forked from KolibriOS/kolibrios
37b6abf576
git-svn-id: svn://kolibrios.org@1892 a494cfbc-eb01-0410-851d-a64ba20cac60
466 lines
12 KiB
C
466 lines
12 KiB
C
/* cairo - a vector graphics library with display and print output
|
|
*
|
|
* Copyright © 2002 University of Southern California
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it either under the terms of the GNU Lesser General Public
|
|
* License version 2.1 as published by the Free Software Foundation
|
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
|
* notice, a recipient may use your version of this file under either
|
|
* the MPL or the LGPL.
|
|
*
|
|
* You should have received a copy of the LGPL along with this library
|
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
|
* You should have received a copy of the MPL along with this library
|
|
* in the file COPYING-MPL-1.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License
|
|
* Version 1.1 (the "License"); you may not use this file except in
|
|
* compliance with the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
|
* the specific language governing rights and limitations.
|
|
*
|
|
* The Original Code is the cairo graphics library.
|
|
*
|
|
* The Initial Developer of the Original Code is University of Southern
|
|
* California.
|
|
*
|
|
* Contributor(s):
|
|
* Carl D. Worth <cworth@cworth.org>
|
|
*/
|
|
|
|
#include "cairoint.h"
|
|
#include "cairo-boxes-private.h"
|
|
#include "cairo-error-private.h"
|
|
#include "cairo-path-fixed-private.h"
|
|
#include "cairo-region-private.h"
|
|
|
|
typedef struct cairo_filler {
|
|
double tolerance;
|
|
cairo_polygon_t *polygon;
|
|
} cairo_filler_t;
|
|
|
|
static void
|
|
_cairo_filler_init (cairo_filler_t *filler,
|
|
double tolerance,
|
|
cairo_polygon_t *polygon)
|
|
{
|
|
filler->tolerance = tolerance;
|
|
filler->polygon = polygon;
|
|
}
|
|
|
|
static void
|
|
_cairo_filler_fini (cairo_filler_t *filler)
|
|
{
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_filler_move_to (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_filler_t *filler = closure;
|
|
cairo_polygon_t *polygon = filler->polygon;
|
|
|
|
return _cairo_polygon_close (polygon) ||
|
|
_cairo_polygon_move_to (polygon, point);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_filler_line_to (void *closure,
|
|
const cairo_point_t *point)
|
|
{
|
|
cairo_filler_t *filler = closure;
|
|
return _cairo_polygon_line_to (filler->polygon, point);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_filler_curve_to (void *closure,
|
|
const cairo_point_t *b,
|
|
const cairo_point_t *c,
|
|
const cairo_point_t *d)
|
|
{
|
|
cairo_filler_t *filler = closure;
|
|
cairo_spline_t spline;
|
|
|
|
if (! _cairo_spline_init (&spline,
|
|
_cairo_filler_line_to, filler,
|
|
&filler->polygon->current_point, b, c, d))
|
|
{
|
|
return _cairo_filler_line_to (closure, d);
|
|
}
|
|
|
|
return _cairo_spline_decompose (&spline, filler->tolerance);
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_filler_close_path (void *closure)
|
|
{
|
|
cairo_filler_t *filler = closure;
|
|
return _cairo_polygon_close (filler->polygon);
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_fill_to_polygon (const cairo_path_fixed_t *path,
|
|
double tolerance,
|
|
cairo_polygon_t *polygon)
|
|
{
|
|
cairo_filler_t filler;
|
|
cairo_status_t status;
|
|
|
|
_cairo_filler_init (&filler, tolerance, polygon);
|
|
|
|
status = _cairo_path_fixed_interpret (path,
|
|
CAIRO_DIRECTION_FORWARD,
|
|
_cairo_filler_move_to,
|
|
_cairo_filler_line_to,
|
|
_cairo_filler_curve_to,
|
|
_cairo_filler_close_path,
|
|
&filler);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
status = _cairo_polygon_close (polygon);
|
|
_cairo_filler_fini (&filler);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_fill_to_traps (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
double tolerance,
|
|
cairo_traps_t *traps)
|
|
{
|
|
cairo_polygon_t polygon;
|
|
cairo_status_t status;
|
|
|
|
if (path->is_empty_fill)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
_cairo_polygon_init (&polygon);
|
|
if (traps->num_limits)
|
|
_cairo_polygon_limit (&polygon, traps->limits, traps->num_limits);
|
|
|
|
status = _cairo_path_fixed_fill_to_polygon (path,
|
|
tolerance,
|
|
&polygon);
|
|
if (unlikely (status || polygon.num_edges == 0))
|
|
goto CLEANUP;
|
|
|
|
if (path->is_rectilinear) {
|
|
status = _cairo_bentley_ottmann_tessellate_rectilinear_polygon (traps,
|
|
&polygon,
|
|
fill_rule);
|
|
} else {
|
|
status = _cairo_bentley_ottmann_tessellate_polygon (traps,
|
|
&polygon,
|
|
fill_rule);
|
|
}
|
|
|
|
CLEANUP:
|
|
_cairo_polygon_fini (&polygon);
|
|
return status;
|
|
}
|
|
|
|
static cairo_region_t *
|
|
_cairo_path_fixed_fill_rectilinear_tessellate_to_region (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
const cairo_rectangle_int_t *extents)
|
|
{
|
|
cairo_box_t box;
|
|
cairo_polygon_t polygon;
|
|
cairo_traps_t traps;
|
|
cairo_status_t status;
|
|
cairo_region_t *region;
|
|
|
|
/* first try to bypass fill-to-polygon */
|
|
_cairo_traps_init (&traps);
|
|
status = _cairo_path_fixed_fill_rectilinear_to_traps (path,
|
|
fill_rule,
|
|
&traps);
|
|
if (_cairo_status_is_error (status))
|
|
goto CLEANUP_TRAPS;
|
|
|
|
if (status == CAIRO_STATUS_SUCCESS) {
|
|
status = _cairo_traps_extract_region (&traps, ®ion);
|
|
goto CLEANUP_TRAPS;
|
|
}
|
|
|
|
/* path is not rectangular, try extracting clipped rectilinear edges */
|
|
_cairo_polygon_init (&polygon);
|
|
if (extents != NULL) {
|
|
_cairo_box_from_rectangle (&box, extents);
|
|
_cairo_polygon_limit (&polygon, &box, 1);
|
|
}
|
|
|
|
/* tolerance will be ignored as the path is rectilinear */
|
|
status = _cairo_path_fixed_fill_to_polygon (path, 0., &polygon);
|
|
if (unlikely (status))
|
|
goto CLEANUP_POLYGON;
|
|
|
|
if (polygon.num_edges == 0) {
|
|
region = cairo_region_create ();
|
|
} else {
|
|
status =
|
|
_cairo_bentley_ottmann_tessellate_rectilinear_polygon (&traps,
|
|
&polygon,
|
|
fill_rule);
|
|
if (likely (status == CAIRO_STATUS_SUCCESS))
|
|
status = _cairo_traps_extract_region (&traps, ®ion);
|
|
}
|
|
|
|
CLEANUP_POLYGON:
|
|
_cairo_polygon_fini (&polygon);
|
|
|
|
CLEANUP_TRAPS:
|
|
_cairo_traps_fini (&traps);
|
|
|
|
if (unlikely (status))
|
|
region = _cairo_region_create_in_error (status);
|
|
|
|
return region;
|
|
}
|
|
|
|
/* This special-case filler supports only a path that describes a
|
|
* device-axis aligned rectangle. It exists to avoid the overhead of
|
|
* the general tessellator when drawing very common rectangles.
|
|
*
|
|
* If the path described anything but a device-axis aligned rectangle,
|
|
* this function will abort.
|
|
*/
|
|
cairo_region_t *
|
|
_cairo_path_fixed_fill_rectilinear_to_region (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
const cairo_rectangle_int_t *extents)
|
|
{
|
|
cairo_rectangle_int_t rectangle_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_rectangle_int_t)];
|
|
cairo_box_t box;
|
|
cairo_region_t *region = NULL;
|
|
|
|
assert (path->maybe_fill_region);
|
|
assert (! path->is_empty_fill);
|
|
|
|
if (_cairo_path_fixed_is_box (path, &box)) {
|
|
rectangle_stack[0].x = _cairo_fixed_integer_part (box.p1.x);
|
|
rectangle_stack[0].y = _cairo_fixed_integer_part (box.p1.y);
|
|
rectangle_stack[0].width = _cairo_fixed_integer_part (box.p2.x) -
|
|
rectangle_stack[0].x;
|
|
rectangle_stack[0].height = _cairo_fixed_integer_part (box.p2.y) -
|
|
rectangle_stack[0].y;
|
|
if (! _cairo_rectangle_intersect (&rectangle_stack[0], extents))
|
|
region = cairo_region_create ();
|
|
else
|
|
region = cairo_region_create_rectangle (&rectangle_stack[0]);
|
|
} else if (fill_rule == CAIRO_FILL_RULE_WINDING) {
|
|
cairo_rectangle_int_t *rects = rectangle_stack;
|
|
cairo_path_fixed_iter_t iter;
|
|
int last_cw = -1;
|
|
int size = ARRAY_LENGTH (rectangle_stack);
|
|
int count = 0;
|
|
|
|
/* Support a series of rectangles as can be expected to describe a
|
|
* GdkRegion clip region during exposes.
|
|
*/
|
|
_cairo_path_fixed_iter_init (&iter, path);
|
|
while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) {
|
|
int cw = 0;
|
|
|
|
if (box.p1.x > box.p2.x) {
|
|
cairo_fixed_t t;
|
|
|
|
t = box.p1.x;
|
|
box.p1.x = box.p2.x;
|
|
box.p2.x = t;
|
|
|
|
cw = ! cw;
|
|
}
|
|
|
|
if (box.p1.y > box.p2.y) {
|
|
cairo_fixed_t t;
|
|
|
|
t = box.p1.y;
|
|
box.p1.y = box.p2.y;
|
|
box.p2.y = t;
|
|
|
|
cw = ! cw;
|
|
}
|
|
|
|
if (last_cw < 0)
|
|
last_cw = cw;
|
|
else if (last_cw != cw)
|
|
goto TESSELLATE;
|
|
|
|
if (count == size) {
|
|
cairo_rectangle_int_t *new_rects;
|
|
|
|
size *= 4;
|
|
if (rects == rectangle_stack) {
|
|
new_rects = _cairo_malloc_ab (size,
|
|
sizeof (cairo_rectangle_int_t));
|
|
if (unlikely (new_rects == NULL)) {
|
|
/* XXX _cairo_region_nil */
|
|
break;
|
|
}
|
|
memcpy (new_rects, rects, sizeof (rectangle_stack));
|
|
} else {
|
|
new_rects = _cairo_realloc_ab (rects, size,
|
|
sizeof (cairo_rectangle_int_t));
|
|
if (unlikely (new_rects == NULL)) {
|
|
/* XXX _cairo_region_nil */
|
|
break;
|
|
}
|
|
}
|
|
rects = new_rects;
|
|
}
|
|
|
|
rects[count].x = _cairo_fixed_integer_part (box.p1.x);
|
|
rects[count].y = _cairo_fixed_integer_part (box.p1.y);
|
|
rects[count].width = _cairo_fixed_integer_part (box.p2.x) - rects[count].x;
|
|
rects[count].height = _cairo_fixed_integer_part (box.p2.y) - rects[count].y;
|
|
if (_cairo_rectangle_intersect (&rects[count], extents))
|
|
count++;
|
|
}
|
|
|
|
if (_cairo_path_fixed_iter_at_end (&iter))
|
|
region = cairo_region_create_rectangles (rects, count);
|
|
|
|
TESSELLATE:
|
|
if (rects != rectangle_stack)
|
|
free (rects);
|
|
}
|
|
|
|
if (region == NULL) {
|
|
/* Hmm, complex polygon */
|
|
region = _cairo_path_fixed_fill_rectilinear_tessellate_to_region (path,
|
|
fill_rule,
|
|
extents);
|
|
|
|
|
|
}
|
|
|
|
return region;
|
|
}
|
|
|
|
cairo_int_status_t
|
|
_cairo_path_fixed_fill_rectilinear_to_traps (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_traps_t *traps)
|
|
{
|
|
cairo_box_t box;
|
|
cairo_status_t status;
|
|
|
|
traps->is_rectilinear = TRUE;
|
|
traps->is_rectangular = TRUE;
|
|
|
|
if (_cairo_path_fixed_is_box (path, &box)) {
|
|
return _cairo_traps_tessellate_rectangle (traps, &box.p1, &box.p2);
|
|
} else {
|
|
cairo_path_fixed_iter_t iter;
|
|
|
|
_cairo_path_fixed_iter_init (&iter, path);
|
|
while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) {
|
|
if (box.p1.y > box.p2.y) {
|
|
cairo_fixed_t t;
|
|
|
|
t = box.p1.y;
|
|
box.p1.y = box.p2.y;
|
|
box.p2.y = t;
|
|
|
|
t = box.p1.x;
|
|
box.p1.x = box.p2.x;
|
|
box.p2.x = t;
|
|
}
|
|
|
|
status = _cairo_traps_tessellate_rectangle (traps,
|
|
&box.p1, &box.p2);
|
|
if (unlikely (status)) {
|
|
_cairo_traps_clear (traps);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
if (_cairo_path_fixed_iter_at_end (&iter))
|
|
return _cairo_bentley_ottmann_tessellate_rectangular_traps (traps, fill_rule);
|
|
|
|
_cairo_traps_clear (traps);
|
|
return CAIRO_INT_STATUS_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_path_fixed_fill_rectilinear_tessellate_to_boxes (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_boxes_t *boxes)
|
|
{
|
|
cairo_polygon_t polygon;
|
|
cairo_status_t status;
|
|
|
|
_cairo_polygon_init (&polygon);
|
|
if (boxes->num_limits) {
|
|
_cairo_polygon_limit (&polygon, boxes->limits, boxes->num_limits);
|
|
boxes->num_limits = 0;
|
|
}
|
|
|
|
/* tolerance will be ignored as the path is rectilinear */
|
|
status = _cairo_path_fixed_fill_to_polygon (path, 0., &polygon);
|
|
if (likely (status == CAIRO_STATUS_SUCCESS)) {
|
|
status =
|
|
_cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (&polygon,
|
|
fill_rule,
|
|
boxes);
|
|
}
|
|
|
|
_cairo_polygon_fini (&polygon);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_path_fixed_fill_rectilinear_to_boxes (const cairo_path_fixed_t *path,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_boxes_t *boxes)
|
|
{
|
|
cairo_path_fixed_iter_t iter;
|
|
cairo_status_t status;
|
|
cairo_box_t box;
|
|
|
|
if (_cairo_path_fixed_is_box (path, &box))
|
|
return _cairo_boxes_add (boxes, &box);
|
|
|
|
_cairo_path_fixed_iter_init (&iter, path);
|
|
while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) {
|
|
if (box.p1.y == box.p2.y || box.p1.x == box.p2.x)
|
|
continue;
|
|
|
|
if (box.p1.y > box.p2.y) {
|
|
cairo_fixed_t t;
|
|
|
|
t = box.p1.y;
|
|
box.p1.y = box.p2.y;
|
|
box.p2.y = t;
|
|
|
|
t = box.p1.x;
|
|
box.p1.x = box.p2.x;
|
|
box.p2.x = t;
|
|
}
|
|
|
|
status = _cairo_boxes_add (boxes, &box);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if (_cairo_path_fixed_iter_at_end (&iter))
|
|
return _cairo_bentley_ottmann_tessellate_boxes (boxes, fill_rule, boxes);
|
|
|
|
/* path is not rectangular, try extracting clipped rectilinear edges */
|
|
_cairo_boxes_clear (boxes);
|
|
return _cairo_path_fixed_fill_rectilinear_tessellate_to_boxes (path,
|
|
fill_rule,
|
|
boxes);
|
|
}
|