andrew_programmer 16f5992719 Mistakes in functions of work with files and with system calls KolibriOS are corrected.
New functions for work with system calls KolibriOS are added. Functions for format output 
are added: printf (), fprintf (), sprintf (), snprintf (), vsnprintf (). For material 
numbers it is meanwhile supported only format output the (%f), and exponential output a (%e)
is not realized yet. 
Functions for format output correctly work only in GCC because TinyC incorrectly works with
the functions containing variable number of arguments.

git-svn-id: svn://kolibrios.org@647 a494cfbc-eb01-0410-851d-a64ba20cac60
2007-10-15 09:42:17 +00:00

1018 lines
28 KiB
C

/*
* X86 code generator for TCC
*
* Copyright (c) 2001-2004 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* number of available registers */
#define NB_REGS 4
/* a register can belong to several classes. The classes must be
sorted from more general to more precise (see gv2() code which does
assumptions on it). */
#define RC_INT 0x0001 /* generic integer register */
#define RC_FLOAT 0x0002 /* generic float register */
#define RC_EAX 0x0004
#define RC_ST0 0x0008
#define RC_ECX 0x0010
#define RC_EDX 0x0020
#define RC_IRET RC_EAX /* function return: integer register */
#define RC_LRET RC_EDX /* function return: second integer register */
#define RC_FRET RC_ST0 /* function return: float register */
/* pretty names for the registers */
enum {
TREG_EAX = 0,
TREG_ECX,
TREG_EDX,
TREG_ST0,
};
int reg_classes[NB_REGS] = {
/* eax */ RC_INT | RC_EAX,
/* ecx */ RC_INT | RC_ECX,
/* edx */ RC_INT | RC_EDX,
/* st0 */ RC_FLOAT | RC_ST0,
};
/* return registers for function */
#define REG_IRET TREG_EAX /* single word int return register */
#define REG_LRET TREG_EDX /* second word return register (for long long) */
#define REG_FRET TREG_ST0 /* float return register */
/* defined if function parameters must be evaluated in reverse order */
#define INVERT_FUNC_PARAMS
/* defined if structures are passed as pointers. Otherwise structures
are directly pushed on stack. */
//#define FUNC_STRUCT_PARAM_AS_PTR
/* pointer size, in bytes */
#define PTR_SIZE 4
/* long double size and alignment, in bytes */
#define LDOUBLE_SIZE 12
#define LDOUBLE_ALIGN 4
/* maximum alignment (for aligned attribute support) */
#define MAX_ALIGN 8
/******************************************************/
/* ELF defines */
#define EM_TCC_TARGET EM_386
/* relocation type for 32 bit data relocation */
#define R_DATA_32 R_386_32
#define R_JMP_SLOT R_386_JMP_SLOT
#define R_COPY R_386_COPY
#define ELF_START_ADDR 0x08048000
#define ELF_PAGE_SIZE 0x1000
/******************************************************/
static unsigned long func_sub_sp_offset;
static unsigned long func_bound_offset;
static int func_ret_sub;
/* XXX: make it faster ? */
void g(int c)
{
int ind1;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
void o(unsigned int c)
{
while (c) {
g(c);
c = c >> 8;
}
}
void gen_le32(int c)
{
g(c);
g(c >> 8);
g(c >> 16);
g(c >> 24);
}
/* output a symbol and patch all calls to it */
void gsym_addr(int t, int a)
{
int n, *ptr;
while (t) {
ptr = (int *)(cur_text_section->data + t);
n = *ptr; /* next value */
*ptr = a - t - 4;
t = n;
}
}
void gsym(int t)
{
gsym_addr(t, ind);
}
/* psym is used to put an instruction with a data field which is a
reference to a symbol. It is in fact the same as oad ! */
#define psym oad
/* instruction + 4 bytes data. Return the address of the data */
static int oad(int c, int s)
{
int ind1;
o(c);
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
*(int *)(cur_text_section->data + ind) = s;
s = ind;
ind = ind1;
return s;
}
/* output constant with relocation if 'r & VT_SYM' is true */
static void gen_addr32(int r, Sym *sym, int c)
{
if (r & VT_SYM)
greloc(cur_text_section, sym, ind, R_386_32);
gen_le32(c);
}
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
opcode bits */
static void gen_modrm(int op_reg, int r, Sym *sym, int c)
{
op_reg = op_reg << 3;
if ((r & VT_VALMASK) == VT_CONST) {
/* constant memory reference */
o(0x05 | op_reg);
gen_addr32(r, sym, c);
} else if ((r & VT_VALMASK) == VT_LOCAL) {
/* currently, we use only ebp as base */
if (c == (char)c) {
/* short reference */
o(0x45 | op_reg);
g(c);
} else {
oad(0x85 | op_reg, c);
}
} else {
g(0x00 | op_reg | (r & VT_VALMASK));
}
}
/* load 'r' from value 'sv' */
void load(int r, SValue *sv)
{
int v, t, ft, fc, fr;
SValue v1;
fr = sv->r;
ft = sv->type.t;
fc = sv->c.ul;
v = fr & VT_VALMASK;
if (fr & VT_LVAL) {
if (v == VT_LLOCAL) {
v1.type.t = VT_INT;
v1.r = VT_LOCAL | VT_LVAL;
v1.c.ul = fc;
load(r, &v1);
fr = r;
}
if ((ft & VT_BTYPE) == VT_FLOAT) {
o(0xd9); /* flds */
r = 0;
} else if ((ft & VT_BTYPE) == VT_DOUBLE) {
o(0xdd); /* fldl */
r = 0;
} else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
o(0xdb); /* fldt */
r = 5;
} else if ((ft & VT_TYPE) == VT_BYTE) {
o(0xbe0f); /* movsbl */
} else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
o(0xb60f); /* movzbl */
} else if ((ft & VT_TYPE) == VT_SHORT) {
o(0xbf0f); /* movswl */
} else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
o(0xb70f); /* movzwl */
} else {
o(0x8b); /* movl */
}
gen_modrm(r, fr, sv->sym, fc);
} else {
if (v == VT_CONST) {
o(0xb8 + r); /* mov $xx, r */
gen_addr32(fr, sv->sym, fc);
} else if (v == VT_LOCAL) {
o(0x8d); /* lea xxx(%ebp), r */
gen_modrm(r, VT_LOCAL, sv->sym, fc);
} else if (v == VT_CMP) {
oad(0xb8 + r, 0); /* mov $0, r */
o(0x0f); /* setxx %br */
o(fc);
o(0xc0 + r);
} else if (v == VT_JMP || v == VT_JMPI) {
t = v & 1;
oad(0xb8 + r, t); /* mov $1, r */
o(0x05eb); /* jmp after */
gsym(fc);
oad(0xb8 + r, t ^ 1); /* mov $0, r */
} else if (v != r) {
o(0x89);
o(0xc0 + r + v * 8); /* mov v, r */
}
}
}
/* store register 'r' in lvalue 'v' */
void store(int r, SValue *v)
{
int fr, bt, ft, fc;
ft = v->type.t;
fc = v->c.ul;
fr = v->r & VT_VALMASK;
bt = ft & VT_BTYPE;
/* XXX: incorrect if float reg to reg */
if (bt == VT_FLOAT) {
o(0xd9); /* fsts */
r = 2;
} else if (bt == VT_DOUBLE) {
o(0xdd); /* fstpl */
r = 2;
} else if (bt == VT_LDOUBLE) {
o(0xc0d9); /* fld %st(0) */
o(0xdb); /* fstpt */
r = 7;
} else {
if (bt == VT_SHORT)
o(0x66);
if (bt == VT_BYTE || bt == VT_BOOL)
o(0x88);
else
o(0x89);
}
if (fr == VT_CONST ||
fr == VT_LOCAL ||
(v->r & VT_LVAL)) {
gen_modrm(r, v->r, v->sym, fc);
} else if (fr != r) {
o(0xc0 + fr + r * 8); /* mov r, fr */
}
}
static void gadd_sp(int val)
{
if (val == (char)val) {
o(0xc483);
g(val);
} else {
oad(0xc481, val); /* add $xxx, %esp */
}
}
/* 'is_jmp' is '1' if it is a jump */
static void gcall_or_jmp(int is_jmp)
{
int r;
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
/* constant case */
if (vtop->r & VT_SYM) {
/* relocation case */
greloc(cur_text_section, vtop->sym,
ind + 1, R_386_PC32);
} else {
/* put an empty PC32 relocation */
put_elf_reloc(symtab_section, cur_text_section,
ind + 1, R_386_PC32, 0);
}
oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
} else {
/* otherwise, indirect call */
r = gv(RC_INT);
o(0xff); /* call/jmp *r */
o(0xd0 + r + (is_jmp << 4));
}
}
static uint8_t fastcall_regs[3] = { TREG_EAX, TREG_EDX, TREG_ECX };
/* Generate function call. The function address is pushed first, then
all the parameters in call order. This functions pops all the
parameters and the function address. */
void gfunc_call(int nb_args)
{
int size, align, r, args_size, i, func_call;
Sym *func_sym;
args_size = 0;
for(i = 0;i < nb_args; i++) {
if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
size = type_size(&vtop->type, &align);
/* align to stack align size */
size = (size + 3) & ~3;
/* allocate the necessary size on stack */
oad(0xec81, size); /* sub $xxx, %esp */
/* generate structure store */
r = get_reg(RC_INT);
o(0x89); /* mov %esp, r */
o(0xe0 + r);
vset(&vtop->type, r | VT_LVAL, 0);
vswap();
vstore();
args_size += size;
} else if (is_float(vtop->type.t)) {
gv(RC_FLOAT); /* only one float register */
if ((vtop->type.t & VT_BTYPE) == VT_FLOAT)
size = 4;
else if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
size = 8;
else
size = 12;
oad(0xec81, size); /* sub $xxx, %esp */
if (size == 12)
o(0x7cdb);
else
o(0x5cd9 + size - 4); /* fstp[s|l] 0(%esp) */
g(0x24);
g(0x00);
args_size += size;
} else {
/* simple type (currently always same size) */
/* XXX: implicit cast ? */
r = gv(RC_INT);
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
size = 8;
o(0x50 + vtop->r2); /* push r */
} else {
size = 4;
}
o(0x50 + r); /* push r */
args_size += size;
}
vtop--;
}
save_regs(0); /* save used temporary registers */
func_sym = vtop->type.ref;
func_call = func_sym->r;
/* fast call case */
if (func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) {
int fastcall_nb_regs;
fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
for(i = 0;i < fastcall_nb_regs; i++) {
if (args_size <= 0)
break;
o(0x58 + fastcall_regs[i]); /* pop r */
/* XXX: incorrect for struct/floats */
args_size -= 4;
}
}
gcall_or_jmp(0);
if (args_size && func_sym->r != FUNC_STDCALL)
gadd_sp(args_size);
vtop--;
}
#ifdef TCC_TARGET_PE
#define FUNC_PROLOG_SIZE 10
#else
#define FUNC_PROLOG_SIZE 9
#endif
/* generate function prolog of type 't' */
void gfunc_prolog(CType *func_type)
{
int addr, align, size, func_call, fastcall_nb_regs;
int param_index, param_addr;
Sym *sym;
CType *type;
sym = func_type->ref;
func_call = sym->r;
addr = 8;
loc = 0;
if (func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) {
fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
} else {
fastcall_nb_regs = 0;
}
param_index = 0;
ind += FUNC_PROLOG_SIZE;
func_sub_sp_offset = ind;
/* if the function returns a structure, then add an
implicit pointer parameter */
func_vt = sym->type;
if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
/* XXX: fastcall case ? */
func_vc = addr;
addr += 4;
param_index++;
}
/* define parameters */
while ((sym = sym->next) != NULL) {
type = &sym->type;
size = type_size(type, &align);
size = (size + 3) & ~3;
#ifdef FUNC_STRUCT_PARAM_AS_PTR
/* structs are passed as pointer */
if ((type->t & VT_BTYPE) == VT_STRUCT) {
size = 4;
}
#endif
if (param_index < fastcall_nb_regs) {
/* save FASTCALL register */
loc -= 4;
o(0x89); /* movl */
gen_modrm(fastcall_regs[param_index], VT_LOCAL, NULL, loc);
param_addr = loc;
} else {
param_addr = addr;
addr += size;
}
sym_push(sym->v & ~SYM_FIELD, type,
VT_LOCAL | VT_LVAL, param_addr);
param_index++;
}
func_ret_sub = 0;
/* pascal type call ? */
if (func_call == FUNC_STDCALL)
func_ret_sub = addr - 8;
/* leave some room for bound checking code */
if (do_bounds_check) {
oad(0xb8, 0); /* lbound section pointer */
oad(0xb8, 0); /* call to function */
func_bound_offset = lbounds_section->data_offset;
}
}
/* generate function epilog */
void gfunc_epilog(void)
{
int v, saved_ind;
#ifdef CONFIG_TCC_BCHECK
if (do_bounds_check && func_bound_offset != lbounds_section->data_offset) {
int saved_ind;
int *bounds_ptr;
Sym *sym, *sym_data;
/* add end of table info */
bounds_ptr = section_ptr_add(lbounds_section, sizeof(int));
*bounds_ptr = 0;
/* generate bound local allocation */
saved_ind = ind;
ind = func_sub_sp_offset;
sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
func_bound_offset, lbounds_section->data_offset);
greloc(cur_text_section, sym_data,
ind + 1, R_386_32);
oad(0xb8, 0); /* mov %eax, xxx */
sym = external_global_sym(TOK___bound_local_new, &func_old_type, 0);
greloc(cur_text_section, sym,
ind + 1, R_386_PC32);
oad(0xe8, -4);
ind = saved_ind;
/* generate bound check local freeing */
o(0x5250); /* save returned value, if any */
greloc(cur_text_section, sym_data,
ind + 1, R_386_32);
oad(0xb8, 0); /* mov %eax, xxx */
sym = external_global_sym(TOK___bound_local_delete, &func_old_type, 0);
greloc(cur_text_section, sym,
ind + 1, R_386_PC32);
oad(0xe8, -4);
o(0x585a); /* restore returned value, if any */
}
#endif
o(0xc9); /* leave */
if (func_ret_sub == 0) {
o(0xc3); /* ret */
} else {
o(0xc2); /* ret n */
g(func_ret_sub);
g(func_ret_sub >> 8);
}
/* align local size to word & save local variables */
v = (-loc + 3) & -4;
saved_ind = ind;
ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
#ifdef TCC_TARGET_PE
if (v >= 4096) {
Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
oad(0xb8, v); /* mov stacksize, %eax */
oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
greloc(cur_text_section, sym, ind-4, R_386_PC32);
} else
#endif
{
o(0xe58955); /* push %ebp, mov %esp, %ebp */
o(0xec81); /* sub esp, stacksize */
gen_le32(v);
#if FUNC_PROLOG_SIZE == 10
o(0x90); /* adjust to FUNC_PROLOG_SIZE */
#endif
}
ind = saved_ind;
}
/* generate a jump to a label */
int gjmp(int t)
{
return psym(0xe9, t);
}
/* generate a jump to a fixed address */
void gjmp_addr(int a)
{
int r;
r = a - ind - 2;
if (r == (char)r) {
g(0xeb);
g(r);
} else {
oad(0xe9, a - ind - 5);
}
}
/* generate a test. set 'inv' to invert test. Stack entry is popped */
int gtst(int inv, int t)
{
int v, *p;
v = vtop->r & VT_VALMASK;
if (v == VT_CMP) {
/* fast case : can jump directly since flags are set */
g(0x0f);
t = psym((vtop->c.i - 16) ^ inv, t);
} else if (v == VT_JMP || v == VT_JMPI) {
/* && or || optimization */
if ((v & 1) == inv) {
/* insert vtop->c jump list in t */
p = &vtop->c.i;
while (*p != 0)
p = (int *)(cur_text_section->data + *p);
*p = t;
t = vtop->c.i;
} else {
t = gjmp(t);
gsym(vtop->c.i);
}
} else {
if (is_float(vtop->type.t)) {
vpushi(0);
gen_op(TOK_NE);
}
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant jmp optimization */
if ((vtop->c.i != 0) != inv)
t = gjmp(t);
} else {
v = gv(RC_INT);
o(0x85);
o(0xc0 + v * 9);
g(0x0f);
t = psym(0x85 ^ inv, t);
}
}
vtop--;
return t;
}
/* generate an integer binary operation */
void gen_opi(int op)
{
int r, fr, opc, c;
switch(op) {
case '+':
case TOK_ADDC1: /* add with carry generation */
opc = 0;
gen_op8:
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant case */
vswap();
r = gv(RC_INT);
vswap();
c = vtop->c.i;
if (c == (char)c) {
/* XXX: generate inc and dec for smaller code ? */
o(0x83);
o(0xc0 | (opc << 3) | r);
g(c);
} else {
o(0x81);
oad(0xc0 | (opc << 3) | r, c);
}
} else {
gv2(RC_INT, RC_INT);
r = vtop[-1].r;
fr = vtop[0].r;
o((opc << 3) | 0x01);
o(0xc0 + r + fr * 8);
}
vtop--;
if (op >= TOK_ULT && op <= TOK_GT) {
vtop->r = VT_CMP;
vtop->c.i = op;
}
break;
case '-':
case TOK_SUBC1: /* sub with carry generation */
opc = 5;
goto gen_op8;
case TOK_ADDC2: /* add with carry use */
opc = 2;
goto gen_op8;
case TOK_SUBC2: /* sub with carry use */
opc = 3;
goto gen_op8;
case '&':
opc = 4;
goto gen_op8;
case '^':
opc = 6;
goto gen_op8;
case '|':
opc = 1;
goto gen_op8;
case '*':
gv2(RC_INT, RC_INT);
r = vtop[-1].r;
fr = vtop[0].r;
vtop--;
o(0xaf0f); /* imul fr, r */
o(0xc0 + fr + r * 8);
break;
case TOK_SHL:
opc = 4;
goto gen_shift;
case TOK_SHR:
opc = 5;
goto gen_shift;
case TOK_SAR:
opc = 7;
gen_shift:
opc = 0xc0 | (opc << 3);
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant case */
vswap();
r = gv(RC_INT);
vswap();
c = vtop->c.i & 0x1f;
o(0xc1); /* shl/shr/sar $xxx, r */
o(opc | r);
g(c);
} else {
/* we generate the shift in ecx */
gv2(RC_INT, RC_ECX);
r = vtop[-1].r;
o(0xd3); /* shl/shr/sar %cl, r */
o(opc | r);
}
vtop--;
break;
case '/':
case TOK_UDIV:
case TOK_PDIV:
case '%':
case TOK_UMOD:
case TOK_UMULL:
/* first operand must be in eax */
/* XXX: need better constraint for second operand */
gv2(RC_EAX, RC_ECX);
r = vtop[-1].r;
fr = vtop[0].r;
vtop--;
save_reg(TREG_EDX);
if (op == TOK_UMULL) {
o(0xf7); /* mul fr */
o(0xe0 + fr);
vtop->r2 = TREG_EDX;
r = TREG_EAX;
} else {
if (op == TOK_UDIV || op == TOK_UMOD) {
o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
o(0xf0 + fr);
} else {
o(0xf799); /* cltd, idiv fr, %eax */
o(0xf8 + fr);
}
if (op == '%' || op == TOK_UMOD)
r = TREG_EDX;
else
r = TREG_EAX;
}
vtop->r = r;
break;
default:
opc = 7;
goto gen_op8;
}
}
/* generate a floating point operation 'v = t1 op t2' instruction. The
two operands are guaranted to have the same floating point type */
/* XXX: need to use ST1 too */
void gen_opf(int op)
{
int a, ft, fc, swapped, r;
/* convert constants to memory references */
if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
vswap();
gv(RC_FLOAT);
vswap();
}
if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
gv(RC_FLOAT);
/* must put at least one value in the floating point register */
if ((vtop[-1].r & VT_LVAL) &&
(vtop[0].r & VT_LVAL)) {
vswap();
gv(RC_FLOAT);
vswap();
}
swapped = 0;
/* swap the stack if needed so that t1 is the register and t2 is
the memory reference */
if (vtop[-1].r & VT_LVAL) {
vswap();
swapped = 1;
}
if (op >= TOK_ULT && op <= TOK_GT) {
/* load on stack second operand */
load(TREG_ST0, vtop);
save_reg(TREG_EAX); /* eax is used by FP comparison code */
if (op == TOK_GE || op == TOK_GT)
swapped = !swapped;
else if (op == TOK_EQ || op == TOK_NE)
swapped = 0;
if (swapped)
o(0xc9d9); /* fxch %st(1) */
o(0xe9da); /* fucompp */
o(0xe0df); /* fnstsw %ax */
if (op == TOK_EQ) {
o(0x45e480); /* and $0x45, %ah */
o(0x40fC80); /* cmp $0x40, %ah */
} else if (op == TOK_NE) {
o(0x45e480); /* and $0x45, %ah */
o(0x40f480); /* xor $0x40, %ah */
op = TOK_NE;
} else if (op == TOK_GE || op == TOK_LE) {
o(0x05c4f6); /* test $0x05, %ah */
op = TOK_EQ;
} else {
o(0x45c4f6); /* test $0x45, %ah */
op = TOK_EQ;
}
vtop--;
vtop->r = VT_CMP;
vtop->c.i = op;
} else {
/* no memory reference possible for long double operations */
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
load(TREG_ST0, vtop);
swapped = !swapped;
}
switch(op) {
default:
case '+':
a = 0;
break;
case '-':
a = 4;
if (swapped)
a++;
break;
case '*':
a = 1;
break;
case '/':
a = 6;
if (swapped)
a++;
break;
}
ft = vtop->type.t;
fc = vtop->c.ul;
if ((ft & VT_BTYPE) == VT_LDOUBLE) {
o(0xde); /* fxxxp %st, %st(1) */
o(0xc1 + (a << 3));
} else {
/* if saved lvalue, then we must reload it */
r = vtop->r;
if ((r & VT_VALMASK) == VT_LLOCAL) {
SValue v1;
r = get_reg(RC_INT);
v1.type.t = VT_INT;
v1.r = VT_LOCAL | VT_LVAL;
v1.c.ul = fc;
load(r, &v1);
fc = 0;
}
if ((ft & VT_BTYPE) == VT_DOUBLE)
o(0xdc);
else
o(0xd8);
gen_modrm(a, r, vtop->sym, fc);
}
vtop--;
}
}
/* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
and 'long long' cases. */
void gen_cvt_itof(int t)
{
save_reg(TREG_ST0);
gv(RC_INT);
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
/* signed long long to float/double/long double (unsigned case
is handled generically) */
o(0x50 + vtop->r2); /* push r2 */
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x242cdf); /* fildll (%esp) */
o(0x08c483); /* add $8, %esp */
} else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
(VT_INT | VT_UNSIGNED)) {
/* unsigned int to float/double/long double */
o(0x6a); /* push $0 */
g(0x00);
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x242cdf); /* fildll (%esp) */
o(0x08c483); /* add $8, %esp */
} else {
/* int to float/double/long double */
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x2404db); /* fildl (%esp) */
o(0x04c483); /* add $4, %esp */
}
vtop->r = TREG_ST0;
}
/* convert fp to int 't' type */
/* XXX: handle long long case */
void gen_cvt_ftoi(int t)
{
int r, r2, size;
Sym *sym;
CType ushort_type;
ushort_type.t = VT_SHORT | VT_UNSIGNED;
gv(RC_FLOAT);
if (t != VT_INT)
size = 8;
else
size = 4;
o(0x2dd9); /* ldcw xxx */
sym = external_global_sym(TOK___tcc_int_fpu_control,
&ushort_type, VT_LVAL);
greloc(cur_text_section, sym,
ind, R_386_32);
gen_le32(0);
oad(0xec81, size); /* sub $xxx, %esp */
if (size == 4)
o(0x1cdb); /* fistpl */
else
o(0x3cdf); /* fistpll */
o(0x24);
o(0x2dd9); /* ldcw xxx */
sym = external_global_sym(TOK___tcc_fpu_control,
&ushort_type, VT_LVAL);
greloc(cur_text_section, sym,
ind, R_386_32);
gen_le32(0);
r = get_reg(RC_INT);
o(0x58 + r); /* pop r */
if (size == 8) {
if (t == VT_LLONG) {
vtop->r = r; /* mark reg as used */
r2 = get_reg(RC_INT);
o(0x58 + r2); /* pop r2 */
vtop->r2 = r2;
} else {
o(0x04c483); /* add $4, %esp */
}
}
vtop->r = r;
}
/* convert from one floating point type to another */
void gen_cvt_ftof(int t)
{
/* all we have to do on i386 is to put the float in a register */
gv(RC_FLOAT);
}
/* computed goto support */
void ggoto(void)
{
gcall_or_jmp(1);
vtop--;
}
/* bound check support functions */
#ifdef CONFIG_TCC_BCHECK
/* generate a bounded pointer addition */
void gen_bounded_ptr_add(void)
{
Sym *sym;
/* prepare fast i386 function call (args in eax and edx) */
gv2(RC_EAX, RC_EDX);
/* save all temporary registers */
vtop -= 2;
save_regs(0);
/* do a fast function call */
sym = external_global_sym(TOK___bound_ptr_add, &func_old_type, 0);
greloc(cur_text_section, sym,
ind + 1, R_386_PC32);
oad(0xe8, -4);
/* returned pointer is in eax */
vtop++;
vtop->r = TREG_EAX | VT_BOUNDED;
/* address of bounding function call point */
vtop->c.ul = (cur_text_section->reloc->data_offset - sizeof(Elf32_Rel));
}
/* patch pointer addition in vtop so that pointer dereferencing is
also tested */
void gen_bounded_ptr_deref(void)
{
int func;
int size, align;
Elf32_Rel *rel;
Sym *sym;
size = 0;
/* XXX: put that code in generic part of tcc */
if (!is_float(vtop->type.t)) {
if (vtop->r & VT_LVAL_BYTE)
size = 1;
else if (vtop->r & VT_LVAL_SHORT)
size = 2;
}
if (!size)
size = type_size(&vtop->type, &align);
switch(size) {
case 1: func = TOK___bound_ptr_indir1; break;
case 2: func = TOK___bound_ptr_indir2; break;
case 4: func = TOK___bound_ptr_indir4; break;
case 8: func = TOK___bound_ptr_indir8; break;
case 12: func = TOK___bound_ptr_indir12; break;
case 16: func = TOK___bound_ptr_indir16; break;
default:
error("unhandled size when derefencing bounded pointer");
func = 0;
break;
}
/* patch relocation */
/* XXX: find a better solution ? */
rel = (Elf32_Rel *)(cur_text_section->reloc->data + vtop->c.ul);
sym = external_global_sym(func, &func_old_type, 0);
if (!sym->c)
put_extern_sym(sym, NULL, 0, 0);
rel->r_info = ELF32_R_INFO(sym->c, ELF32_R_TYPE(rel->r_info));
}
#endif
/* end of X86 code generator */
/*************************************************************/