/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-arc-private.h" /* Spline deviation from the circle in radius would be given by: error = sqrt (x**2 + y**2) - 1 A simpler error function to work with is: e = x**2 + y**2 - 1 From "Good approximation of circles by curvature-continuous Bezier curves", Tor Dokken and Morten Daehlen, Computer Aided Geometric Design 8 (1990) 22-41, we learn: abs (max(e)) = 4/27 * sin**6(angle/4) / cos**2(angle/4) and abs (error) =~ 1/2 * e Of course, this error value applies only for the particular spline approximation that is used in _cairo_gstate_arc_segment. */ static double _arc_error_normalized (double angle) { return 2.0/27.0 * pow (sin (angle / 4), 6) / pow (cos (angle / 4), 2); } static double _arc_max_angle_for_tolerance_normalized (double tolerance) { double angle, error; int i; /* Use table lookup to reduce search time in most cases. */ struct { double angle; double error; } table[] = { { M_PI / 1.0, 0.0185185185185185036127 }, { M_PI / 2.0, 0.000272567143730179811158 }, { M_PI / 3.0, 2.38647043651461047433e-05 }, { M_PI / 4.0, 4.2455377443222443279e-06 }, { M_PI / 5.0, 1.11281001494389081528e-06 }, { M_PI / 6.0, 3.72662000942734705475e-07 }, { M_PI / 7.0, 1.47783685574284411325e-07 }, { M_PI / 8.0, 6.63240432022601149057e-08 }, { M_PI / 9.0, 3.2715520137536980553e-08 }, { M_PI / 10.0, 1.73863223499021216974e-08 }, { M_PI / 11.0, 9.81410988043554039085e-09 }, }; int table_size = ARRAY_LENGTH (table); for (i = 0; i < table_size; i++) if (table[i].error < tolerance) return table[i].angle; ++i; do { angle = M_PI / i++; error = _arc_error_normalized (angle); } while (error > tolerance); return angle; } static int _arc_segments_needed (double angle, double radius, cairo_matrix_t *ctm, double tolerance) { double major_axis, max_angle; /* the error is amplified by at most the length of the * major axis of the circle; see cairo-pen.c for a more detailed analysis * of this. */ major_axis = _cairo_matrix_transformed_circle_major_axis (ctm, radius); max_angle = _arc_max_angle_for_tolerance_normalized (tolerance / major_axis); return ceil (fabs (angle) / max_angle); } /* We want to draw a single spline approximating a circular arc radius R from angle A to angle B. Since we want a symmetric spline that matches the endpoints of the arc in position and slope, we know that the spline control points must be: (R * cos(A), R * sin(A)) (R * cos(A) - h * sin(A), R * sin(A) + h * cos (A)) (R * cos(B) + h * sin(B), R * sin(B) - h * cos (B)) (R * cos(B), R * sin(B)) for some value of h. "Approximation of circular arcs by cubic poynomials", Michael Goldapp, Computer Aided Geometric Design 8 (1991) 227-238, provides various values of h along with error analysis for each. From that paper, a very practical value of h is: h = 4/3 * tan(angle/4) This value does not give the spline with minimal error, but it does provide a very good approximation, (6th-order convergence), and the error expression is quite simple, (see the comment for _arc_error_normalized). */ static void _cairo_arc_segment (cairo_t *cr, double xc, double yc, double radius, double angle_A, double angle_B) { double r_sin_A, r_cos_A; double r_sin_B, r_cos_B; double h; r_sin_A = radius * sin (angle_A); r_cos_A = radius * cos (angle_A); r_sin_B = radius * sin (angle_B); r_cos_B = radius * cos (angle_B); h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0); cairo_curve_to (cr, xc + r_cos_A - h * r_sin_A, yc + r_sin_A + h * r_cos_A, xc + r_cos_B + h * r_sin_B, yc + r_sin_B - h * r_cos_B, xc + r_cos_B, yc + r_sin_B); } static void _cairo_arc_in_direction (cairo_t *cr, double xc, double yc, double radius, double angle_min, double angle_max, cairo_direction_t dir) { if (cairo_status (cr)) return; while (angle_max - angle_min > 4 * M_PI) angle_max -= 2 * M_PI; /* Recurse if drawing arc larger than pi */ if (angle_max - angle_min > M_PI) { double angle_mid = angle_min + (angle_max - angle_min) / 2.0; if (dir == CAIRO_DIRECTION_FORWARD) { _cairo_arc_in_direction (cr, xc, yc, radius, angle_min, angle_mid, dir); _cairo_arc_in_direction (cr, xc, yc, radius, angle_mid, angle_max, dir); } else { _cairo_arc_in_direction (cr, xc, yc, radius, angle_mid, angle_max, dir); _cairo_arc_in_direction (cr, xc, yc, radius, angle_min, angle_mid, dir); } } else if (angle_max != angle_min) { cairo_matrix_t ctm; int i, segments; double angle, angle_step; cairo_get_matrix (cr, &ctm); segments = _arc_segments_needed (angle_max - angle_min, radius, &ctm, cairo_get_tolerance (cr)); angle_step = (angle_max - angle_min) / (double) segments; if (dir == CAIRO_DIRECTION_FORWARD) { angle = angle_min; } else { angle = angle_max; angle_step = - angle_step; } for (i = 0; i < segments; i++, angle += angle_step) { _cairo_arc_segment (cr, xc, yc, radius, angle, angle + angle_step); } } else { cairo_line_to (cr, xc + radius * cos (angle_min), yc + radius * sin (angle_min)); } } /** * _cairo_arc_path * @cr: a cairo context * @xc: X position of the center of the arc * @yc: Y position of the center of the arc * @radius: the radius of the arc * @angle1: the start angle, in radians * @angle2: the end angle, in radians * * Compute a path for the given arc and append it onto the current * path within @cr. The arc will be accurate within the current * tolerance and given the current transformation. **/ void _cairo_arc_path (cairo_t *cr, double xc, double yc, double radius, double angle1, double angle2) { _cairo_arc_in_direction (cr, xc, yc, radius, angle1, angle2, CAIRO_DIRECTION_FORWARD); } /** * _cairo_arc_path_negative: * @xc: X position of the center of the arc * @yc: Y position of the center of the arc * @radius: the radius of the arc * @angle1: the start angle, in radians * @angle2: the end angle, in radians * @ctm: the current transformation matrix * @tolerance: the current tolerance value * @path: the path onto which the arc will be appended * * Compute a path for the given arc (defined in the negative * direction) and append it onto the current path within @cr. The arc * will be accurate within the current tolerance and given the current * transformation. **/ void _cairo_arc_path_negative (cairo_t *cr, double xc, double yc, double radius, double angle1, double angle2) { _cairo_arc_in_direction (cr, xc, yc, radius, angle2, angle1, CAIRO_DIRECTION_REVERSE); }