(* BSD 2-Clause License Copyright (c) 2013-2014, 2018-2022 Anton Krotov All rights reserved. *) MODULE Math; IMPORT SYSTEM; CONST pi* = 3.141592653589793; e* = 2.718281828459045; PROCEDURE IsNan* (x: REAL): BOOLEAN; VAR h, l: SET; BEGIN SYSTEM.GET(SYSTEM.ADR(x), l); SYSTEM.GET(SYSTEM.ADR(x) + 4, h) RETURN (h * {20..30} = {20..30}) & ((h * {0..19} # {}) OR (l * {0..31} # {})) END IsNan; PROCEDURE IsInf* (x: REAL): BOOLEAN; RETURN ABS(x) = SYSTEM.INF() END IsInf; PROCEDURE Max (a, b: REAL): REAL; VAR res: REAL; BEGIN IF a > b THEN res := a ELSE res := b END RETURN res END Max; PROCEDURE Min (a, b: REAL): REAL; VAR res: REAL; BEGIN IF a < b THEN res := a ELSE res := b END RETURN res END Min; PROCEDURE SameValue (a, b: REAL): BOOLEAN; VAR eps: REAL; res: BOOLEAN; BEGIN eps := Max(Min(ABS(a), ABS(b)) * 1.0E-12, 1.0E-12); IF a > b THEN res := (a - b) <= eps ELSE res := (b - a) <= eps END RETURN res END SameValue; PROCEDURE IsZero (x: REAL): BOOLEAN; RETURN ABS(x) <= 1.0E-12 END IsZero; PROCEDURE [stdcall] sqrt* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0FAH, (* fsqrt *) 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END sqrt; PROCEDURE [stdcall] sin* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0FEH, (* fsin *) 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END sin; PROCEDURE [stdcall] cos* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0FFH, (* fcos *) 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END cos; PROCEDURE [stdcall] tan* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0FBH, (* fsincos *) 0DEH, 0F9H, (* fdivp st1, st *) 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END tan; PROCEDURE [stdcall] arctan2* (y, x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0DDH, 045H, 010H, (* fld qword [ebp + 10h] *) 0D9H, 0F3H, (* fpatan *) 0C9H, (* leave *) 0C2H, 010H, 000H (* ret 10h *) ) RETURN 0.0 END arctan2; PROCEDURE [stdcall] ln* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0D9H, 0EDH, (* fldln2 *) 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0F1H, (* fyl2x *) 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END ln; PROCEDURE [stdcall] log* (base, x: REAL): REAL; BEGIN SYSTEM.CODE( 0D9H, 0E8H, (* fld1 *) 0DDH, 045H, 010H, (* fld qword [ebp + 10h] *) 0D9H, 0F1H, (* fyl2x *) 0D9H, 0E8H, (* fld1 *) 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0F1H, (* fyl2x *) 0DEH, 0F9H, (* fdivp st1, st *) 0C9H, (* leave *) 0C2H, 010H, 000H (* ret 10h *) ) RETURN 0.0 END log; PROCEDURE [stdcall] exp* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0EAH, (* fldl2e *) 0DEH, 0C9H, 0D9H, 0C0H, 0D9H, 0FCH, 0DCH, 0E9H, 0D9H, 0C9H, 0D9H, 0F0H, 0D9H, 0E8H, 0DEH, 0C1H, 0D9H, 0FDH, 0DDH, 0D9H, 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END exp; PROCEDURE [stdcall] round* (x: REAL): REAL; BEGIN SYSTEM.CODE( 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 07DH, 0F4H, 0D9H, 07DH, 0F6H, 066H, 081H, 04DH, 0F6H, 000H, 003H, 0D9H, 06DH, 0F6H, 0D9H, 0FCH, 0D9H, 06DH, 0F4H, 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END round; PROCEDURE [stdcall] frac* (x: REAL): REAL; BEGIN SYSTEM.CODE( 050H, 0DDH, 045H, 008H, (* fld qword [ebp + 08h] *) 0D9H, 0C0H, 0D9H, 03CH, 024H, 0D9H, 07CH, 024H, 002H, 066H, 081H, 04CH, 024H, 002H, 000H, 00FH, 0D9H, 06CH, 024H, 002H, 0D9H, 0FCH, 0D9H, 02CH, 024H, 0DEH, 0E9H, 0C9H, (* leave *) 0C2H, 008H, 000H (* ret 08h *) ) RETURN 0.0 END frac; PROCEDURE sqri* (x: INTEGER): INTEGER; RETURN x * x END sqri; PROCEDURE sqrr* (x: REAL): REAL; RETURN x * x END sqrr; PROCEDURE arcsin* (x: REAL): REAL; RETURN arctan2(x, sqrt(1.0 - x * x)) END arcsin; PROCEDURE arccos* (x: REAL): REAL; RETURN arctan2(sqrt(1.0 - x * x), x) END arccos; PROCEDURE arctan* (x: REAL): REAL; RETURN arctan2(x, 1.0) END arctan; PROCEDURE sinh* (x: REAL): REAL; BEGIN x := exp(x) RETURN (x - 1.0 / x) * 0.5 END sinh; PROCEDURE cosh* (x: REAL): REAL; BEGIN x := exp(x) RETURN (x + 1.0 / x) * 0.5 END cosh; PROCEDURE tanh* (x: REAL): REAL; BEGIN IF x > 15.0 THEN x := 1.0 ELSIF x < -15.0 THEN x := -1.0 ELSE x := 1.0 - 2.0 / (exp(2.0 * x) + 1.0) END RETURN x END tanh; PROCEDURE arsinh* (x: REAL): REAL; RETURN ln(x + sqrt(x * x + 1.0)) END arsinh; PROCEDURE arcosh* (x: REAL): REAL; RETURN ln(x + sqrt(x * x - 1.0)) END arcosh; PROCEDURE artanh* (x: REAL): REAL; VAR res: REAL; BEGIN IF SameValue(x, 1.0) THEN res := SYSTEM.INF() ELSIF SameValue(x, -1.0) THEN res := -SYSTEM.INF() ELSE res := 0.5 * ln((1.0 + x) / (1.0 - x)) END RETURN res END artanh; PROCEDURE floor* (x: REAL): REAL; VAR f: REAL; BEGIN f := frac(x); x := x - f; IF f < 0.0 THEN x := x - 1.0 END RETURN x END floor; PROCEDURE ceil* (x: REAL): REAL; VAR f: REAL; BEGIN f := frac(x); x := x - f; IF f > 0.0 THEN x := x + 1.0 END RETURN x END ceil; PROCEDURE power* (base, exponent: REAL): REAL; VAR res: REAL; BEGIN IF exponent = 0.0 THEN res := 1.0 ELSIF (base = 0.0) & (exponent > 0.0) THEN res := 0.0 ELSE res := exp(exponent * ln(base)) END RETURN res END power; PROCEDURE ipower* (base: REAL; exponent: INTEGER): REAL; VAR i: INTEGER; a: REAL; BEGIN a := 1.0; IF base # 0.0 THEN IF exponent # 0 THEN IF exponent < 0 THEN base := 1.0 / base END; i := ABS(exponent); WHILE i > 0 DO WHILE ~ODD(i) DO i := LSR(i, 1); base := sqrr(base) END; DEC(i); a := a * base END ELSE a := 1.0 END ELSE ASSERT(exponent > 0); a := 0.0 END RETURN a END ipower; PROCEDURE sgn* (x: REAL): INTEGER; VAR res: INTEGER; BEGIN IF x > 0.0 THEN res := 1 ELSIF x < 0.0 THEN res := -1 ELSE res := 0 END RETURN res END sgn; PROCEDURE fact* (n: INTEGER): REAL; VAR res: REAL; BEGIN res := 1.0; WHILE n > 1 DO res := res * FLT(n); DEC(n) END RETURN res END fact; PROCEDURE DegToRad* (x: REAL): REAL; RETURN x * (pi / 180.0) END DegToRad; PROCEDURE RadToDeg* (x: REAL): REAL; RETURN x * (180.0 / pi) END RadToDeg; (* Return hypotenuse of triangle *) PROCEDURE hypot* (x, y: REAL): REAL; VAR a: REAL; BEGIN x := ABS(x); y := ABS(y); IF x > y THEN a := x * sqrt(1.0 + sqrr(y / x)) ELSE IF x > 0.0 THEN a := y * sqrt(1.0 + sqrr(x / y)) ELSE a := y END END RETURN a END hypot; END Math.