succeed (RBBM_STATUS=0x%08X)\n",
tmp);
return 0;
}
DRM_UDELAY(1);
}
tmp = RREG32(RADEON_RBBM_STATUS);
DRM_ERROR("Failed to reset RB2D (RBBM_STATUS=0x%08X)!\n", tmp);
return -1;
}
#if 0
int r100_gpu_reset(struct radeon_device *rdev)
{
uint32_t status;
/* reset order likely matter */
status = RREG32(RADEON_RBBM_STATUS);
/* reset HDP */
r100_hdp_reset(rdev);
/* reset rb2d */
if (status & ((1 << 17) | (1 << 18) | (1 << 27))) {
r100_rb2d_reset(rdev);
}
/* TODO: reset 3D engine */
/* reset CP */
status = RREG32(RADEON_RBBM_STATUS);
if (status & (1 << 16)) {
r100_cp_reset(rdev);
}
/* Check if GPU is idle */
status = RREG32(RADEON_RBBM_STATUS);
if (status & (1 << 31)) {
DRM_ERROR("Failed to reset GPU (RBBM_STATUS=0x%08X)\n", status);
return -1;
}
DRM_INFO("GPU reset succeed (RBBM_STATUS=0x%08X)\n", status);
return 0;
}
/*
* VRAM info
*/
static void r100_vram_get_type(struct radeon_device *rdev)
{
uint32_t tmp;
rdev->mc.vram_is_ddr = false;
if (rdev->flags & RADEON_IS_IGP)
rdev->mc.vram_is_ddr = true;
else if (RREG32(RADEON_MEM_SDRAM_MODE_REG) & RADEON_MEM_CFG_TYPE_DDR)
rdev->mc.vram_is_ddr = true;
if ((rdev->family == CHIP_RV100) ||
(rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
tmp = RREG32(RADEON_MEM_CNTL);
if (tmp & RV100_HALF_MODE) {
rdev->mc.vram_width = 32;
} else {
rdev->mc.vram_width = 64;
}
if (rdev->flags & RADEON_SINGLE_CRTC) {
rdev->mc.vram_width /= 4;
rdev->mc.vram_is_ddr = true;
}
} else if (rdev->family <= CHIP_RV280) {
tmp = RREG32(RADEON_MEM_CNTL);
if (tmp & RADEON_MEM_NUM_CHANNELS_MASK) {
rdev->mc.vram_width = 128;
} else {
rdev->mc.vram_width = 64;
}
} else {
/* newer IGPs */
rdev->mc.vram_width = 128;
}
}
void r100_vram_info(struct radeon_device *rdev)
{
r100_vram_get_type(rdev);
if (rdev->flags & RADEON_IS_IGP) {
uint32_t tom;
/* read NB_TOM to get the amount of ram stolen for the GPU */
tom = RREG32(RADEON_NB_TOM);
rdev->mc.vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16);
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size);
} else {
rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
/* Some production boards of m6 will report 0
* if it's 8 MB
*/
if (rdev->mc.vram_size == 0) {
rdev->mc.vram_size = 8192 * 1024;
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.vram_size);
}
}
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
}
/*
* Indirect registers accessor
*/
void r100_pll_errata_after_index(struct radeon_device *rdev)
{
if (!(rdev->pll_errata & CHIP_ERRATA_PLL_DUMMYREADS)) {
return;
}
(void)RREG32(RADEON_CLOCK_CNTL_DATA);
(void)RREG32(RADEON_CRTC_GEN_CNTL);
}
static void r100_pll_errata_after_data(struct radeon_device *rdev)
{
/* This workarounds is necessary on RV100, RS100 and RS200 chips
* or the chip could hang on a subsequent access
*/
if (rdev->pll_errata & CHIP_ERRATA_PLL_DELAY) {
udelay(5000);
}
/* This function is required to workaround a hardware bug in some (all?)
* revisions of the R300. This workaround should be called after every
* CLOCK_CNTL_INDEX register access. If not, register reads afterward
* may not be correct.
*/
if (rdev->pll_errata & CHIP_ERRATA_R300_CG) {
uint32_t save, tmp;
save = RREG32(RADEON_CLOCK_CNTL_INDEX);
tmp = save & ~(0x3f | RADEON_PLL_WR_EN);
WREG32(RADEON_CLOCK_CNTL_INDEX, tmp);
tmp = RREG32(RADEON_CLOCK_CNTL_DATA);
WREG32(RADEON_CLOCK_CNTL_INDEX, save);
}
}
uint32_t r100_pll_rreg(struct radeon_device *rdev, uint32_t reg)
{
uint32_t data;
WREG8(RADEON_CLOCK_CNTL_INDEX, reg & 0x3f);
r100_pll_errata_after_index(rdev);
data = RREG32(RADEON_CLOCK_CNTL_DATA);
r100_pll_errata_after_data(rdev);
return data;
}
void r100_pll_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{
WREG8(RADEON_CLOCK_CNTL_INDEX, ((reg & 0x3f) | RADEON_PLL_WR_EN));
r100_pll_errata_after_index(rdev);
WREG32(RADEON_CLOCK_CNTL_DATA, v);
r100_pll_errata_after_data(rdev);
}
#endif
uint32_t r100_mm_rreg(struct radeon_device *rdev, uint32_t reg)
{
if (reg < 0x10000)
return readl(((void __iomem *)rdev->rmmio) + reg);
else {
writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX);
return readl(((void __iomem *)rdev->rmmio) + RADEON_MM_DATA);
}
}
void r100_mm_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{
if (reg < 0x10000)
writel(v, ((void __iomem *)rdev->rmmio) + reg);
else {
writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX);
writel(v, ((void __iomem *)rdev->rmmio) + RADEON_MM_DATA);
}
}
int r100_init(struct radeon_device *rdev)
{
return 0;
}