forked from KolibriOS/kolibrios
37b6abf576
git-svn-id: svn://kolibrios.org@1892 a494cfbc-eb01-0410-851d-a64ba20cac60
3343 lines
97 KiB
C
3343 lines
97 KiB
C
/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
|
|
/* cairo - a vector graphics library with display and print output
|
|
*
|
|
* Copyright © 2004 David Reveman
|
|
* Copyright © 2005 Red Hat, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute, and sell this software
|
|
* and its documentation for any purpose is hereby granted without
|
|
* fee, provided that the above copyright notice appear in all copies
|
|
* and that both that copyright notice and this permission notice
|
|
* appear in supporting documentation, and that the name of David
|
|
* Reveman not be used in advertising or publicity pertaining to
|
|
* distribution of the software without specific, written prior
|
|
* permission. David Reveman makes no representations about the
|
|
* suitability of this software for any purpose. It is provided "as
|
|
* is" without express or implied warranty.
|
|
*
|
|
* DAVID REVEMAN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
|
|
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS, IN NO EVENT SHALL DAVID REVEMAN BE LIABLE FOR ANY SPECIAL,
|
|
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
|
|
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
|
|
* IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* Authors: David Reveman <davidr@novell.com>
|
|
* Keith Packard <keithp@keithp.com>
|
|
* Carl Worth <cworth@cworth.org>
|
|
*/
|
|
|
|
#include "cairoint.h"
|
|
#include "cairo-error-private.h"
|
|
#include "cairo-freed-pool-private.h"
|
|
|
|
/**
|
|
* SECTION:cairo-pattern
|
|
* @Title: cairo_pattern_t
|
|
* @Short_Description: Sources for drawing
|
|
* @See_Also: #cairo_t, #cairo_surface_t
|
|
*
|
|
* #cairo_pattern_t is the paint with which cairo draws.
|
|
* The primary use of patterns is as the source for all cairo drawing
|
|
* operations, although they can also be used as masks, that is, as the
|
|
* brush too.
|
|
*
|
|
* A cairo pattern is created by using one of the many constructors,
|
|
* of the form cairo_pattern_create_<emphasis>type</emphasis>()
|
|
* or implicitly through
|
|
* cairo_set_source_<emphasis>type</emphasis>() functions.
|
|
*/
|
|
|
|
#if HAS_FREED_POOL
|
|
static freed_pool_t freed_pattern_pool[4];
|
|
#endif
|
|
|
|
static const cairo_solid_pattern_t _cairo_pattern_nil = {
|
|
{ CAIRO_PATTERN_TYPE_SOLID, /* type */
|
|
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */
|
|
CAIRO_STATUS_NO_MEMORY, /* status */
|
|
{ 0, 0, 0, NULL }, /* user_data */
|
|
{ 1., 0., 0., 1., 0., 0., }, /* matrix */
|
|
CAIRO_FILTER_DEFAULT, /* filter */
|
|
CAIRO_EXTEND_GRADIENT_DEFAULT }, /* extend */
|
|
};
|
|
|
|
static const cairo_solid_pattern_t _cairo_pattern_nil_null_pointer = {
|
|
{ CAIRO_PATTERN_TYPE_SOLID, /* type */
|
|
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */
|
|
CAIRO_STATUS_NULL_POINTER, /* status */
|
|
{ 0, 0, 0, NULL }, /* user_data */
|
|
{ 1., 0., 0., 1., 0., 0., }, /* matrix */
|
|
CAIRO_FILTER_DEFAULT, /* filter */
|
|
CAIRO_EXTEND_GRADIENT_DEFAULT }, /* extend */
|
|
};
|
|
|
|
const cairo_solid_pattern_t _cairo_pattern_black = {
|
|
{ CAIRO_PATTERN_TYPE_SOLID, /* type */
|
|
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */
|
|
CAIRO_STATUS_SUCCESS, /* status */
|
|
{ 0, 0, 0, NULL }, /* user_data */
|
|
{ 1., 0., 0., 1., 0., 0., }, /* matrix */
|
|
CAIRO_FILTER_DEFAULT, /* filter */
|
|
CAIRO_EXTEND_GRADIENT_DEFAULT}, /* extend */
|
|
{ 0., 0., 0., 1., 0, 0, 0, 0xffff },/* color (double rgba, short rgba) */
|
|
};
|
|
|
|
const cairo_solid_pattern_t _cairo_pattern_clear = {
|
|
{ CAIRO_PATTERN_TYPE_SOLID, /* type */
|
|
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */
|
|
CAIRO_STATUS_SUCCESS, /* status */
|
|
{ 0, 0, 0, NULL }, /* user_data */
|
|
{ 1., 0., 0., 1., 0., 0., }, /* matrix */
|
|
CAIRO_FILTER_DEFAULT, /* filter */
|
|
CAIRO_EXTEND_GRADIENT_DEFAULT}, /* extend */
|
|
{ 0., 0., 0., 0., 0, 0, 0, 0 },/* color (double rgba, short rgba) */
|
|
};
|
|
|
|
const cairo_solid_pattern_t _cairo_pattern_white = {
|
|
{ CAIRO_PATTERN_TYPE_SOLID, /* type */
|
|
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */
|
|
CAIRO_STATUS_SUCCESS, /* status */
|
|
{ 0, 0, 0, NULL }, /* user_data */
|
|
{ 1., 0., 0., 1., 0., 0., }, /* matrix */
|
|
CAIRO_FILTER_DEFAULT, /* filter */
|
|
CAIRO_EXTEND_GRADIENT_DEFAULT}, /* extend */
|
|
{ 1., 1., 1., 1., 0xffff, 0xffff, 0xffff, 0xffff },/* color (double rgba, short rgba) */
|
|
};
|
|
|
|
/**
|
|
* _cairo_pattern_set_error:
|
|
* @pattern: a pattern
|
|
* @status: a status value indicating an error
|
|
*
|
|
* Atomically sets pattern->status to @status and calls _cairo_error;
|
|
* Does nothing if status is %CAIRO_STATUS_SUCCESS.
|
|
*
|
|
* All assignments of an error status to pattern->status should happen
|
|
* through _cairo_pattern_set_error(). Note that due to the nature of
|
|
* the atomic operation, it is not safe to call this function on the nil
|
|
* objects.
|
|
*
|
|
* The purpose of this function is to allow the user to set a
|
|
* breakpoint in _cairo_error() to generate a stack trace for when the
|
|
* user causes cairo to detect an error.
|
|
**/
|
|
static cairo_status_t
|
|
_cairo_pattern_set_error (cairo_pattern_t *pattern,
|
|
cairo_status_t status)
|
|
{
|
|
if (status == CAIRO_STATUS_SUCCESS)
|
|
return status;
|
|
|
|
/* Don't overwrite an existing error. This preserves the first
|
|
* error, which is the most significant. */
|
|
_cairo_status_set_error (&pattern->status, status);
|
|
|
|
return _cairo_error (status);
|
|
}
|
|
|
|
static void
|
|
_cairo_pattern_init (cairo_pattern_t *pattern, cairo_pattern_type_t type)
|
|
{
|
|
#if HAVE_VALGRIND
|
|
switch (type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t));
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
pattern->type = type;
|
|
pattern->status = CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Set the reference count to zero for on-stack patterns.
|
|
* Callers needs to explicitly increment the count for heap allocations. */
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);
|
|
|
|
_cairo_user_data_array_init (&pattern->user_data);
|
|
|
|
if (type == CAIRO_PATTERN_TYPE_SURFACE)
|
|
pattern->extend = CAIRO_EXTEND_SURFACE_DEFAULT;
|
|
else
|
|
pattern->extend = CAIRO_EXTEND_GRADIENT_DEFAULT;
|
|
|
|
pattern->filter = CAIRO_FILTER_DEFAULT;
|
|
|
|
pattern->has_component_alpha = FALSE;
|
|
|
|
cairo_matrix_init_identity (&pattern->matrix);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_gradient_pattern_init_copy (cairo_gradient_pattern_t *pattern,
|
|
const cairo_gradient_pattern_t *other)
|
|
{
|
|
if (CAIRO_INJECT_FAULT ())
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
if (other->base.type == CAIRO_PATTERN_TYPE_LINEAR)
|
|
{
|
|
cairo_linear_pattern_t *dst = (cairo_linear_pattern_t *) pattern;
|
|
cairo_linear_pattern_t *src = (cairo_linear_pattern_t *) other;
|
|
|
|
*dst = *src;
|
|
}
|
|
else
|
|
{
|
|
cairo_radial_pattern_t *dst = (cairo_radial_pattern_t *) pattern;
|
|
cairo_radial_pattern_t *src = (cairo_radial_pattern_t *) other;
|
|
|
|
*dst = *src;
|
|
}
|
|
|
|
if (other->stops == other->stops_embedded)
|
|
pattern->stops = pattern->stops_embedded;
|
|
else if (other->stops)
|
|
{
|
|
pattern->stops = _cairo_malloc_ab (other->stops_size,
|
|
sizeof (cairo_gradient_stop_t));
|
|
if (unlikely (pattern->stops == NULL)) {
|
|
pattern->stops_size = 0;
|
|
pattern->n_stops = 0;
|
|
return _cairo_pattern_set_error (&pattern->base, CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
memcpy (pattern->stops, other->stops,
|
|
other->n_stops * sizeof (cairo_gradient_stop_t));
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_pattern_init_copy (cairo_pattern_t *pattern,
|
|
const cairo_pattern_t *other)
|
|
{
|
|
if (other->status)
|
|
return _cairo_pattern_set_error (pattern, other->status);
|
|
|
|
switch (other->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID: {
|
|
cairo_solid_pattern_t *dst = (cairo_solid_pattern_t *) pattern;
|
|
cairo_solid_pattern_t *src = (cairo_solid_pattern_t *) other;
|
|
|
|
VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_solid_pattern_t)));
|
|
|
|
*dst = *src;
|
|
} break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE: {
|
|
cairo_surface_pattern_t *dst = (cairo_surface_pattern_t *) pattern;
|
|
cairo_surface_pattern_t *src = (cairo_surface_pattern_t *) other;
|
|
|
|
VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_surface_pattern_t)));
|
|
|
|
*dst = *src;
|
|
cairo_surface_reference (dst->surface);
|
|
} break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
case CAIRO_PATTERN_TYPE_RADIAL: {
|
|
cairo_gradient_pattern_t *dst = (cairo_gradient_pattern_t *) pattern;
|
|
cairo_gradient_pattern_t *src = (cairo_gradient_pattern_t *) other;
|
|
cairo_status_t status;
|
|
|
|
if (other->type == CAIRO_PATTERN_TYPE_LINEAR) {
|
|
VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_linear_pattern_t)));
|
|
} else {
|
|
VG (VALGRIND_MAKE_MEM_UNDEFINED (pattern, sizeof (cairo_radial_pattern_t)));
|
|
}
|
|
|
|
status = _cairo_gradient_pattern_init_copy (dst, src);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
} break;
|
|
}
|
|
|
|
/* The reference count and user_data array are unique to the copy. */
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);
|
|
_cairo_user_data_array_init (&pattern->user_data);
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_init_static_copy (cairo_pattern_t *pattern,
|
|
const cairo_pattern_t *other)
|
|
{
|
|
int size;
|
|
|
|
assert (other->status == CAIRO_STATUS_SUCCESS);
|
|
|
|
switch (other->type) {
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
size = sizeof (cairo_solid_pattern_t);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
size = sizeof (cairo_surface_pattern_t);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
size = sizeof (cairo_linear_pattern_t);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
size = sizeof (cairo_radial_pattern_t);
|
|
break;
|
|
}
|
|
|
|
memcpy (pattern, other, size);
|
|
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 0);
|
|
_cairo_user_data_array_init (&pattern->user_data);
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_pattern_init_snapshot (cairo_pattern_t *pattern,
|
|
const cairo_pattern_t *other)
|
|
{
|
|
cairo_status_t status;
|
|
|
|
/* We don't bother doing any fancy copy-on-write implementation
|
|
* for the pattern's data. It's generally quite tiny. */
|
|
status = _cairo_pattern_init_copy (pattern, other);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
/* But we do let the surface snapshot stuff be as fancy as it
|
|
* would like to be. */
|
|
if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE) {
|
|
cairo_surface_pattern_t *surface_pattern =
|
|
(cairo_surface_pattern_t *) pattern;
|
|
cairo_surface_t *surface = surface_pattern->surface;
|
|
|
|
surface_pattern->surface = _cairo_surface_snapshot (surface);
|
|
|
|
cairo_surface_destroy (surface);
|
|
|
|
if (surface_pattern->surface->status)
|
|
return surface_pattern->surface->status;
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_fini (cairo_pattern_t *pattern)
|
|
{
|
|
_cairo_user_data_array_fini (&pattern->user_data);
|
|
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE: {
|
|
cairo_surface_pattern_t *surface_pattern =
|
|
(cairo_surface_pattern_t *) pattern;
|
|
|
|
cairo_surface_destroy (surface_pattern->surface);
|
|
} break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
case CAIRO_PATTERN_TYPE_RADIAL: {
|
|
cairo_gradient_pattern_t *gradient =
|
|
(cairo_gradient_pattern_t *) pattern;
|
|
|
|
if (gradient->stops && gradient->stops != gradient->stops_embedded)
|
|
free (gradient->stops);
|
|
} break;
|
|
}
|
|
|
|
#if HAVE_VALGRIND
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_solid_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_surface_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_linear_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
VALGRIND_MAKE_MEM_NOACCESS (pattern, sizeof (cairo_radial_pattern_t));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_pattern_create_copy (cairo_pattern_t **pattern_out,
|
|
const cairo_pattern_t *other)
|
|
{
|
|
cairo_pattern_t *pattern;
|
|
cairo_status_t status;
|
|
|
|
if (other->status)
|
|
return other->status;
|
|
|
|
switch (other->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
pattern = malloc (sizeof (cairo_solid_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
pattern = malloc (sizeof (cairo_surface_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
pattern = malloc (sizeof (cairo_linear_pattern_t));
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
pattern = malloc (sizeof (cairo_radial_pattern_t));
|
|
break;
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
}
|
|
if (unlikely (pattern == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
status = _cairo_pattern_init_copy (pattern, other);
|
|
if (unlikely (status)) {
|
|
free (pattern);
|
|
return status;
|
|
}
|
|
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->ref_count, 1);
|
|
*pattern_out = pattern;
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
void
|
|
_cairo_pattern_init_solid (cairo_solid_pattern_t *pattern,
|
|
const cairo_color_t *color)
|
|
{
|
|
_cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID);
|
|
pattern->color = *color;
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_init_for_surface (cairo_surface_pattern_t *pattern,
|
|
cairo_surface_t *surface)
|
|
{
|
|
if (surface->status) {
|
|
/* Force to solid to simplify the pattern_fini process. */
|
|
_cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SOLID);
|
|
_cairo_pattern_set_error (&pattern->base, surface->status);
|
|
return;
|
|
}
|
|
|
|
_cairo_pattern_init (&pattern->base, CAIRO_PATTERN_TYPE_SURFACE);
|
|
|
|
pattern->surface = cairo_surface_reference (surface);
|
|
}
|
|
|
|
static void
|
|
_cairo_pattern_init_gradient (cairo_gradient_pattern_t *pattern,
|
|
cairo_pattern_type_t type)
|
|
{
|
|
_cairo_pattern_init (&pattern->base, type);
|
|
|
|
pattern->n_stops = 0;
|
|
pattern->stops_size = 0;
|
|
pattern->stops = NULL;
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_init_linear (cairo_linear_pattern_t *pattern,
|
|
double x0, double y0, double x1, double y1)
|
|
{
|
|
_cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_LINEAR);
|
|
|
|
pattern->p1.x = _cairo_fixed_from_double (x0);
|
|
pattern->p1.y = _cairo_fixed_from_double (y0);
|
|
pattern->p2.x = _cairo_fixed_from_double (x1);
|
|
pattern->p2.y = _cairo_fixed_from_double (y1);
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_init_radial (cairo_radial_pattern_t *pattern,
|
|
double cx0, double cy0, double radius0,
|
|
double cx1, double cy1, double radius1)
|
|
{
|
|
_cairo_pattern_init_gradient (&pattern->base, CAIRO_PATTERN_TYPE_RADIAL);
|
|
|
|
pattern->c1.x = _cairo_fixed_from_double (cx0);
|
|
pattern->c1.y = _cairo_fixed_from_double (cy0);
|
|
pattern->r1 = _cairo_fixed_from_double (fabs (radius0));
|
|
pattern->c2.x = _cairo_fixed_from_double (cx1);
|
|
pattern->c2.y = _cairo_fixed_from_double (cy1);
|
|
pattern->r2 = _cairo_fixed_from_double (fabs (radius1));
|
|
}
|
|
|
|
cairo_pattern_t *
|
|
_cairo_pattern_create_solid (const cairo_color_t *color)
|
|
{
|
|
cairo_solid_pattern_t *pattern;
|
|
|
|
pattern =
|
|
_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SOLID]);
|
|
if (unlikely (pattern == NULL)) {
|
|
/* None cached, need to create a new pattern. */
|
|
pattern = malloc (sizeof (cairo_solid_pattern_t));
|
|
if (unlikely (pattern == NULL)) {
|
|
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
|
|
return (cairo_pattern_t *) &_cairo_pattern_nil;
|
|
}
|
|
}
|
|
|
|
_cairo_pattern_init_solid (pattern, color);
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1);
|
|
|
|
return &pattern->base;
|
|
}
|
|
|
|
cairo_pattern_t *
|
|
_cairo_pattern_create_in_error (cairo_status_t status)
|
|
{
|
|
cairo_pattern_t *pattern;
|
|
|
|
if (status == CAIRO_STATUS_NO_MEMORY)
|
|
return (cairo_pattern_t *)&_cairo_pattern_nil.base;
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
pattern = _cairo_pattern_create_solid (CAIRO_COLOR_BLACK);
|
|
if (pattern->status == CAIRO_STATUS_SUCCESS)
|
|
status = _cairo_pattern_set_error (pattern, status);
|
|
|
|
return pattern;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_create_rgb:
|
|
* @red: red component of the color
|
|
* @green: green component of the color
|
|
* @blue: blue component of the color
|
|
*
|
|
* Creates a new #cairo_pattern_t corresponding to an opaque color. The
|
|
* color components are floating point numbers in the range 0 to 1.
|
|
* If the values passed in are outside that range, they will be
|
|
* clamped.
|
|
*
|
|
* Return value: the newly created #cairo_pattern_t if successful, or
|
|
* an error pattern in case of no memory. The caller owns the
|
|
* returned object and should call cairo_pattern_destroy() when
|
|
* finished with it.
|
|
*
|
|
* This function will always return a valid pointer, but if an error
|
|
* occurred the pattern status will be set to an error. To inspect
|
|
* the status of a pattern use cairo_pattern_status().
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_create_rgb (double red, double green, double blue)
|
|
{
|
|
cairo_color_t color;
|
|
|
|
red = _cairo_restrict_value (red, 0.0, 1.0);
|
|
green = _cairo_restrict_value (green, 0.0, 1.0);
|
|
blue = _cairo_restrict_value (blue, 0.0, 1.0);
|
|
|
|
_cairo_color_init_rgb (&color, red, green, blue);
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
return _cairo_pattern_create_solid (&color);
|
|
}
|
|
slim_hidden_def (cairo_pattern_create_rgb);
|
|
|
|
/**
|
|
* cairo_pattern_create_rgba:
|
|
* @red: red component of the color
|
|
* @green: green component of the color
|
|
* @blue: blue component of the color
|
|
* @alpha: alpha component of the color
|
|
*
|
|
* Creates a new #cairo_pattern_t corresponding to a translucent color.
|
|
* The color components are floating point numbers in the range 0 to
|
|
* 1. If the values passed in are outside that range, they will be
|
|
* clamped.
|
|
*
|
|
* Return value: the newly created #cairo_pattern_t if successful, or
|
|
* an error pattern in case of no memory. The caller owns the
|
|
* returned object and should call cairo_pattern_destroy() when
|
|
* finished with it.
|
|
*
|
|
* This function will always return a valid pointer, but if an error
|
|
* occurred the pattern status will be set to an error. To inspect
|
|
* the status of a pattern use cairo_pattern_status().
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_create_rgba (double red, double green, double blue,
|
|
double alpha)
|
|
{
|
|
cairo_color_t color;
|
|
|
|
red = _cairo_restrict_value (red, 0.0, 1.0);
|
|
green = _cairo_restrict_value (green, 0.0, 1.0);
|
|
blue = _cairo_restrict_value (blue, 0.0, 1.0);
|
|
alpha = _cairo_restrict_value (alpha, 0.0, 1.0);
|
|
|
|
_cairo_color_init_rgba (&color, red, green, blue, alpha);
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
return _cairo_pattern_create_solid (&color);
|
|
}
|
|
slim_hidden_def (cairo_pattern_create_rgba);
|
|
|
|
/**
|
|
* cairo_pattern_create_for_surface:
|
|
* @surface: the surface
|
|
*
|
|
* Create a new #cairo_pattern_t for the given surface.
|
|
*
|
|
* Return value: the newly created #cairo_pattern_t if successful, or
|
|
* an error pattern in case of no memory. The caller owns the
|
|
* returned object and should call cairo_pattern_destroy() when
|
|
* finished with it.
|
|
*
|
|
* This function will always return a valid pointer, but if an error
|
|
* occurred the pattern status will be set to an error. To inspect
|
|
* the status of a pattern use cairo_pattern_status().
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_create_for_surface (cairo_surface_t *surface)
|
|
{
|
|
cairo_surface_pattern_t *pattern;
|
|
|
|
if (surface == NULL) {
|
|
_cairo_error_throw (CAIRO_STATUS_NULL_POINTER);
|
|
return (cairo_pattern_t*) &_cairo_pattern_nil_null_pointer;
|
|
}
|
|
|
|
if (surface->status)
|
|
return _cairo_pattern_create_in_error (surface->status);
|
|
|
|
pattern =
|
|
_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_SURFACE]);
|
|
if (unlikely (pattern == NULL)) {
|
|
pattern = malloc (sizeof (cairo_surface_pattern_t));
|
|
if (unlikely (pattern == NULL)) {
|
|
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
|
|
return (cairo_pattern_t *)&_cairo_pattern_nil.base;
|
|
}
|
|
}
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
_cairo_pattern_init_for_surface (pattern, surface);
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->base.ref_count, 1);
|
|
|
|
return &pattern->base;
|
|
}
|
|
slim_hidden_def (cairo_pattern_create_for_surface);
|
|
|
|
/**
|
|
* cairo_pattern_create_linear:
|
|
* @x0: x coordinate of the start point
|
|
* @y0: y coordinate of the start point
|
|
* @x1: x coordinate of the end point
|
|
* @y1: y coordinate of the end point
|
|
*
|
|
* Create a new linear gradient #cairo_pattern_t along the line defined
|
|
* by (x0, y0) and (x1, y1). Before using the gradient pattern, a
|
|
* number of color stops should be defined using
|
|
* cairo_pattern_add_color_stop_rgb() or
|
|
* cairo_pattern_add_color_stop_rgba().
|
|
*
|
|
* Note: The coordinates here are in pattern space. For a new pattern,
|
|
* pattern space is identical to user space, but the relationship
|
|
* between the spaces can be changed with cairo_pattern_set_matrix().
|
|
*
|
|
* Return value: the newly created #cairo_pattern_t if successful, or
|
|
* an error pattern in case of no memory. The caller owns the
|
|
* returned object and should call cairo_pattern_destroy() when
|
|
* finished with it.
|
|
*
|
|
* This function will always return a valid pointer, but if an error
|
|
* occurred the pattern status will be set to an error. To inspect
|
|
* the status of a pattern use cairo_pattern_status().
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_create_linear (double x0, double y0, double x1, double y1)
|
|
{
|
|
cairo_linear_pattern_t *pattern;
|
|
|
|
pattern =
|
|
_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_LINEAR]);
|
|
if (unlikely (pattern == NULL)) {
|
|
pattern = malloc (sizeof (cairo_linear_pattern_t));
|
|
if (unlikely (pattern == NULL)) {
|
|
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
|
|
return (cairo_pattern_t *) &_cairo_pattern_nil.base;
|
|
}
|
|
}
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
_cairo_pattern_init_linear (pattern, x0, y0, x1, y1);
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1);
|
|
|
|
return &pattern->base.base;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_create_radial:
|
|
* @cx0: x coordinate for the center of the start circle
|
|
* @cy0: y coordinate for the center of the start circle
|
|
* @radius0: radius of the start circle
|
|
* @cx1: x coordinate for the center of the end circle
|
|
* @cy1: y coordinate for the center of the end circle
|
|
* @radius1: radius of the end circle
|
|
*
|
|
* Creates a new radial gradient #cairo_pattern_t between the two
|
|
* circles defined by (cx0, cy0, radius0) and (cx1, cy1, radius1). Before using the
|
|
* gradient pattern, a number of color stops should be defined using
|
|
* cairo_pattern_add_color_stop_rgb() or
|
|
* cairo_pattern_add_color_stop_rgba().
|
|
*
|
|
* Note: The coordinates here are in pattern space. For a new pattern,
|
|
* pattern space is identical to user space, but the relationship
|
|
* between the spaces can be changed with cairo_pattern_set_matrix().
|
|
*
|
|
* Return value: the newly created #cairo_pattern_t if successful, or
|
|
* an error pattern in case of no memory. The caller owns the
|
|
* returned object and should call cairo_pattern_destroy() when
|
|
* finished with it.
|
|
*
|
|
* This function will always return a valid pointer, but if an error
|
|
* occurred the pattern status will be set to an error. To inspect
|
|
* the status of a pattern use cairo_pattern_status().
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_create_radial (double cx0, double cy0, double radius0,
|
|
double cx1, double cy1, double radius1)
|
|
{
|
|
cairo_radial_pattern_t *pattern;
|
|
|
|
pattern =
|
|
_freed_pool_get (&freed_pattern_pool[CAIRO_PATTERN_TYPE_RADIAL]);
|
|
if (unlikely (pattern == NULL)) {
|
|
pattern = malloc (sizeof (cairo_radial_pattern_t));
|
|
if (unlikely (pattern == NULL)) {
|
|
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
|
|
return (cairo_pattern_t *) &_cairo_pattern_nil.base;
|
|
}
|
|
}
|
|
|
|
CAIRO_MUTEX_INITIALIZE ();
|
|
|
|
_cairo_pattern_init_radial (pattern, cx0, cy0, radius0, cx1, cy1, radius1);
|
|
CAIRO_REFERENCE_COUNT_INIT (&pattern->base.base.ref_count, 1);
|
|
|
|
return &pattern->base.base;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_reference:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Increases the reference count on @pattern by one. This prevents
|
|
* @pattern from being destroyed until a matching call to
|
|
* cairo_pattern_destroy() is made.
|
|
*
|
|
* The number of references to a #cairo_pattern_t can be get using
|
|
* cairo_pattern_get_reference_count().
|
|
*
|
|
* Return value: the referenced #cairo_pattern_t.
|
|
**/
|
|
cairo_pattern_t *
|
|
cairo_pattern_reference (cairo_pattern_t *pattern)
|
|
{
|
|
if (pattern == NULL ||
|
|
CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
|
|
return pattern;
|
|
|
|
assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count));
|
|
|
|
_cairo_reference_count_inc (&pattern->ref_count);
|
|
|
|
return pattern;
|
|
}
|
|
slim_hidden_def (cairo_pattern_reference);
|
|
|
|
/**
|
|
* cairo_pattern_get_type:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* This function returns the type a pattern.
|
|
* See #cairo_pattern_type_t for available types.
|
|
*
|
|
* Return value: The type of @pattern.
|
|
*
|
|
* Since: 1.2
|
|
**/
|
|
cairo_pattern_type_t
|
|
cairo_pattern_get_type (cairo_pattern_t *pattern)
|
|
{
|
|
return pattern->type;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_status:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Checks whether an error has previously occurred for this
|
|
* pattern.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_STATUS_NO_MEMORY, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_status (cairo_pattern_t *pattern)
|
|
{
|
|
return pattern->status;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_destroy:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Decreases the reference count on @pattern by one. If the result is
|
|
* zero, then @pattern and all associated resources are freed. See
|
|
* cairo_pattern_reference().
|
|
**/
|
|
void
|
|
cairo_pattern_destroy (cairo_pattern_t *pattern)
|
|
{
|
|
cairo_pattern_type_t type;
|
|
|
|
if (pattern == NULL ||
|
|
CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
|
|
return;
|
|
|
|
assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&pattern->ref_count));
|
|
|
|
if (! _cairo_reference_count_dec_and_test (&pattern->ref_count))
|
|
return;
|
|
|
|
type = pattern->type;
|
|
_cairo_pattern_fini (pattern);
|
|
|
|
/* maintain a small cache of freed patterns */
|
|
_freed_pool_put (&freed_pattern_pool[type], pattern);
|
|
}
|
|
slim_hidden_def (cairo_pattern_destroy);
|
|
|
|
/**
|
|
* cairo_pattern_get_reference_count:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Returns the current reference count of @pattern.
|
|
*
|
|
* Return value: the current reference count of @pattern. If the
|
|
* object is a nil object, 0 will be returned.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
unsigned int
|
|
cairo_pattern_get_reference_count (cairo_pattern_t *pattern)
|
|
{
|
|
if (pattern == NULL ||
|
|
CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
|
|
return 0;
|
|
|
|
return CAIRO_REFERENCE_COUNT_GET_VALUE (&pattern->ref_count);
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_user_data:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @key: the address of the #cairo_user_data_key_t the user data was
|
|
* attached to
|
|
*
|
|
* Return user data previously attached to @pattern using the
|
|
* specified key. If no user data has been attached with the given
|
|
* key this function returns %NULL.
|
|
*
|
|
* Return value: the user data previously attached or %NULL.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
void *
|
|
cairo_pattern_get_user_data (cairo_pattern_t *pattern,
|
|
const cairo_user_data_key_t *key)
|
|
{
|
|
return _cairo_user_data_array_get_data (&pattern->user_data,
|
|
key);
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_set_user_data:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @key: the address of a #cairo_user_data_key_t to attach the user data to
|
|
* @user_data: the user data to attach to the #cairo_pattern_t
|
|
* @destroy: a #cairo_destroy_func_t which will be called when the
|
|
* #cairo_t is destroyed or when new user data is attached using the
|
|
* same key.
|
|
*
|
|
* Attach user data to @pattern. To remove user data from a surface,
|
|
* call this function with the key that was used to set it and %NULL
|
|
* for @data.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a
|
|
* slot could not be allocated for the user data.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_set_user_data (cairo_pattern_t *pattern,
|
|
const cairo_user_data_key_t *key,
|
|
void *user_data,
|
|
cairo_destroy_func_t destroy)
|
|
{
|
|
if (CAIRO_REFERENCE_COUNT_IS_INVALID (&pattern->ref_count))
|
|
return pattern->status;
|
|
|
|
return _cairo_user_data_array_set_data (&pattern->user_data,
|
|
key, user_data, destroy);
|
|
}
|
|
|
|
/* make room for at least one more color stop */
|
|
static cairo_status_t
|
|
_cairo_pattern_gradient_grow (cairo_gradient_pattern_t *pattern)
|
|
{
|
|
cairo_gradient_stop_t *new_stops;
|
|
int old_size = pattern->stops_size;
|
|
int embedded_size = ARRAY_LENGTH (pattern->stops_embedded);
|
|
int new_size = 2 * MAX (old_size, 4);
|
|
|
|
/* we have a local buffer at pattern->stops_embedded. try to fulfill the request
|
|
* from there. */
|
|
if (old_size < embedded_size) {
|
|
pattern->stops = pattern->stops_embedded;
|
|
pattern->stops_size = embedded_size;
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
if (CAIRO_INJECT_FAULT ())
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
assert (pattern->n_stops <= pattern->stops_size);
|
|
|
|
if (pattern->stops == pattern->stops_embedded) {
|
|
new_stops = _cairo_malloc_ab (new_size, sizeof (cairo_gradient_stop_t));
|
|
if (new_stops)
|
|
memcpy (new_stops, pattern->stops, old_size * sizeof (cairo_gradient_stop_t));
|
|
} else {
|
|
new_stops = _cairo_realloc_ab (pattern->stops,
|
|
new_size,
|
|
sizeof (cairo_gradient_stop_t));
|
|
}
|
|
|
|
if (unlikely (new_stops == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
pattern->stops = new_stops;
|
|
pattern->stops_size = new_size;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
_cairo_pattern_add_color_stop (cairo_gradient_pattern_t *pattern,
|
|
double offset,
|
|
double red,
|
|
double green,
|
|
double blue,
|
|
double alpha)
|
|
{
|
|
cairo_gradient_stop_t *stops;
|
|
unsigned int i;
|
|
|
|
if (pattern->n_stops >= pattern->stops_size) {
|
|
cairo_status_t status = _cairo_pattern_gradient_grow (pattern);
|
|
if (unlikely (status)) {
|
|
status = _cairo_pattern_set_error (&pattern->base, status);
|
|
return;
|
|
}
|
|
}
|
|
|
|
stops = pattern->stops;
|
|
|
|
for (i = 0; i < pattern->n_stops; i++)
|
|
{
|
|
if (offset < stops[i].offset)
|
|
{
|
|
memmove (&stops[i + 1], &stops[i],
|
|
sizeof (cairo_gradient_stop_t) * (pattern->n_stops - i));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
stops[i].offset = offset;
|
|
|
|
stops[i].color.red = red;
|
|
stops[i].color.green = green;
|
|
stops[i].color.blue = blue;
|
|
stops[i].color.alpha = alpha;
|
|
|
|
stops[i].color.red_short = _cairo_color_double_to_short (red);
|
|
stops[i].color.green_short = _cairo_color_double_to_short (green);
|
|
stops[i].color.blue_short = _cairo_color_double_to_short (blue);
|
|
stops[i].color.alpha_short = _cairo_color_double_to_short (alpha);
|
|
|
|
pattern->n_stops++;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_add_color_stop_rgb:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @offset: an offset in the range [0.0 .. 1.0]
|
|
* @red: red component of color
|
|
* @green: green component of color
|
|
* @blue: blue component of color
|
|
*
|
|
* Adds an opaque color stop to a gradient pattern. The offset
|
|
* specifies the location along the gradient's control vector. For
|
|
* example, a linear gradient's control vector is from (x0,y0) to
|
|
* (x1,y1) while a radial gradient's control vector is from any point
|
|
* on the start circle to the corresponding point on the end circle.
|
|
*
|
|
* The color is specified in the same way as in cairo_set_source_rgb().
|
|
*
|
|
* If two (or more) stops are specified with identical offset values,
|
|
* they will be sorted according to the order in which the stops are
|
|
* added, (stops added earlier will compare less than stops added
|
|
* later). This can be useful for reliably making sharp color
|
|
* transitions instead of the typical blend.
|
|
*
|
|
*
|
|
* Note: If the pattern is not a gradient pattern, (eg. a linear or
|
|
* radial pattern), then the pattern will be put into an error status
|
|
* with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
|
|
**/
|
|
void
|
|
cairo_pattern_add_color_stop_rgb (cairo_pattern_t *pattern,
|
|
double offset,
|
|
double red,
|
|
double green,
|
|
double blue)
|
|
{
|
|
if (pattern->status)
|
|
return;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
|
|
pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
|
|
{
|
|
_cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
return;
|
|
}
|
|
|
|
offset = _cairo_restrict_value (offset, 0.0, 1.0);
|
|
red = _cairo_restrict_value (red, 0.0, 1.0);
|
|
green = _cairo_restrict_value (green, 0.0, 1.0);
|
|
blue = _cairo_restrict_value (blue, 0.0, 1.0);
|
|
|
|
_cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern,
|
|
offset, red, green, blue, 1.0);
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_add_color_stop_rgba:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @offset: an offset in the range [0.0 .. 1.0]
|
|
* @red: red component of color
|
|
* @green: green component of color
|
|
* @blue: blue component of color
|
|
* @alpha: alpha component of color
|
|
*
|
|
* Adds a translucent color stop to a gradient pattern. The offset
|
|
* specifies the location along the gradient's control vector. For
|
|
* example, a linear gradient's control vector is from (x0,y0) to
|
|
* (x1,y1) while a radial gradient's control vector is from any point
|
|
* on the start circle to the corresponding point on the end circle.
|
|
*
|
|
* The color is specified in the same way as in cairo_set_source_rgba().
|
|
*
|
|
* If two (or more) stops are specified with identical offset values,
|
|
* they will be sorted according to the order in which the stops are
|
|
* added, (stops added earlier will compare less than stops added
|
|
* later). This can be useful for reliably making sharp color
|
|
* transitions instead of the typical blend.
|
|
*
|
|
* Note: If the pattern is not a gradient pattern, (eg. a linear or
|
|
* radial pattern), then the pattern will be put into an error status
|
|
* with a status of %CAIRO_STATUS_PATTERN_TYPE_MISMATCH.
|
|
*/
|
|
void
|
|
cairo_pattern_add_color_stop_rgba (cairo_pattern_t *pattern,
|
|
double offset,
|
|
double red,
|
|
double green,
|
|
double blue,
|
|
double alpha)
|
|
{
|
|
if (pattern->status)
|
|
return;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
|
|
pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
|
|
{
|
|
_cairo_pattern_set_error (pattern, CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
return;
|
|
}
|
|
|
|
offset = _cairo_restrict_value (offset, 0.0, 1.0);
|
|
red = _cairo_restrict_value (red, 0.0, 1.0);
|
|
green = _cairo_restrict_value (green, 0.0, 1.0);
|
|
blue = _cairo_restrict_value (blue, 0.0, 1.0);
|
|
alpha = _cairo_restrict_value (alpha, 0.0, 1.0);
|
|
|
|
_cairo_pattern_add_color_stop ((cairo_gradient_pattern_t *) pattern,
|
|
offset, red, green, blue, alpha);
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_set_matrix:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @matrix: a #cairo_matrix_t
|
|
*
|
|
* Sets the pattern's transformation matrix to @matrix. This matrix is
|
|
* a transformation from user space to pattern space.
|
|
*
|
|
* When a pattern is first created it always has the identity matrix
|
|
* for its transformation matrix, which means that pattern space is
|
|
* initially identical to user space.
|
|
*
|
|
* Important: Please note that the direction of this transformation
|
|
* matrix is from user space to pattern space. This means that if you
|
|
* imagine the flow from a pattern to user space (and on to device
|
|
* space), then coordinates in that flow will be transformed by the
|
|
* inverse of the pattern matrix.
|
|
*
|
|
* For example, if you want to make a pattern appear twice as large as
|
|
* it does by default the correct code to use is:
|
|
*
|
|
* <informalexample><programlisting>
|
|
* cairo_matrix_init_scale (&matrix, 0.5, 0.5);
|
|
* cairo_pattern_set_matrix (pattern, &matrix);
|
|
* </programlisting></informalexample>
|
|
*
|
|
* Meanwhile, using values of 2.0 rather than 0.5 in the code above
|
|
* would cause the pattern to appear at half of its default size.
|
|
*
|
|
* Also, please note the discussion of the user-space locking
|
|
* semantics of cairo_set_source().
|
|
**/
|
|
void
|
|
cairo_pattern_set_matrix (cairo_pattern_t *pattern,
|
|
const cairo_matrix_t *matrix)
|
|
{
|
|
cairo_matrix_t inverse;
|
|
cairo_status_t status;
|
|
|
|
if (pattern->status)
|
|
return;
|
|
|
|
if (memcmp (&pattern->matrix, matrix, sizeof (cairo_matrix_t)) == 0)
|
|
return;
|
|
|
|
pattern->matrix = *matrix;
|
|
|
|
inverse = *matrix;
|
|
status = cairo_matrix_invert (&inverse);
|
|
if (unlikely (status))
|
|
status = _cairo_pattern_set_error (pattern, status);
|
|
}
|
|
slim_hidden_def (cairo_pattern_set_matrix);
|
|
|
|
/**
|
|
* cairo_pattern_get_matrix:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @matrix: return value for the matrix
|
|
*
|
|
* Stores the pattern's transformation matrix into @matrix.
|
|
**/
|
|
void
|
|
cairo_pattern_get_matrix (cairo_pattern_t *pattern, cairo_matrix_t *matrix)
|
|
{
|
|
*matrix = pattern->matrix;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_set_filter:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @filter: a #cairo_filter_t describing the filter to use for resizing
|
|
* the pattern
|
|
*
|
|
* Sets the filter to be used for resizing when using this pattern.
|
|
* See #cairo_filter_t for details on each filter.
|
|
*
|
|
* * Note that you might want to control filtering even when you do not
|
|
* have an explicit #cairo_pattern_t object, (for example when using
|
|
* cairo_set_source_surface()). In these cases, it is convenient to
|
|
* use cairo_get_source() to get access to the pattern that cairo
|
|
* creates implicitly. For example:
|
|
*
|
|
* <informalexample><programlisting>
|
|
* cairo_set_source_surface (cr, image, x, y);
|
|
* cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST);
|
|
* </programlisting></informalexample>
|
|
**/
|
|
void
|
|
cairo_pattern_set_filter (cairo_pattern_t *pattern, cairo_filter_t filter)
|
|
{
|
|
if (pattern->status)
|
|
return;
|
|
|
|
pattern->filter = filter;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_filter:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Gets the current filter for a pattern. See #cairo_filter_t
|
|
* for details on each filter.
|
|
*
|
|
* Return value: the current filter used for resizing the pattern.
|
|
**/
|
|
cairo_filter_t
|
|
cairo_pattern_get_filter (cairo_pattern_t *pattern)
|
|
{
|
|
return pattern->filter;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_set_extend:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @extend: a #cairo_extend_t describing how the area outside of the
|
|
* pattern will be drawn
|
|
*
|
|
* Sets the mode to be used for drawing outside the area of a pattern.
|
|
* See #cairo_extend_t for details on the semantics of each extend
|
|
* strategy.
|
|
*
|
|
* The default extend mode is %CAIRO_EXTEND_NONE for surface patterns
|
|
* and %CAIRO_EXTEND_PAD for gradient patterns.
|
|
**/
|
|
void
|
|
cairo_pattern_set_extend (cairo_pattern_t *pattern, cairo_extend_t extend)
|
|
{
|
|
if (pattern->status)
|
|
return;
|
|
|
|
pattern->extend = extend;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_extend:
|
|
* @pattern: a #cairo_pattern_t
|
|
*
|
|
* Gets the current extend mode for a pattern. See #cairo_extend_t
|
|
* for details on the semantics of each extend strategy.
|
|
*
|
|
* Return value: the current extend strategy used for drawing the
|
|
* pattern.
|
|
**/
|
|
cairo_extend_t
|
|
cairo_pattern_get_extend (cairo_pattern_t *pattern)
|
|
{
|
|
return pattern->extend;
|
|
}
|
|
slim_hidden_def (cairo_pattern_get_extend);
|
|
|
|
void
|
|
_cairo_pattern_transform (cairo_pattern_t *pattern,
|
|
const cairo_matrix_t *ctm_inverse)
|
|
{
|
|
if (pattern->status)
|
|
return;
|
|
|
|
cairo_matrix_multiply (&pattern->matrix, ctm_inverse, &pattern->matrix);
|
|
}
|
|
|
|
static void
|
|
_cairo_linear_pattern_classify (cairo_linear_pattern_t *pattern,
|
|
double offset_x,
|
|
double offset_y,
|
|
int width,
|
|
int height,
|
|
cairo_bool_t *is_horizontal,
|
|
cairo_bool_t *is_vertical)
|
|
{
|
|
cairo_point_double_t point0, point1;
|
|
double a, b, c, d, tx, ty;
|
|
double scale, start, dx, dy;
|
|
cairo_fixed_t factors[3];
|
|
int i;
|
|
|
|
/* To classify a pattern as horizontal or vertical, we first
|
|
* compute the (fixed point) factors at the corners of the
|
|
* pattern. We actually only need 3/4 corners, so we skip the
|
|
* fourth.
|
|
*/
|
|
point0.x = _cairo_fixed_to_double (pattern->p1.x);
|
|
point0.y = _cairo_fixed_to_double (pattern->p1.y);
|
|
point1.x = _cairo_fixed_to_double (pattern->p2.x);
|
|
point1.y = _cairo_fixed_to_double (pattern->p2.y);
|
|
|
|
_cairo_matrix_get_affine (&pattern->base.base.matrix,
|
|
&a, &b, &c, &d, &tx, &ty);
|
|
|
|
dx = point1.x - point0.x;
|
|
dy = point1.y - point0.y;
|
|
scale = dx * dx + dy * dy;
|
|
scale = (scale) ? 1.0 / scale : 1.0;
|
|
|
|
start = dx * point0.x + dy * point0.y;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
double qx_device = (i % 2) * (width - 1) + offset_x;
|
|
double qy_device = (i / 2) * (height - 1) + offset_y;
|
|
|
|
/* transform fragment into pattern space */
|
|
double qx = a * qx_device + c * qy_device + tx;
|
|
double qy = b * qx_device + d * qy_device + ty;
|
|
|
|
factors[i] = _cairo_fixed_from_double (((dx * qx + dy * qy) - start) * scale);
|
|
}
|
|
|
|
/* We consider a pattern to be vertical if the fixed point factor
|
|
* at the two upper corners is the same. We could accept a small
|
|
* change, but determining what change is acceptable would require
|
|
* sorting the stops in the pattern and looking at the differences.
|
|
*
|
|
* Horizontal works the same way with the two left corners.
|
|
*/
|
|
|
|
*is_vertical = factors[1] == factors[0];
|
|
*is_horizontal = factors[2] == factors[0];
|
|
}
|
|
|
|
static cairo_int_status_t
|
|
_cairo_pattern_acquire_surface_for_gradient (const cairo_gradient_pattern_t *pattern,
|
|
cairo_surface_t *dst,
|
|
int x,
|
|
int y,
|
|
unsigned int width,
|
|
unsigned int height,
|
|
cairo_surface_t **out,
|
|
cairo_surface_attributes_t *attr)
|
|
{
|
|
cairo_image_surface_t *image;
|
|
pixman_image_t *pixman_image;
|
|
pixman_transform_t pixman_transform;
|
|
cairo_status_t status;
|
|
cairo_bool_t repeat = FALSE;
|
|
cairo_bool_t opaque = TRUE;
|
|
|
|
pixman_gradient_stop_t pixman_stops_static[2];
|
|
pixman_gradient_stop_t *pixman_stops = pixman_stops_static;
|
|
unsigned int i;
|
|
int clone_offset_x, clone_offset_y;
|
|
cairo_matrix_t matrix = pattern->base.matrix;
|
|
|
|
if (CAIRO_INJECT_FAULT ())
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
if (pattern->n_stops > ARRAY_LENGTH(pixman_stops_static)) {
|
|
pixman_stops = _cairo_malloc_ab (pattern->n_stops,
|
|
sizeof(pixman_gradient_stop_t));
|
|
if (unlikely (pixman_stops == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
for (i = 0; i < pattern->n_stops; i++) {
|
|
pixman_stops[i].x = _cairo_fixed_16_16_from_double (pattern->stops[i].offset);
|
|
pixman_stops[i].color.red = pattern->stops[i].color.red_short;
|
|
pixman_stops[i].color.green = pattern->stops[i].color.green_short;
|
|
pixman_stops[i].color.blue = pattern->stops[i].color.blue_short;
|
|
pixman_stops[i].color.alpha = pattern->stops[i].color.alpha_short;
|
|
if (! CAIRO_ALPHA_SHORT_IS_OPAQUE (pixman_stops[i].color.alpha))
|
|
opaque = FALSE;
|
|
}
|
|
|
|
if (pattern->base.type == CAIRO_PATTERN_TYPE_LINEAR)
|
|
{
|
|
cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) pattern;
|
|
pixman_point_fixed_t p1, p2;
|
|
cairo_fixed_t xdim, ydim;
|
|
|
|
xdim = linear->p2.x - linear->p1.x;
|
|
ydim = linear->p2.y - linear->p1.y;
|
|
|
|
/*
|
|
* Transform the matrix to avoid overflow when converting between
|
|
* cairo_fixed_t and pixman_fixed_t (without incurring performance
|
|
* loss when the transformation is unnecessary).
|
|
*
|
|
* XXX: Consider converting out-of-range co-ordinates and transforms.
|
|
* Having a function to compute the required transformation to
|
|
* "normalize" a given bounding box would be generally useful -
|
|
* cf linear patterns, gradient patterns, surface patterns...
|
|
*/
|
|
#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */
|
|
if (_cairo_fixed_integer_ceil (xdim) > PIXMAN_MAX_INT ||
|
|
_cairo_fixed_integer_ceil (ydim) > PIXMAN_MAX_INT)
|
|
{
|
|
double sf;
|
|
|
|
if (xdim > ydim)
|
|
sf = PIXMAN_MAX_INT / _cairo_fixed_to_double (xdim);
|
|
else
|
|
sf = PIXMAN_MAX_INT / _cairo_fixed_to_double (ydim);
|
|
|
|
p1.x = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p1.x) * sf);
|
|
p1.y = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p1.y) * sf);
|
|
p2.x = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p2.x) * sf);
|
|
p2.y = _cairo_fixed_16_16_from_double (_cairo_fixed_to_double (linear->p2.y) * sf);
|
|
|
|
cairo_matrix_scale (&matrix, sf, sf);
|
|
}
|
|
else
|
|
{
|
|
p1.x = _cairo_fixed_to_16_16 (linear->p1.x);
|
|
p1.y = _cairo_fixed_to_16_16 (linear->p1.y);
|
|
p2.x = _cairo_fixed_to_16_16 (linear->p2.x);
|
|
p2.y = _cairo_fixed_to_16_16 (linear->p2.y);
|
|
}
|
|
|
|
pixman_image = pixman_image_create_linear_gradient (&p1, &p2,
|
|
pixman_stops,
|
|
pattern->n_stops);
|
|
}
|
|
else
|
|
{
|
|
cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) pattern;
|
|
pixman_point_fixed_t c1, c2;
|
|
pixman_fixed_t r1, r2;
|
|
|
|
c1.x = _cairo_fixed_to_16_16 (radial->c1.x);
|
|
c1.y = _cairo_fixed_to_16_16 (radial->c1.y);
|
|
r1 = _cairo_fixed_to_16_16 (radial->r1);
|
|
|
|
c2.x = _cairo_fixed_to_16_16 (radial->c2.x);
|
|
c2.y = _cairo_fixed_to_16_16 (radial->c2.y);
|
|
r2 = _cairo_fixed_to_16_16 (radial->r2);
|
|
|
|
pixman_image = pixman_image_create_radial_gradient (&c1, &c2,
|
|
r1, r2,
|
|
pixman_stops,
|
|
pattern->n_stops);
|
|
}
|
|
|
|
if (pixman_stops != pixman_stops_static)
|
|
free (pixman_stops);
|
|
|
|
if (unlikely (pixman_image == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
if (_cairo_surface_is_image (dst))
|
|
{
|
|
image = (cairo_image_surface_t *)
|
|
_cairo_image_surface_create_for_pixman_image (pixman_image,
|
|
PIXMAN_a8r8g8b8);
|
|
if (image->base.status)
|
|
{
|
|
pixman_image_unref (pixman_image);
|
|
return image->base.status;
|
|
}
|
|
|
|
attr->x_offset = attr->y_offset = 0;
|
|
attr->matrix = matrix;
|
|
attr->extend = pattern->base.extend;
|
|
attr->filter = CAIRO_FILTER_NEAREST;
|
|
attr->has_component_alpha = pattern->base.has_component_alpha;
|
|
|
|
*out = &image->base;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
if (pattern->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
|
|
cairo_bool_t is_horizontal;
|
|
cairo_bool_t is_vertical;
|
|
|
|
_cairo_linear_pattern_classify ((cairo_linear_pattern_t *)pattern,
|
|
x, y, width, height,
|
|
&is_horizontal, &is_vertical);
|
|
if (is_horizontal) {
|
|
height = 1;
|
|
repeat = TRUE;
|
|
}
|
|
/* width-1 repeating patterns are quite slow with scan-line based
|
|
* compositing code, so we use a wider strip and spend some extra
|
|
* expense in computing the gradient. It's possible that for narrow
|
|
* gradients we'd be better off using a 2 or 4 pixel strip; the
|
|
* wider the gradient, the more it's worth spending extra time
|
|
* computing a sample.
|
|
*/
|
|
if (is_vertical && width > 8) {
|
|
width = 8;
|
|
repeat = TRUE;
|
|
}
|
|
}
|
|
|
|
if (! pixman_image_set_filter (pixman_image, PIXMAN_FILTER_BILINEAR,
|
|
NULL, 0))
|
|
{
|
|
pixman_image_unref (pixman_image);
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
image = (cairo_image_surface_t *)
|
|
cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height);
|
|
if (image->base.status) {
|
|
pixman_image_unref (pixman_image);
|
|
return image->base.status;
|
|
}
|
|
|
|
_cairo_matrix_to_pixman_matrix (&matrix, &pixman_transform,
|
|
width/2., height/2.);
|
|
if (!pixman_image_set_transform (pixman_image, &pixman_transform)) {
|
|
cairo_surface_destroy (&image->base);
|
|
pixman_image_unref (pixman_image);
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
}
|
|
|
|
switch (pattern->base.extend) {
|
|
case CAIRO_EXTEND_NONE:
|
|
pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_NONE);
|
|
break;
|
|
case CAIRO_EXTEND_REPEAT:
|
|
pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_NORMAL);
|
|
break;
|
|
case CAIRO_EXTEND_REFLECT:
|
|
pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_REFLECT);
|
|
break;
|
|
case CAIRO_EXTEND_PAD:
|
|
pixman_image_set_repeat (pixman_image, PIXMAN_REPEAT_PAD);
|
|
break;
|
|
}
|
|
|
|
pixman_image_composite32 (PIXMAN_OP_SRC,
|
|
pixman_image,
|
|
NULL,
|
|
image->pixman_image,
|
|
x, y,
|
|
0, 0,
|
|
0, 0,
|
|
width, height);
|
|
|
|
pixman_image_unref (pixman_image);
|
|
|
|
_cairo_debug_check_image_surface_is_defined (&image->base);
|
|
|
|
status = _cairo_surface_clone_similar (dst, &image->base,
|
|
0, 0, width, height,
|
|
&clone_offset_x,
|
|
&clone_offset_y,
|
|
out);
|
|
|
|
cairo_surface_destroy (&image->base);
|
|
|
|
attr->x_offset = -x;
|
|
attr->y_offset = -y;
|
|
cairo_matrix_init_identity (&attr->matrix);
|
|
attr->extend = repeat ? CAIRO_EXTEND_REPEAT : CAIRO_EXTEND_NONE;
|
|
attr->filter = CAIRO_FILTER_NEAREST;
|
|
attr->has_component_alpha = pattern->base.has_component_alpha;
|
|
|
|
return status;
|
|
}
|
|
|
|
/* We maintain a small cache here, because we don't want to constantly
|
|
* recreate surfaces for simple solid colors. */
|
|
#define MAX_SURFACE_CACHE_SIZE 16
|
|
static struct {
|
|
struct _cairo_pattern_solid_surface_cache{
|
|
cairo_color_t color;
|
|
cairo_surface_t *surface;
|
|
} cache[MAX_SURFACE_CACHE_SIZE];
|
|
int size;
|
|
} solid_surface_cache;
|
|
|
|
static cairo_bool_t
|
|
_cairo_pattern_solid_surface_matches (
|
|
const struct _cairo_pattern_solid_surface_cache *cache,
|
|
const cairo_solid_pattern_t *pattern,
|
|
cairo_surface_t *dst)
|
|
{
|
|
if (cairo_surface_get_content (cache->surface) != _cairo_color_get_content (&pattern->color))
|
|
return FALSE;
|
|
|
|
if (CAIRO_REFERENCE_COUNT_GET_VALUE (&cache->surface->ref_count) != 1)
|
|
return FALSE;
|
|
|
|
if (! _cairo_surface_is_similar (cache->surface, dst))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_cairo_pattern_solid_surface_matches_color (
|
|
const struct _cairo_pattern_solid_surface_cache *cache,
|
|
const cairo_solid_pattern_t *pattern,
|
|
cairo_surface_t *dst)
|
|
{
|
|
if (! _cairo_color_equal (&cache->color, &pattern->color))
|
|
return FALSE;
|
|
|
|
return _cairo_pattern_solid_surface_matches (cache, pattern, dst);
|
|
}
|
|
|
|
static cairo_int_status_t
|
|
_cairo_pattern_acquire_surface_for_solid (const cairo_solid_pattern_t *pattern,
|
|
cairo_surface_t *dst,
|
|
int x,
|
|
int y,
|
|
unsigned int width,
|
|
unsigned int height,
|
|
cairo_surface_t **out,
|
|
cairo_surface_attributes_t *attribs)
|
|
{
|
|
static int i;
|
|
|
|
cairo_surface_t *surface, *to_destroy = NULL;
|
|
cairo_status_t status;
|
|
|
|
CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
|
|
/* Check cache first */
|
|
if (i < solid_surface_cache.size &&
|
|
_cairo_pattern_solid_surface_matches_color (&solid_surface_cache.cache[i],
|
|
pattern,
|
|
dst))
|
|
{
|
|
goto DONE;
|
|
}
|
|
|
|
for (i = 0 ; i < solid_surface_cache.size; i++) {
|
|
if (_cairo_pattern_solid_surface_matches_color (&solid_surface_cache.cache[i],
|
|
pattern,
|
|
dst))
|
|
{
|
|
goto DONE;
|
|
}
|
|
}
|
|
|
|
/* Choose a surface to repaint/evict */
|
|
surface = NULL;
|
|
if (solid_surface_cache.size == MAX_SURFACE_CACHE_SIZE) {
|
|
i = rand () % MAX_SURFACE_CACHE_SIZE;
|
|
surface = solid_surface_cache.cache[i].surface;
|
|
|
|
if (_cairo_pattern_solid_surface_matches (&solid_surface_cache.cache[i],
|
|
pattern,
|
|
dst))
|
|
{
|
|
/* Reuse the surface instead of evicting */
|
|
status = _cairo_surface_repaint_solid_pattern_surface (dst, surface, pattern);
|
|
if (unlikely (status))
|
|
goto EVICT;
|
|
|
|
cairo_surface_reference (surface);
|
|
}
|
|
else
|
|
{
|
|
EVICT:
|
|
surface = NULL;
|
|
}
|
|
}
|
|
|
|
if (surface == NULL) {
|
|
/* Not cached, need to create new */
|
|
surface = _cairo_surface_create_solid_pattern_surface (dst, pattern);
|
|
if (surface == NULL) {
|
|
status = CAIRO_INT_STATUS_UNSUPPORTED;
|
|
goto UNLOCK;
|
|
}
|
|
if (unlikely (surface->status)) {
|
|
status = surface->status;
|
|
goto UNLOCK;
|
|
}
|
|
|
|
if (unlikely (! _cairo_surface_is_similar (surface, dst)))
|
|
{
|
|
/* In the rare event of a substitute surface being returned,
|
|
* don't cache the fallback.
|
|
*/
|
|
*out = surface;
|
|
goto NOCACHE;
|
|
}
|
|
}
|
|
|
|
if (i == solid_surface_cache.size)
|
|
solid_surface_cache.size++;
|
|
|
|
to_destroy = solid_surface_cache.cache[i].surface;
|
|
solid_surface_cache.cache[i].surface = surface;
|
|
solid_surface_cache.cache[i].color = pattern->color;
|
|
|
|
DONE:
|
|
*out = cairo_surface_reference (solid_surface_cache.cache[i].surface);
|
|
|
|
NOCACHE:
|
|
attribs->x_offset = attribs->y_offset = 0;
|
|
cairo_matrix_init_identity (&attribs->matrix);
|
|
attribs->extend = CAIRO_EXTEND_REPEAT;
|
|
attribs->filter = CAIRO_FILTER_NEAREST;
|
|
attribs->has_component_alpha = pattern->base.has_component_alpha;
|
|
|
|
status = CAIRO_STATUS_SUCCESS;
|
|
|
|
UNLOCK:
|
|
CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
|
|
if (to_destroy)
|
|
cairo_surface_destroy (to_destroy);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
_cairo_pattern_reset_solid_surface_cache (void)
|
|
{
|
|
CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
|
|
/* remove surfaces starting from the end so that solid_surface_cache.cache
|
|
* is always in a consistent state when we release the mutex. */
|
|
while (solid_surface_cache.size) {
|
|
cairo_surface_t *surface;
|
|
|
|
solid_surface_cache.size--;
|
|
surface = solid_surface_cache.cache[solid_surface_cache.size].surface;
|
|
solid_surface_cache.cache[solid_surface_cache.size].surface = NULL;
|
|
|
|
/* release the lock to avoid the possibility of a recursive
|
|
* deadlock when the surface destroy closure gets called */
|
|
CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
cairo_surface_destroy (surface);
|
|
CAIRO_MUTEX_LOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
}
|
|
|
|
CAIRO_MUTEX_UNLOCK (_cairo_pattern_solid_surface_cache_lock);
|
|
}
|
|
|
|
static void
|
|
_extents_to_linear_parameter (const cairo_linear_pattern_t *linear,
|
|
const cairo_rectangle_int_t *extents,
|
|
double t[2])
|
|
{
|
|
double t0, tdx, tdy;
|
|
double p1x, p1y, pdx, pdy, invsqnorm;
|
|
|
|
p1x = _cairo_fixed_to_double (linear->p1.x);
|
|
p1y = _cairo_fixed_to_double (linear->p1.y);
|
|
pdx = _cairo_fixed_to_double (linear->p2.x) - p1x;
|
|
pdy = _cairo_fixed_to_double (linear->p2.y) - p1y;
|
|
invsqnorm = 1.0 / (pdx * pdx + pdy * pdy);
|
|
pdx *= invsqnorm;
|
|
pdy *= invsqnorm;
|
|
|
|
t0 = (extents->x - p1x) * pdx + (extents->y - p1y) * pdy;
|
|
tdx = extents->width * pdx;
|
|
tdy = extents->height * pdy;
|
|
|
|
t[0] = t[1] = t0;
|
|
if (tdx < 0)
|
|
t[0] += tdx;
|
|
else
|
|
t[1] += tdx;
|
|
|
|
if (tdy < 0)
|
|
t[0] += tdy;
|
|
else
|
|
t[1] += tdy;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_linear_pattern_is_degenerate (const cairo_linear_pattern_t *linear)
|
|
{
|
|
return linear->p1.x == linear->p2.x && linear->p1.y == linear->p2.y;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_radial_pattern_is_degenerate (const cairo_radial_pattern_t *radial)
|
|
{
|
|
return radial->r1 == radial->r2 &&
|
|
(radial->r1 == 0 /* && radial->r2 == 0 */ ||
|
|
(radial->c1.x == radial->c2.x && radial->c1.y == radial->c2.y));
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_gradient_is_clear (const cairo_gradient_pattern_t *gradient,
|
|
const cairo_rectangle_int_t *extents)
|
|
{
|
|
unsigned int i;
|
|
|
|
assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
|
|
gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);
|
|
|
|
if (gradient->n_stops == 0 ||
|
|
(gradient->base.extend == CAIRO_EXTEND_NONE &&
|
|
gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset))
|
|
return TRUE;
|
|
|
|
/* Check if the extents intersect the drawn part of the pattern. */
|
|
if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
|
|
if (gradient->base.extend == CAIRO_EXTEND_NONE) {
|
|
cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;
|
|
/* EXTEND_NONE degenerate linear gradients are clear */
|
|
if (_linear_pattern_is_degenerate (linear))
|
|
return TRUE;
|
|
|
|
if (extents != NULL) {
|
|
double t[2];
|
|
_extents_to_linear_parameter (linear, extents, t);
|
|
if ((t[0] <= 0.0 && t[1] <= 0.0) || (t[0] >= 1.0 && t[1] >= 1.0))
|
|
return TRUE;
|
|
}
|
|
}
|
|
} else {
|
|
cairo_radial_pattern_t *radial = (cairo_radial_pattern_t *) gradient;
|
|
/* degenerate radial gradients are clear */
|
|
if (_radial_pattern_is_degenerate (radial))
|
|
return TRUE;
|
|
/* TODO: check actual intersection */
|
|
}
|
|
|
|
for (i = 0; i < gradient->n_stops; i++)
|
|
if (! CAIRO_COLOR_IS_CLEAR (&gradient->stops[i].color))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
_gradient_color_average (const cairo_gradient_pattern_t *gradient,
|
|
cairo_color_t *color)
|
|
{
|
|
double delta0, delta1;
|
|
double r, g, b, a;
|
|
unsigned int i, start = 1, end;
|
|
|
|
assert (gradient->n_stops > 0);
|
|
assert (gradient->base.extend != CAIRO_EXTEND_NONE);
|
|
|
|
if (gradient->n_stops == 1) {
|
|
_cairo_color_init_rgba (color,
|
|
gradient->stops[0].color.red,
|
|
gradient->stops[0].color.green,
|
|
gradient->stops[0].color.blue,
|
|
gradient->stops[0].color.alpha);
|
|
return;
|
|
}
|
|
|
|
end = gradient->n_stops - 1;
|
|
|
|
switch (gradient->base.extend) {
|
|
case CAIRO_EXTEND_REPEAT:
|
|
/*
|
|
* Sa, Sb and Sy, Sz are the first two and last two stops respectively.
|
|
* The weight of the first and last stop can be computed as the area of
|
|
* the following triangles (taken with height 1, since the whole [0-1]
|
|
* will have total weight 1 this way): b*h/2
|
|
*
|
|
* + +
|
|
* / |\ / | \
|
|
* / | \ / | \
|
|
* / | \ / | \
|
|
* ~~~~~+---+---+---+~~~~~~~+-------+---+---+~~~~~
|
|
* -1+Sz 0 Sa Sb Sy Sz 1 1+Sa
|
|
*
|
|
* For the first stop: (Sb-(-1+Sz)/2 = (1+Sb-Sz)/2
|
|
* For the last stop: ((1+Sa)-Sy)/2 = (1+Sa-Sy)/2
|
|
* Halving the result is done after summing up all the areas.
|
|
*/
|
|
delta0 = 1.0 + gradient->stops[1].offset - gradient->stops[end].offset;
|
|
delta1 = 1.0 + gradient->stops[0].offset - gradient->stops[end-1].offset;
|
|
break;
|
|
|
|
case CAIRO_EXTEND_REFLECT:
|
|
/*
|
|
* Sa, Sb and Sy, Sz are the first two and last two stops respectively.
|
|
* The weight of the first and last stop can be computed as the area of
|
|
* the following trapezoids (taken with height 1, since the whole [0-1]
|
|
* will have total weight 1 this way): (b+B)*h/2
|
|
*
|
|
* +-------+ +---+
|
|
* | |\ / | |
|
|
* | | \ / | |
|
|
* | | \ / | |
|
|
* +-------+---+~~~~~~~+-------+---+
|
|
* 0 Sa Sb Sy Sz 1
|
|
*
|
|
* For the first stop: (Sa+Sb)/2
|
|
* For the last stop: ((1-Sz) + (1-Sy))/2 = (2-Sy-Sz)/2
|
|
* Halving the result is done after summing up all the areas.
|
|
*/
|
|
delta0 = gradient->stops[0].offset + gradient->stops[1].offset;
|
|
delta1 = 2.0 - gradient->stops[end-1].offset - gradient->stops[end].offset;
|
|
break;
|
|
|
|
case CAIRO_EXTEND_PAD:
|
|
/* PAD is computed as the average of the first and last stop:
|
|
* - take both of them with weight 1 (they will be halved
|
|
* after the whole sum has been computed).
|
|
* - avoid summing any of the inner stops.
|
|
*/
|
|
delta0 = delta1 = 1.0;
|
|
start = end;
|
|
break;
|
|
|
|
case CAIRO_EXTEND_NONE:
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
_cairo_color_init_rgba (color, 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
r = delta0 * gradient->stops[0].color.red;
|
|
g = delta0 * gradient->stops[0].color.green;
|
|
b = delta0 * gradient->stops[0].color.blue;
|
|
a = delta0 * gradient->stops[0].color.alpha;
|
|
|
|
for (i = start; i < end; ++i) {
|
|
/* Inner stops weight is the same as the area of the triangle they influence
|
|
* (which goes from the stop before to the stop after), again with height 1
|
|
* since the whole must sum up to 1: b*h/2
|
|
* Halving is done after the whole sum has been computed.
|
|
*/
|
|
double delta = gradient->stops[i+1].offset - gradient->stops[i-1].offset;
|
|
r += delta * gradient->stops[i].color.red;
|
|
g += delta * gradient->stops[i].color.green;
|
|
b += delta * gradient->stops[i].color.blue;
|
|
a += delta * gradient->stops[i].color.alpha;
|
|
}
|
|
|
|
r += delta1 * gradient->stops[end].color.red;
|
|
g += delta1 * gradient->stops[end].color.green;
|
|
b += delta1 * gradient->stops[end].color.blue;
|
|
a += delta1 * gradient->stops[end].color.alpha;
|
|
|
|
_cairo_color_init_rgba (color, r * .5, g * .5, b * .5, a * .5);
|
|
}
|
|
|
|
/**
|
|
* _cairo_gradient_pattern_is_solid
|
|
*
|
|
* Convenience function to determine whether a gradient pattern is
|
|
* a solid color within the given extents. In this case the color
|
|
* argument is initialized to the color the pattern represents.
|
|
* This functions doesn't handle completely transparent gradients,
|
|
* thus it should be called only after _cairo_pattern_is_clear has
|
|
* returned FALSE.
|
|
*
|
|
* Return value: %TRUE if the pattern is a solid color.
|
|
**/
|
|
cairo_bool_t
|
|
_cairo_gradient_pattern_is_solid (const cairo_gradient_pattern_t *gradient,
|
|
const cairo_rectangle_int_t *extents,
|
|
cairo_color_t *color)
|
|
{
|
|
unsigned int i;
|
|
|
|
assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
|
|
gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);
|
|
|
|
/* TODO: radial */
|
|
if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
|
|
cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;
|
|
if (_linear_pattern_is_degenerate (linear)) {
|
|
_gradient_color_average (gradient, color);
|
|
return TRUE;
|
|
}
|
|
|
|
if (gradient->base.extend == CAIRO_EXTEND_NONE) {
|
|
double t[2];
|
|
|
|
/* We already know that the pattern is not clear, thus if some
|
|
* part of it is clear, the whole is not solid.
|
|
*/
|
|
|
|
if (extents == NULL)
|
|
return FALSE;
|
|
|
|
_extents_to_linear_parameter (linear, extents, t);
|
|
if (t[0] < 0.0 || t[1] > 1.0)
|
|
return FALSE;
|
|
}
|
|
} else
|
|
return FALSE;
|
|
|
|
for (i = 1; i < gradient->n_stops; i++)
|
|
if (! _cairo_color_stop_equal (&gradient->stops[0].color,
|
|
&gradient->stops[i].color))
|
|
return FALSE;
|
|
|
|
_cairo_color_init_rgba (color,
|
|
gradient->stops[0].color.red,
|
|
gradient->stops[0].color.green,
|
|
gradient->stops[0].color.blue,
|
|
gradient->stops[0].color.alpha);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_is_opaque_solid
|
|
*
|
|
* Convenience function to determine whether a pattern is an opaque
|
|
* (alpha==1.0) solid color pattern. This is done by testing whether
|
|
* the pattern's alpha value when converted to a byte is 255, so if a
|
|
* backend actually supported deep alpha channels this function might
|
|
* not do the right thing.
|
|
*
|
|
* Return value: %TRUE if the pattern is an opaque, solid color.
|
|
**/
|
|
cairo_bool_t
|
|
_cairo_pattern_is_opaque_solid (const cairo_pattern_t *pattern)
|
|
{
|
|
cairo_solid_pattern_t *solid;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_SOLID)
|
|
return FALSE;
|
|
|
|
solid = (cairo_solid_pattern_t *) pattern;
|
|
|
|
return CAIRO_COLOR_IS_OPAQUE (&solid->color);
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_surface_is_opaque (const cairo_surface_pattern_t *pattern,
|
|
const cairo_rectangle_int_t *r)
|
|
{
|
|
if (pattern->surface->content & CAIRO_CONTENT_ALPHA)
|
|
return FALSE;
|
|
|
|
if (pattern->base.extend != CAIRO_EXTEND_NONE)
|
|
return TRUE;
|
|
|
|
if (r != NULL) {
|
|
cairo_rectangle_int_t extents;
|
|
|
|
if (! _cairo_surface_get_extents (pattern->surface, &extents))
|
|
return TRUE;
|
|
|
|
if (r->x >= extents.x &&
|
|
r->y >= extents.y &&
|
|
r->x + r->width <= extents.x + extents.width &&
|
|
r->y + r->height <= extents.y + extents.height)
|
|
{
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_surface_is_clear (const cairo_surface_pattern_t *pattern)
|
|
{
|
|
cairo_rectangle_int_t extents;
|
|
|
|
if (_cairo_surface_get_extents (pattern->surface, &extents) &&
|
|
(extents.width == 0 || extents.height == 0))
|
|
return TRUE;
|
|
|
|
return pattern->surface->is_clear &&
|
|
pattern->surface->content & CAIRO_CONTENT_ALPHA;
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_gradient_is_opaque (const cairo_gradient_pattern_t *gradient,
|
|
const cairo_rectangle_int_t *extents)
|
|
{
|
|
unsigned int i;
|
|
|
|
assert (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR ||
|
|
gradient->base.type == CAIRO_PATTERN_TYPE_RADIAL);
|
|
|
|
if (gradient->n_stops == 0 ||
|
|
(gradient->base.extend == CAIRO_EXTEND_NONE &&
|
|
gradient->stops[0].offset == gradient->stops[gradient->n_stops - 1].offset))
|
|
return FALSE;
|
|
|
|
if (gradient->base.type == CAIRO_PATTERN_TYPE_LINEAR) {
|
|
if (gradient->base.extend == CAIRO_EXTEND_NONE) {
|
|
double t[2];
|
|
cairo_linear_pattern_t *linear = (cairo_linear_pattern_t *) gradient;
|
|
|
|
/* EXTEND_NONE degenerate radial gradients are clear */
|
|
if (_linear_pattern_is_degenerate (linear))
|
|
return FALSE;
|
|
|
|
if (extents == NULL)
|
|
return FALSE;
|
|
|
|
_extents_to_linear_parameter (linear, extents, t);
|
|
if (t[0] < 0.0 || t[1] > 1.0)
|
|
return FALSE;
|
|
}
|
|
} else
|
|
return FALSE; /* TODO: check actual intersection */
|
|
|
|
for (i = 0; i < gradient->n_stops; i++)
|
|
if (! CAIRO_COLOR_IS_OPAQUE (&gradient->stops[i].color))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_is_opaque
|
|
*
|
|
* Convenience function to determine whether a pattern is an opaque
|
|
* pattern (of any type). The same caveats that apply to
|
|
* _cairo_pattern_is_opaque_solid apply here as well.
|
|
*
|
|
* Return value: %TRUE if the pattern is a opaque.
|
|
**/
|
|
cairo_bool_t
|
|
_cairo_pattern_is_opaque (const cairo_pattern_t *abstract_pattern,
|
|
const cairo_rectangle_int_t *extents)
|
|
{
|
|
const cairo_pattern_union_t *pattern;
|
|
|
|
if (abstract_pattern->has_component_alpha)
|
|
return FALSE;
|
|
|
|
pattern = (cairo_pattern_union_t *) abstract_pattern;
|
|
switch (pattern->base.type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return _cairo_pattern_is_opaque_solid (abstract_pattern);
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return _surface_is_opaque (&pattern->surface, extents);
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return _gradient_is_opaque (&pattern->gradient.base, extents);
|
|
}
|
|
|
|
ASSERT_NOT_REACHED;
|
|
return FALSE;
|
|
}
|
|
|
|
cairo_bool_t
|
|
_cairo_pattern_is_clear (const cairo_pattern_t *abstract_pattern)
|
|
{
|
|
const cairo_pattern_union_t *pattern;
|
|
|
|
if (abstract_pattern->has_component_alpha)
|
|
return FALSE;
|
|
|
|
pattern = (cairo_pattern_union_t *) abstract_pattern;
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return CAIRO_COLOR_IS_CLEAR (&pattern->solid.color);
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return _surface_is_clear (&pattern->surface);
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return _gradient_is_clear (&pattern->gradient.base, NULL);
|
|
}
|
|
|
|
ASSERT_NOT_REACHED;
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_analyze_filter:
|
|
* @pattern: surface pattern
|
|
* @pad_out: location to store necessary padding in the source image, or %NULL
|
|
* Returns: the optimized #cairo_filter_t to use with @pattern.
|
|
*
|
|
* Analyze the filter to determine how much extra needs to be sampled
|
|
* from the source image to account for the filter radius and whether
|
|
* we can optimize the filter to a simpler value.
|
|
*
|
|
* XXX: We don't actually have any way of querying the backend for
|
|
* the filter radius, so we just guess base on what we know that
|
|
* backends do currently (see bug #10508)
|
|
*/
|
|
cairo_filter_t
|
|
_cairo_pattern_analyze_filter (const cairo_pattern_t *pattern,
|
|
double *pad_out)
|
|
{
|
|
double pad;
|
|
cairo_filter_t optimized_filter;
|
|
|
|
switch (pattern->filter) {
|
|
case CAIRO_FILTER_GOOD:
|
|
case CAIRO_FILTER_BEST:
|
|
case CAIRO_FILTER_BILINEAR:
|
|
/* If source pixels map 1:1 onto destination pixels, we do
|
|
* not need to filter (and do not want to filter, since it
|
|
* will cause blurriness)
|
|
*/
|
|
if (_cairo_matrix_is_pixel_exact (&pattern->matrix)) {
|
|
pad = 0.;
|
|
optimized_filter = CAIRO_FILTER_NEAREST;
|
|
} else {
|
|
/* 0.5 is enough for a bilinear filter. It's possible we
|
|
* should defensively use more for CAIRO_FILTER_BEST, but
|
|
* without a single example, it's hard to know how much
|
|
* more would be defensive...
|
|
*/
|
|
pad = 0.5;
|
|
optimized_filter = pattern->filter;
|
|
}
|
|
break;
|
|
|
|
case CAIRO_FILTER_FAST:
|
|
case CAIRO_FILTER_NEAREST:
|
|
case CAIRO_FILTER_GAUSSIAN:
|
|
default:
|
|
pad = 0.;
|
|
optimized_filter = pattern->filter;
|
|
break;
|
|
}
|
|
|
|
if (pad_out)
|
|
*pad_out = pad;
|
|
|
|
return optimized_filter;
|
|
}
|
|
|
|
|
|
static double
|
|
_pixman_nearest_sample (double d)
|
|
{
|
|
return ceil (d - .5);
|
|
}
|
|
|
|
static cairo_int_status_t
|
|
_cairo_pattern_acquire_surface_for_surface (const cairo_surface_pattern_t *pattern,
|
|
cairo_surface_t *dst,
|
|
int x,
|
|
int y,
|
|
unsigned int width,
|
|
unsigned int height,
|
|
unsigned int flags,
|
|
cairo_surface_t **out,
|
|
cairo_surface_attributes_t *attr)
|
|
{
|
|
cairo_surface_t *surface;
|
|
cairo_rectangle_int_t extents;
|
|
cairo_rectangle_int_t sampled_area;
|
|
double x1, y1, x2, y2;
|
|
int tx, ty;
|
|
double pad;
|
|
cairo_bool_t is_identity;
|
|
cairo_bool_t is_empty;
|
|
cairo_bool_t is_bounded;
|
|
cairo_int_status_t status;
|
|
|
|
surface = cairo_surface_reference (pattern->surface);
|
|
|
|
is_identity = FALSE;
|
|
attr->matrix = pattern->base.matrix;
|
|
attr->extend = pattern->base.extend;
|
|
attr->filter = _cairo_pattern_analyze_filter (&pattern->base, &pad);
|
|
attr->has_component_alpha = pattern->base.has_component_alpha;
|
|
|
|
attr->x_offset = attr->y_offset = tx = ty = 0;
|
|
if (_cairo_matrix_is_integer_translation (&attr->matrix, &tx, &ty)) {
|
|
cairo_matrix_init_identity (&attr->matrix);
|
|
attr->x_offset = tx;
|
|
attr->y_offset = ty;
|
|
is_identity = TRUE;
|
|
} else if (attr->filter == CAIRO_FILTER_NEAREST) {
|
|
/*
|
|
* For NEAREST, we can remove the fractional translation component
|
|
* from the transformation - this ensures that the pattern will always
|
|
* hit fast-paths in the backends for simple transformations that
|
|
* become (almost) identity, without loss of quality.
|
|
*/
|
|
attr->matrix.x0 = 0;
|
|
attr->matrix.y0 = 0;
|
|
if (_cairo_matrix_is_pixel_exact (&attr->matrix)) {
|
|
/* The rounding here is rather peculiar as it needs to match the
|
|
* rounding performed on the sample coordinate used by pixman.
|
|
*/
|
|
attr->matrix.x0 = _pixman_nearest_sample (pattern->base.matrix.x0);
|
|
attr->matrix.y0 = _pixman_nearest_sample (pattern->base.matrix.y0);
|
|
} else {
|
|
attr->matrix.x0 = pattern->base.matrix.x0;
|
|
attr->matrix.y0 = pattern->base.matrix.y0;
|
|
}
|
|
|
|
if (_cairo_matrix_is_integer_translation (&attr->matrix, &tx, &ty)) {
|
|
cairo_matrix_init_identity (&attr->matrix);
|
|
attr->x_offset = tx;
|
|
attr->y_offset = ty;
|
|
is_identity = TRUE;
|
|
}
|
|
}
|
|
|
|
/* XXX: Hack:
|
|
*
|
|
* The way we currently support CAIRO_EXTEND_REFLECT is to create
|
|
* an image twice bigger on each side, and create a pattern of four
|
|
* images such that the new image, when repeated, has the same effect
|
|
* of reflecting the original pattern.
|
|
*/
|
|
if (flags & CAIRO_PATTERN_ACQUIRE_NO_REFLECT &&
|
|
attr->extend == CAIRO_EXTEND_REFLECT)
|
|
{
|
|
cairo_t *cr;
|
|
cairo_surface_t *src;
|
|
int w, h;
|
|
|
|
is_bounded = _cairo_surface_get_extents (surface, &extents);
|
|
assert (is_bounded);
|
|
|
|
status = _cairo_surface_clone_similar (dst, surface,
|
|
extents.x, extents.y,
|
|
extents.width, extents.height,
|
|
&extents.x, &extents.y, &src);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
w = 2 * extents.width;
|
|
h = 2 * extents.height;
|
|
|
|
if (is_identity) {
|
|
attr->x_offset = -x;
|
|
x += tx;
|
|
while (x <= -w)
|
|
x += w;
|
|
while (x >= w)
|
|
x -= w;
|
|
extents.x += x;
|
|
tx = x = 0;
|
|
|
|
attr->y_offset = -y;
|
|
y += ty;
|
|
while (y <= -h)
|
|
y += h;
|
|
while (y >= h)
|
|
y -= h;
|
|
extents.y += y;
|
|
ty = y = 0;
|
|
}
|
|
|
|
cairo_surface_destroy (surface);
|
|
surface = _cairo_surface_create_similar_solid (dst,
|
|
dst->content, w, h,
|
|
CAIRO_COLOR_TRANSPARENT,
|
|
FALSE);
|
|
if (surface == NULL)
|
|
return CAIRO_INT_STATUS_UNSUPPORTED;
|
|
if (unlikely (surface->status)) {
|
|
cairo_surface_destroy (src);
|
|
return surface->status;
|
|
}
|
|
|
|
surface->device_transform = pattern->surface->device_transform;
|
|
surface->device_transform_inverse = pattern->surface->device_transform_inverse;
|
|
|
|
cr = cairo_create (surface);
|
|
|
|
cairo_set_source_surface (cr, src, -extents.x, -extents.y);
|
|
cairo_paint (cr);
|
|
|
|
cairo_scale (cr, -1, +1);
|
|
cairo_set_source_surface (cr, src, extents.x-w, -extents.y);
|
|
cairo_paint (cr);
|
|
cairo_set_source_surface (cr, src, extents.x, -extents.y);
|
|
cairo_paint (cr);
|
|
|
|
cairo_scale (cr, +1, -1);
|
|
cairo_set_source_surface (cr, src, extents.x-w, extents.y-h);
|
|
cairo_paint (cr);
|
|
cairo_set_source_surface (cr, src, extents.x, extents.y-h);
|
|
cairo_paint (cr);
|
|
cairo_set_source_surface (cr, src, extents.x-w, extents.y);
|
|
cairo_paint (cr);
|
|
cairo_set_source_surface (cr, src, extents.x, extents.y);
|
|
cairo_paint (cr);
|
|
|
|
cairo_scale (cr, -1, +1);
|
|
cairo_set_source_surface (cr, src, -extents.x, extents.y-h);
|
|
cairo_paint (cr);
|
|
cairo_set_source_surface (cr, src, -extents.x, extents.y);
|
|
cairo_paint (cr);
|
|
|
|
status = cairo_status (cr);
|
|
cairo_destroy (cr);
|
|
|
|
cairo_surface_destroy (src);
|
|
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
attr->extend = CAIRO_EXTEND_REPEAT;
|
|
}
|
|
|
|
/* We first transform the rectangle to the coordinate space of the
|
|
* source surface so that we only need to clone that portion of the
|
|
* surface that will be read.
|
|
*/
|
|
x1 = x;
|
|
y1 = y;
|
|
x2 = x + (int) width;
|
|
y2 = y + (int) height;
|
|
if (! is_identity) {
|
|
_cairo_matrix_transform_bounding_box (&attr->matrix,
|
|
&x1, &y1, &x2, &y2,
|
|
NULL);
|
|
}
|
|
|
|
sampled_area.x = floor (x1 - pad);
|
|
sampled_area.y = floor (y1 - pad);
|
|
sampled_area.width = ceil (x2 + pad) - sampled_area.x;
|
|
sampled_area.height = ceil (y2 + pad) - sampled_area.y;
|
|
|
|
sampled_area.x += tx;
|
|
sampled_area.y += ty;
|
|
|
|
if ( _cairo_surface_get_extents (surface, &extents)) {
|
|
if (attr->extend == CAIRO_EXTEND_NONE) {
|
|
/* Never acquire a larger area than the source itself */
|
|
is_empty = _cairo_rectangle_intersect (&extents, &sampled_area);
|
|
} else {
|
|
int trim = 0;
|
|
|
|
if (sampled_area.x >= extents.x &&
|
|
sampled_area.x + (int) sampled_area.width <= extents.x + (int) extents.width)
|
|
{
|
|
/* source is horizontally contained within extents, trim */
|
|
extents.x = sampled_area.x;
|
|
extents.width = sampled_area.width;
|
|
trim |= 0x1;
|
|
}
|
|
|
|
if (sampled_area.y >= extents.y &&
|
|
sampled_area.y + (int) sampled_area.height <= extents.y + (int) extents.height)
|
|
{
|
|
/* source is vertically contained within extents, trim */
|
|
extents.y = sampled_area.y;
|
|
extents.height = sampled_area.height;
|
|
trim |= 0x2;
|
|
}
|
|
|
|
if (trim == 0x3) {
|
|
/* source is wholly contained within extents, drop the REPEAT */
|
|
attr->extend = CAIRO_EXTEND_NONE;
|
|
}
|
|
|
|
is_empty = extents.width == 0 || extents.height == 0;
|
|
}
|
|
}
|
|
|
|
/* XXX can we use is_empty? */
|
|
|
|
status = _cairo_surface_clone_similar (dst, surface,
|
|
extents.x, extents.y,
|
|
extents.width, extents.height,
|
|
&x, &y, out);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
if (x != 0 || y != 0) {
|
|
if (is_identity) {
|
|
attr->x_offset -= x;
|
|
attr->y_offset -= y;
|
|
} else {
|
|
cairo_matrix_t m;
|
|
|
|
x -= attr->x_offset;
|
|
y -= attr->y_offset;
|
|
attr->x_offset = 0;
|
|
attr->y_offset = 0;
|
|
|
|
cairo_matrix_init_translate (&m, -x, -y);
|
|
cairo_matrix_multiply (&attr->matrix, &attr->matrix, &m);
|
|
}
|
|
}
|
|
|
|
/* reduce likelihood of range overflow with large downscaling */
|
|
if (! is_identity) {
|
|
cairo_matrix_t m;
|
|
cairo_status_t invert_status;
|
|
|
|
m = attr->matrix;
|
|
invert_status = cairo_matrix_invert (&m);
|
|
assert (invert_status == CAIRO_STATUS_SUCCESS);
|
|
|
|
if (m.x0 != 0. || m.y0 != 0.) {
|
|
/* pixman also limits the [xy]_offset to 16 bits so evenly
|
|
* spread the bits between the two.
|
|
*/
|
|
x = floor (m.x0 / 2);
|
|
y = floor (m.y0 / 2);
|
|
attr->x_offset -= x;
|
|
attr->y_offset -= y;
|
|
cairo_matrix_init_translate (&m, x, y);
|
|
cairo_matrix_multiply (&attr->matrix, &m, &attr->matrix);
|
|
}
|
|
}
|
|
|
|
BAIL:
|
|
cairo_surface_destroy (surface);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_acquire_surface:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @dst: destination surface
|
|
* @x: X coordinate in source corresponding to left side of destination area
|
|
* @y: Y coordinate in source corresponding to top side of destination area
|
|
* @width: width of destination area
|
|
* @height: height of destination area
|
|
* @surface_out: location to store a pointer to a surface
|
|
* @attributes: surface attributes that destination backend should apply to
|
|
* the returned surface
|
|
*
|
|
* A convenience function to obtain a surface to use as the source for
|
|
* drawing on @dst.
|
|
*
|
|
* Note that this function is only suitable for use when the destination
|
|
* surface is pixel based and 1 device unit maps to one pixel.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS if a surface was stored in @surface_out.
|
|
**/
|
|
cairo_int_status_t
|
|
_cairo_pattern_acquire_surface (const cairo_pattern_t *pattern,
|
|
cairo_surface_t *dst,
|
|
int x,
|
|
int y,
|
|
unsigned int width,
|
|
unsigned int height,
|
|
unsigned int flags,
|
|
cairo_surface_t **surface_out,
|
|
cairo_surface_attributes_t *attributes)
|
|
{
|
|
if (unlikely (pattern->status)) {
|
|
*surface_out = NULL;
|
|
return pattern->status;
|
|
}
|
|
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return _cairo_pattern_acquire_surface_for_solid ((cairo_solid_pattern_t *) pattern,
|
|
dst, x, y, width, height,
|
|
surface_out,
|
|
attributes);
|
|
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return _cairo_pattern_acquire_surface_for_gradient ((cairo_gradient_pattern_t *) pattern,
|
|
dst, x, y, width, height,
|
|
surface_out,
|
|
attributes);
|
|
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return _cairo_pattern_acquire_surface_for_surface ((cairo_surface_pattern_t *) pattern,
|
|
dst, x, y, width, height,
|
|
flags,
|
|
surface_out,
|
|
attributes);
|
|
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_release_surface:
|
|
* @pattern: a #cairo_pattern_t
|
|
* @surface: a surface obtained by _cairo_pattern_acquire_surface
|
|
* @attributes: attributes obtained by _cairo_pattern_acquire_surface
|
|
*
|
|
* Releases resources obtained by _cairo_pattern_acquire_surface.
|
|
**/
|
|
void
|
|
_cairo_pattern_release_surface (const cairo_pattern_t *pattern,
|
|
cairo_surface_t *surface,
|
|
cairo_surface_attributes_t *attributes)
|
|
{
|
|
cairo_surface_destroy (surface);
|
|
}
|
|
|
|
cairo_int_status_t
|
|
_cairo_pattern_acquire_surfaces (const cairo_pattern_t *src,
|
|
const cairo_pattern_t *mask,
|
|
cairo_surface_t *dst,
|
|
int src_x,
|
|
int src_y,
|
|
int mask_x,
|
|
int mask_y,
|
|
unsigned int width,
|
|
unsigned int height,
|
|
unsigned int flags,
|
|
cairo_surface_t **src_out,
|
|
cairo_surface_t **mask_out,
|
|
cairo_surface_attributes_t *src_attributes,
|
|
cairo_surface_attributes_t *mask_attributes)
|
|
{
|
|
cairo_int_status_t status;
|
|
cairo_pattern_union_t src_tmp;
|
|
|
|
if (unlikely (src->status))
|
|
return src->status;
|
|
if (unlikely (mask != NULL && mask->status))
|
|
return mask->status;
|
|
|
|
/* If src and mask are both solid, then the mask alpha can be
|
|
* combined into src and mask can be ignored. */
|
|
|
|
if (src->type == CAIRO_PATTERN_TYPE_SOLID &&
|
|
mask &&
|
|
! mask->has_component_alpha &&
|
|
mask->type == CAIRO_PATTERN_TYPE_SOLID)
|
|
{
|
|
cairo_color_t combined;
|
|
cairo_solid_pattern_t *src_solid = (cairo_solid_pattern_t *) src;
|
|
cairo_solid_pattern_t *mask_solid = (cairo_solid_pattern_t *) mask;
|
|
|
|
combined = src_solid->color;
|
|
_cairo_color_multiply_alpha (&combined, mask_solid->color.alpha);
|
|
|
|
_cairo_pattern_init_solid (&src_tmp.solid, &combined);
|
|
|
|
src = &src_tmp.base;
|
|
mask = NULL;
|
|
}
|
|
|
|
status = _cairo_pattern_acquire_surface (src, dst,
|
|
src_x, src_y,
|
|
width, height,
|
|
flags,
|
|
src_out, src_attributes);
|
|
if (unlikely (status))
|
|
goto BAIL;
|
|
|
|
if (mask == NULL) {
|
|
*mask_out = NULL;
|
|
goto BAIL;
|
|
}
|
|
|
|
status = _cairo_pattern_acquire_surface (mask, dst,
|
|
mask_x, mask_y,
|
|
width, height,
|
|
flags,
|
|
mask_out, mask_attributes);
|
|
if (unlikely (status))
|
|
_cairo_pattern_release_surface (src, *src_out, src_attributes);
|
|
|
|
BAIL:
|
|
if (src == &src_tmp.base)
|
|
_cairo_pattern_fini (&src_tmp.base);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* _cairo_pattern_get_extents:
|
|
*
|
|
* Return the "target-space" extents of @pattern in @extents.
|
|
*
|
|
* For unbounded patterns, the @extents will be initialized with
|
|
* "infinite" extents, (minimum and maximum fixed-point values).
|
|
*
|
|
* XXX: Currently, bounded gradient patterns will also return
|
|
* "infinite" extents, though it would be possible to optimize these
|
|
* with a little more work.
|
|
**/
|
|
void
|
|
_cairo_pattern_get_extents (const cairo_pattern_t *pattern,
|
|
cairo_rectangle_int_t *extents)
|
|
{
|
|
double x1, y1, x2, y2;
|
|
cairo_status_t status;
|
|
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
goto UNBOUNDED;
|
|
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
{
|
|
cairo_rectangle_int_t surface_extents;
|
|
const cairo_surface_pattern_t *surface_pattern =
|
|
(const cairo_surface_pattern_t *) pattern;
|
|
cairo_surface_t *surface = surface_pattern->surface;
|
|
double pad;
|
|
|
|
if (! _cairo_surface_get_extents (surface, &surface_extents))
|
|
goto UNBOUNDED;
|
|
|
|
if (surface_extents.width == 0 || surface_extents.height == 0)
|
|
goto EMPTY;
|
|
|
|
if (pattern->extend != CAIRO_EXTEND_NONE)
|
|
goto UNBOUNDED;
|
|
|
|
/* The filter can effectively enlarge the extents of the
|
|
* pattern, so extend as necessary.
|
|
*/
|
|
_cairo_pattern_analyze_filter (&surface_pattern->base, &pad);
|
|
x1 = surface_extents.x - pad;
|
|
y1 = surface_extents.y - pad;
|
|
x2 = surface_extents.x + (int) surface_extents.width + pad;
|
|
y2 = surface_extents.y + (int) surface_extents.height + pad;
|
|
}
|
|
break;
|
|
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
{
|
|
const cairo_radial_pattern_t *radial =
|
|
(const cairo_radial_pattern_t *) pattern;
|
|
double cx1, cy1;
|
|
double cx2, cy2;
|
|
double r, D;
|
|
|
|
if (radial->r1 == 0 && radial->r2 == 0)
|
|
goto EMPTY;
|
|
|
|
cx1 = _cairo_fixed_to_double (radial->c1.x);
|
|
cy1 = _cairo_fixed_to_double (radial->c1.y);
|
|
r = _cairo_fixed_to_double (radial->r1);
|
|
x1 = cx1 - r; x2 = cx1 + r;
|
|
y1 = cy1 - r; y2 = cy1 + r;
|
|
|
|
cx2 = _cairo_fixed_to_double (radial->c2.x);
|
|
cy2 = _cairo_fixed_to_double (radial->c2.y);
|
|
r = fabs (_cairo_fixed_to_double (radial->r2));
|
|
|
|
if (pattern->extend != CAIRO_EXTEND_NONE)
|
|
goto UNBOUNDED;
|
|
|
|
/* We need to be careful, as if the circles are not
|
|
* self-contained, then the solution is actually unbounded.
|
|
*/
|
|
D = (cx1-cx2)*(cx1-cx2) + (cy1-cy2)*(cy1-cy2);
|
|
if (D > r*r - 1e-5)
|
|
goto UNBOUNDED;
|
|
|
|
if (cx2 - r < x1)
|
|
x1 = cx2 - r;
|
|
if (cx2 + r > x2)
|
|
x2 = cx2 + r;
|
|
|
|
if (cy2 - r < y1)
|
|
y1 = cy2 - r;
|
|
if (cy2 + r > y2)
|
|
y2 = cy2 + r;
|
|
}
|
|
break;
|
|
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
{
|
|
const cairo_linear_pattern_t *linear =
|
|
(const cairo_linear_pattern_t *) pattern;
|
|
|
|
if (pattern->extend != CAIRO_EXTEND_NONE)
|
|
goto UNBOUNDED;
|
|
|
|
if (linear->p1.x == linear->p2.x && linear->p1.y == linear->p2.y)
|
|
goto EMPTY;
|
|
|
|
if (pattern->matrix.xy != 0. || pattern->matrix.yx != 0.)
|
|
goto UNBOUNDED;
|
|
|
|
if (linear->p1.x == linear->p2.x) {
|
|
x1 = -HUGE_VAL;
|
|
x2 = HUGE_VAL;
|
|
y1 = _cairo_fixed_to_double (MIN (linear->p1.y, linear->p2.y));
|
|
y2 = _cairo_fixed_to_double (MAX (linear->p1.y, linear->p2.y));
|
|
} else if (linear->p1.y == linear->p2.y) {
|
|
x1 = _cairo_fixed_to_double (MIN (linear->p1.x, linear->p2.x));
|
|
x2 = _cairo_fixed_to_double (MAX (linear->p1.x, linear->p2.x));
|
|
y1 = -HUGE_VAL;
|
|
y2 = HUGE_VAL;
|
|
} else {
|
|
goto UNBOUNDED;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
}
|
|
|
|
if (_cairo_matrix_is_translation (&pattern->matrix)) {
|
|
x1 -= pattern->matrix.x0; x2 -= pattern->matrix.x0;
|
|
y1 -= pattern->matrix.y0; y2 -= pattern->matrix.y0;
|
|
} else {
|
|
cairo_matrix_t imatrix;
|
|
|
|
imatrix = pattern->matrix;
|
|
status = cairo_matrix_invert (&imatrix);
|
|
/* cairo_pattern_set_matrix ensures the matrix is invertible */
|
|
assert (status == CAIRO_STATUS_SUCCESS);
|
|
|
|
_cairo_matrix_transform_bounding_box (&imatrix,
|
|
&x1, &y1, &x2, &y2,
|
|
NULL);
|
|
}
|
|
|
|
x1 = floor (x1);
|
|
if (x1 < CAIRO_RECT_INT_MIN)
|
|
x1 = CAIRO_RECT_INT_MIN;
|
|
y1 = floor (y1);
|
|
if (y1 < CAIRO_RECT_INT_MIN)
|
|
y1 = CAIRO_RECT_INT_MIN;
|
|
|
|
x2 = ceil (x2);
|
|
if (x2 > CAIRO_RECT_INT_MAX)
|
|
x2 = CAIRO_RECT_INT_MAX;
|
|
y2 = ceil (y2);
|
|
if (y2 > CAIRO_RECT_INT_MAX)
|
|
y2 = CAIRO_RECT_INT_MAX;
|
|
|
|
extents->x = x1; extents->width = x2 - x1;
|
|
extents->y = y1; extents->height = y2 - y1;
|
|
return;
|
|
|
|
UNBOUNDED:
|
|
/* unbounded patterns -> 'infinite' extents */
|
|
_cairo_unbounded_rectangle_init (extents);
|
|
return;
|
|
|
|
EMPTY:
|
|
extents->x = extents->y = 0;
|
|
extents->width = extents->height = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
static unsigned long
|
|
_cairo_solid_pattern_hash (unsigned long hash,
|
|
const cairo_pattern_t *pattern)
|
|
{
|
|
const cairo_solid_pattern_t *solid = (cairo_solid_pattern_t *) pattern;
|
|
|
|
hash = _cairo_hash_bytes (hash, &solid->color, sizeof (solid->color));
|
|
|
|
return hash;
|
|
}
|
|
|
|
static unsigned long
|
|
_cairo_gradient_color_stops_hash (unsigned long hash,
|
|
const cairo_gradient_pattern_t *gradient)
|
|
{
|
|
unsigned int n;
|
|
|
|
hash = _cairo_hash_bytes (hash,
|
|
&gradient->n_stops,
|
|
sizeof (gradient->n_stops));
|
|
|
|
for (n = 0; n < gradient->n_stops; n++) {
|
|
hash = _cairo_hash_bytes (hash,
|
|
&gradient->stops[n].offset,
|
|
sizeof (double));
|
|
hash = _cairo_hash_bytes (hash,
|
|
&gradient->stops[n].color,
|
|
sizeof (cairo_color_t));
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
unsigned long
|
|
_cairo_linear_pattern_hash (unsigned long hash,
|
|
const cairo_linear_pattern_t *linear)
|
|
{
|
|
hash = _cairo_hash_bytes (hash, &linear->p1, sizeof (linear->p1));
|
|
hash = _cairo_hash_bytes (hash, &linear->p2, sizeof (linear->p2));
|
|
|
|
return _cairo_gradient_color_stops_hash (hash, &linear->base);
|
|
}
|
|
|
|
unsigned long
|
|
_cairo_radial_pattern_hash (unsigned long hash,
|
|
const cairo_radial_pattern_t *radial)
|
|
{
|
|
hash = _cairo_hash_bytes (hash, &radial->c1, sizeof (radial->c1));
|
|
hash = _cairo_hash_bytes (hash, &radial->r1, sizeof (radial->r1));
|
|
hash = _cairo_hash_bytes (hash, &radial->c2, sizeof (radial->c2));
|
|
hash = _cairo_hash_bytes (hash, &radial->r2, sizeof (radial->r2));
|
|
|
|
return _cairo_gradient_color_stops_hash (hash, &radial->base);
|
|
}
|
|
|
|
static unsigned long
|
|
_cairo_surface_pattern_hash (unsigned long hash,
|
|
const cairo_pattern_t *pattern)
|
|
{
|
|
const cairo_surface_pattern_t *surface = (cairo_surface_pattern_t *) pattern;
|
|
|
|
hash ^= surface->surface->unique_id;
|
|
|
|
return hash;
|
|
}
|
|
|
|
unsigned long
|
|
_cairo_pattern_hash (const cairo_pattern_t *pattern)
|
|
{
|
|
unsigned long hash = _CAIRO_HASH_INIT_VALUE;
|
|
|
|
if (pattern->status)
|
|
return 0;
|
|
|
|
hash = _cairo_hash_bytes (hash, &pattern->type, sizeof (pattern->type));
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_SOLID) {
|
|
hash = _cairo_hash_bytes (hash,
|
|
&pattern->matrix, sizeof (pattern->matrix));
|
|
hash = _cairo_hash_bytes (hash,
|
|
&pattern->filter, sizeof (pattern->filter));
|
|
hash = _cairo_hash_bytes (hash,
|
|
&pattern->extend, sizeof (pattern->extend));
|
|
hash = _cairo_hash_bytes (hash,
|
|
&pattern->has_component_alpha,
|
|
sizeof (pattern->has_component_alpha));
|
|
}
|
|
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return _cairo_solid_pattern_hash (hash, pattern);
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
return _cairo_linear_pattern_hash (hash, (cairo_linear_pattern_t *) pattern);
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return _cairo_radial_pattern_hash (hash, (cairo_radial_pattern_t *) pattern);
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return _cairo_surface_pattern_hash (hash, pattern);
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
_cairo_gradient_pattern_color_stops_size (const cairo_pattern_t *pattern)
|
|
{
|
|
cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t *) pattern;
|
|
|
|
return gradient->n_stops * (sizeof (double) + sizeof (cairo_color_t));
|
|
}
|
|
|
|
unsigned long
|
|
_cairo_pattern_size (const cairo_pattern_t *pattern)
|
|
{
|
|
if (pattern->status)
|
|
return 0;
|
|
|
|
/* XXX */
|
|
switch (pattern->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return sizeof (cairo_solid_pattern_t);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return sizeof (cairo_surface_pattern_t);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
return sizeof (cairo_linear_pattern_t) +
|
|
_cairo_gradient_pattern_color_stops_size (pattern);
|
|
break;
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return sizeof (cairo_radial_pattern_t) +
|
|
_cairo_gradient_pattern_color_stops_size (pattern);
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
static cairo_bool_t
|
|
_cairo_solid_pattern_equal (const cairo_pattern_t *A,
|
|
const cairo_pattern_t *B)
|
|
{
|
|
const cairo_solid_pattern_t *a = (cairo_solid_pattern_t *) A;
|
|
const cairo_solid_pattern_t *b = (cairo_solid_pattern_t *) B;
|
|
|
|
return _cairo_color_equal (&a->color, &b->color);
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_cairo_gradient_color_stops_equal (const cairo_gradient_pattern_t *a,
|
|
const cairo_gradient_pattern_t *b)
|
|
{
|
|
unsigned int n;
|
|
|
|
if (a->n_stops != b->n_stops)
|
|
return FALSE;
|
|
|
|
for (n = 0; n < a->n_stops; n++) {
|
|
if (a->stops[n].offset != b->stops[n].offset)
|
|
return FALSE;
|
|
if (! _cairo_color_stop_equal (&a->stops[n].color, &b->stops[n].color))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
cairo_bool_t
|
|
_cairo_linear_pattern_equal (const cairo_linear_pattern_t *a,
|
|
const cairo_linear_pattern_t *b)
|
|
{
|
|
if (a->p1.x != b->p1.x)
|
|
return FALSE;
|
|
|
|
if (a->p1.y != b->p1.y)
|
|
return FALSE;
|
|
|
|
if (a->p2.x != b->p2.x)
|
|
return FALSE;
|
|
|
|
if (a->p2.y != b->p2.y)
|
|
return FALSE;
|
|
|
|
return _cairo_gradient_color_stops_equal (&a->base, &b->base);
|
|
}
|
|
|
|
cairo_bool_t
|
|
_cairo_radial_pattern_equal (const cairo_radial_pattern_t *a,
|
|
const cairo_radial_pattern_t *b)
|
|
{
|
|
if (a->c1.x != b->c1.x)
|
|
return FALSE;
|
|
|
|
if (a->c1.y != b->c1.y)
|
|
return FALSE;
|
|
|
|
if (a->r1 != b->r1)
|
|
return FALSE;
|
|
|
|
if (a->c2.x != b->c2.x)
|
|
return FALSE;
|
|
|
|
if (a->c2.y != b->c2.y)
|
|
return FALSE;
|
|
|
|
if (a->r2 != b->r2)
|
|
return FALSE;
|
|
|
|
return _cairo_gradient_color_stops_equal (&a->base, &b->base);
|
|
}
|
|
|
|
static cairo_bool_t
|
|
_cairo_surface_pattern_equal (const cairo_pattern_t *A,
|
|
const cairo_pattern_t *B)
|
|
{
|
|
const cairo_surface_pattern_t *a = (cairo_surface_pattern_t *) A;
|
|
const cairo_surface_pattern_t *b = (cairo_surface_pattern_t *) B;
|
|
|
|
return a->surface->unique_id == b->surface->unique_id;
|
|
}
|
|
|
|
cairo_bool_t
|
|
_cairo_pattern_equal (const cairo_pattern_t *a, const cairo_pattern_t *b)
|
|
{
|
|
if (a->status || b->status)
|
|
return FALSE;
|
|
|
|
if (a == b)
|
|
return TRUE;
|
|
|
|
if (a->type != b->type)
|
|
return FALSE;
|
|
|
|
if (a->has_component_alpha != b->has_component_alpha)
|
|
return FALSE;
|
|
|
|
if (a->type != CAIRO_PATTERN_TYPE_SOLID) {
|
|
if (memcmp (&a->matrix, &b->matrix, sizeof (cairo_matrix_t)))
|
|
return FALSE;
|
|
|
|
if (a->filter != b->filter)
|
|
return FALSE;
|
|
|
|
if (a->extend != b->extend)
|
|
return FALSE;
|
|
}
|
|
|
|
switch (a->type) {
|
|
case CAIRO_PATTERN_TYPE_SOLID:
|
|
return _cairo_solid_pattern_equal (a, b);
|
|
case CAIRO_PATTERN_TYPE_LINEAR:
|
|
return _cairo_linear_pattern_equal ((cairo_linear_pattern_t *) a,
|
|
(cairo_linear_pattern_t *) b);
|
|
case CAIRO_PATTERN_TYPE_RADIAL:
|
|
return _cairo_radial_pattern_equal ((cairo_radial_pattern_t *) a,
|
|
(cairo_radial_pattern_t *) b);
|
|
case CAIRO_PATTERN_TYPE_SURFACE:
|
|
return _cairo_surface_pattern_equal (a, b);
|
|
default:
|
|
ASSERT_NOT_REACHED;
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_rgba
|
|
* @pattern: a #cairo_pattern_t
|
|
* @red: return value for red component of color, or %NULL
|
|
* @green: return value for green component of color, or %NULL
|
|
* @blue: return value for blue component of color, or %NULL
|
|
* @alpha: return value for alpha component of color, or %NULL
|
|
*
|
|
* Gets the solid color for a solid color pattern.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a solid
|
|
* color pattern.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_get_rgba (cairo_pattern_t *pattern,
|
|
double *red, double *green,
|
|
double *blue, double *alpha)
|
|
{
|
|
cairo_solid_pattern_t *solid = (cairo_solid_pattern_t*) pattern;
|
|
double r0, g0, b0, a0;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_SOLID)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
_cairo_color_get_rgba (&solid->color, &r0, &g0, &b0, &a0);
|
|
|
|
if (red)
|
|
*red = r0;
|
|
if (green)
|
|
*green = g0;
|
|
if (blue)
|
|
*blue = b0;
|
|
if (alpha)
|
|
*alpha = a0;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_surface
|
|
* @pattern: a #cairo_pattern_t
|
|
* @surface: return value for surface of pattern, or %NULL
|
|
*
|
|
* Gets the surface of a surface pattern. The reference returned in
|
|
* @surface is owned by the pattern; the caller should call
|
|
* cairo_surface_reference() if the surface is to be retained.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if the pattern is not a surface
|
|
* pattern.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_get_surface (cairo_pattern_t *pattern,
|
|
cairo_surface_t **surface)
|
|
{
|
|
cairo_surface_pattern_t *spat = (cairo_surface_pattern_t*) pattern;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_SURFACE)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
if (surface)
|
|
*surface = spat->surface;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_color_stop_rgba
|
|
* @pattern: a #cairo_pattern_t
|
|
* @index: index of the stop to return data for
|
|
* @offset: return value for the offset of the stop, or %NULL
|
|
* @red: return value for red component of color, or %NULL
|
|
* @green: return value for green component of color, or %NULL
|
|
* @blue: return value for blue component of color, or %NULL
|
|
* @alpha: return value for alpha component of color, or %NULL
|
|
*
|
|
* Gets the color and offset information at the given @index for a
|
|
* gradient pattern. Values of @index are 0 to 1 less than the number
|
|
* returned by cairo_pattern_get_color_stop_count().
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or %CAIRO_STATUS_INVALID_INDEX
|
|
* if @index is not valid for the given pattern. If the pattern is
|
|
* not a gradient pattern, %CAIRO_STATUS_PATTERN_TYPE_MISMATCH is
|
|
* returned.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_get_color_stop_rgba (cairo_pattern_t *pattern,
|
|
int index, double *offset,
|
|
double *red, double *green,
|
|
double *blue, double *alpha)
|
|
{
|
|
cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
|
|
pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
if (index < 0 || (unsigned int) index >= gradient->n_stops)
|
|
return _cairo_error (CAIRO_STATUS_INVALID_INDEX);
|
|
|
|
if (offset)
|
|
*offset = gradient->stops[index].offset;
|
|
if (red)
|
|
*red = gradient->stops[index].color.red;
|
|
if (green)
|
|
*green = gradient->stops[index].color.green;
|
|
if (blue)
|
|
*blue = gradient->stops[index].color.blue;
|
|
if (alpha)
|
|
*alpha = gradient->stops[index].color.alpha;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_color_stop_count
|
|
* @pattern: a #cairo_pattern_t
|
|
* @count: return value for the number of color stops, or %NULL
|
|
*
|
|
* Gets the number of color stops specified in the given gradient
|
|
* pattern.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a gradient
|
|
* pattern.
|
|
*
|
|
* Since: 1.4
|
|
*/
|
|
cairo_status_t
|
|
cairo_pattern_get_color_stop_count (cairo_pattern_t *pattern,
|
|
int *count)
|
|
{
|
|
cairo_gradient_pattern_t *gradient = (cairo_gradient_pattern_t*) pattern;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR &&
|
|
pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
if (count)
|
|
*count = gradient->n_stops;
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_linear_points
|
|
* @pattern: a #cairo_pattern_t
|
|
* @x0: return value for the x coordinate of the first point, or %NULL
|
|
* @y0: return value for the y coordinate of the first point, or %NULL
|
|
* @x1: return value for the x coordinate of the second point, or %NULL
|
|
* @y1: return value for the y coordinate of the second point, or %NULL
|
|
*
|
|
* Gets the gradient endpoints for a linear gradient.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a linear
|
|
* gradient pattern.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_get_linear_points (cairo_pattern_t *pattern,
|
|
double *x0, double *y0,
|
|
double *x1, double *y1)
|
|
{
|
|
cairo_linear_pattern_t *linear = (cairo_linear_pattern_t*) pattern;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_LINEAR)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
if (x0)
|
|
*x0 = _cairo_fixed_to_double (linear->p1.x);
|
|
if (y0)
|
|
*y0 = _cairo_fixed_to_double (linear->p1.y);
|
|
if (x1)
|
|
*x1 = _cairo_fixed_to_double (linear->p2.x);
|
|
if (y1)
|
|
*y1 = _cairo_fixed_to_double (linear->p2.y);
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cairo_pattern_get_radial_circles
|
|
* @pattern: a #cairo_pattern_t
|
|
* @x0: return value for the x coordinate of the center of the first circle, or %NULL
|
|
* @y0: return value for the y coordinate of the center of the first circle, or %NULL
|
|
* @r0: return value for the radius of the first circle, or %NULL
|
|
* @x1: return value for the x coordinate of the center of the second circle, or %NULL
|
|
* @y1: return value for the y coordinate of the center of the second circle, or %NULL
|
|
* @r1: return value for the radius of the second circle, or %NULL
|
|
*
|
|
* Gets the gradient endpoint circles for a radial gradient, each
|
|
* specified as a center coordinate and a radius.
|
|
*
|
|
* Return value: %CAIRO_STATUS_SUCCESS, or
|
|
* %CAIRO_STATUS_PATTERN_TYPE_MISMATCH if @pattern is not a radial
|
|
* gradient pattern.
|
|
*
|
|
* Since: 1.4
|
|
**/
|
|
cairo_status_t
|
|
cairo_pattern_get_radial_circles (cairo_pattern_t *pattern,
|
|
double *x0, double *y0, double *r0,
|
|
double *x1, double *y1, double *r1)
|
|
{
|
|
cairo_radial_pattern_t *radial = (cairo_radial_pattern_t*) pattern;
|
|
|
|
if (pattern->status)
|
|
return pattern->status;
|
|
|
|
if (pattern->type != CAIRO_PATTERN_TYPE_RADIAL)
|
|
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
|
|
|
|
if (x0)
|
|
*x0 = _cairo_fixed_to_double (radial->c1.x);
|
|
if (y0)
|
|
*y0 = _cairo_fixed_to_double (radial->c1.y);
|
|
if (r0)
|
|
*r0 = _cairo_fixed_to_double (radial->r1);
|
|
if (x1)
|
|
*x1 = _cairo_fixed_to_double (radial->c2.x);
|
|
if (y1)
|
|
*y1 = _cairo_fixed_to_double (radial->c2.y);
|
|
if (r1)
|
|
*r1 = _cairo_fixed_to_double (radial->r2);
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
void
|
|
_cairo_pattern_reset_static_data (void)
|
|
{
|
|
#if HAS_FREED_POOL
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_LENGTH (freed_pattern_pool); i++)
|
|
_freed_pool_reset (&freed_pattern_pool[i]);
|
|
#endif
|
|
|
|
_cairo_pattern_reset_solid_surface_cache ();
|
|
}
|