kolibrios/contrib/media/updf/include/bits/stl_deque.h
Serhii Sakhno cd35d38ad2 updf: restore menuetlibc version
git-svn-id: svn://kolibrios.org@8429 a494cfbc-eb01-0410-851d-a64ba20cac60
2020-12-16 18:41:33 +00:00

1323 lines
42 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#ifndef __SGI_STL_INTERNAL_DEQUE_H
#define __SGI_STL_INTERNAL_DEQUE_H
/* Class invariants:
* For any nonsingular iterator i:
* i.node is the address of an element in the map array. The
* contents of i.node is a pointer to the beginning of a node.
* i.first == *(i.node)
* i.last == i.first + node_size
* i.cur is a pointer in the range [i.first, i.last). NOTE:
* the implication of this is that i.cur is always a dereferenceable
* pointer, even if i is a past-the-end iterator.
* Start and Finish are always nonsingular iterators. NOTE: this means
* that an empty deque must have one node, and that a deque
* with N elements, where N is the buffer size, must have two nodes.
* For every node other than start.node and finish.node, every element
* in the node is an initialized object. If start.node == finish.node,
* then [start.cur, finish.cur) are initialized objects, and
* the elements outside that range are uninitialized storage. Otherwise,
* [start.cur, start.last) and [finish.first, finish.cur) are initialized
* objects, and [start.first, start.cur) and [finish.cur, finish.last)
* are uninitialized storage.
* [map, map + map_size) is a valid, non-empty range.
* [start.node, finish.node] is a valid range contained within
* [map, map + map_size).
* A pointer in the range [map, map + map_size) points to an allocated node
* if and only if the pointer is in the range [start.node, finish.node].
*/
/*
* In previous versions of deque, there was an extra template
* parameter so users could control the node size. This extension
* turns out to violate the C++ standard (it can be detected using
* template template parameters), and it has been removed.
*/
namespace std
{
// Note: this function is simply a kludge to work around several compilers'
// bugs in handling constant expressions.
inline size_t __deque_buf_size(size_t __size) {
return __size < 512 ? size_t(512 / __size) : size_t(1);
}
template <class _Tp, class _Ref, class _Ptr>
struct _Deque_iterator {
typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp** _Map_pointer;
typedef _Deque_iterator _Self;
_Tp* _M_cur;
_Tp* _M_first;
_Tp* _M_last;
_Map_pointer _M_node;
_Deque_iterator(_Tp* __x, _Map_pointer __y)
: _M_cur(__x), _M_first(*__y),
_M_last(*__y + _S_buffer_size()), _M_node(__y) {}
_Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
_Deque_iterator(const iterator& __x)
: _M_cur(__x._M_cur), _M_first(__x._M_first),
_M_last(__x._M_last), _M_node(__x._M_node) {}
reference operator*() const { return *_M_cur; }
pointer operator->() const { return _M_cur; }
difference_type operator-(const _Self& __x) const {
return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) +
(_M_cur - _M_first) + (__x._M_last - __x._M_cur);
}
_Self& operator++() {
++_M_cur;
if (_M_cur == _M_last) {
_M_set_node(_M_node + 1);
_M_cur = _M_first;
}
return *this;
}
_Self operator++(int) {
_Self __tmp = *this;
++*this;
return __tmp;
}
_Self& operator--() {
if (_M_cur == _M_first) {
_M_set_node(_M_node - 1);
_M_cur = _M_last;
}
--_M_cur;
return *this;
}
_Self operator--(int) {
_Self __tmp = *this;
--*this;
return __tmp;
}
_Self& operator+=(difference_type __n)
{
difference_type __offset = __n + (_M_cur - _M_first);
if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
_M_cur += __n;
else {
difference_type __node_offset =
__offset > 0 ? __offset / difference_type(_S_buffer_size())
: -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
_M_set_node(_M_node + __node_offset);
_M_cur = _M_first +
(__offset - __node_offset * difference_type(_S_buffer_size()));
}
return *this;
}
_Self operator+(difference_type __n) const
{
_Self __tmp = *this;
return __tmp += __n;
}
_Self& operator-=(difference_type __n) { return *this += -__n; }
_Self operator-(difference_type __n) const {
_Self __tmp = *this;
return __tmp -= __n;
}
reference operator[](difference_type __n) const { return *(*this + __n); }
bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; }
bool operator!=(const _Self& __x) const { return !(*this == __x); }
bool operator<(const _Self& __x) const {
return (_M_node == __x._M_node) ?
(_M_cur < __x._M_cur) : (_M_node < __x._M_node);
}
bool operator>(const _Self& __x) const { return __x < *this; }
bool operator<=(const _Self& __x) const { return !(__x < *this); }
bool operator>=(const _Self& __x) const { return !(*this < __x); }
void _M_set_node(_Map_pointer __new_node) {
_M_node = __new_node;
_M_first = *__new_node;
_M_last = _M_first + difference_type(_S_buffer_size());
}
};
template <class _Tp, class _Ref, class _Ptr>
inline _Deque_iterator<_Tp, _Ref, _Ptr>
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
{
return __x + __n;
}
// Deque base class. It has two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
// Base class for ordinary allocators.
template <class _Tp, class _Alloc, bool __is_static>
class _Deque_alloc_base {
public:
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Deque_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_map_allocator(__a),
_M_map(0), _M_map_size(0)
{}
protected:
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
_Map_allocator_type;
allocator_type _M_node_allocator;
_Map_allocator_type _M_map_allocator;
_Tp* _M_allocate_node() {
return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
}
void _M_deallocate_node(_Tp* __p) {
_M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
_Tp** _M_allocate_map(size_t __n)
{ return _M_map_allocator.allocate(__n); }
void _M_deallocate_map(_Tp** __p, size_t __n)
{ _M_map_allocator.deallocate(__p, __n); }
_Tp** _M_map;
size_t _M_map_size;
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Deque_alloc_base<_Tp, _Alloc, true>
{
public:
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}
protected:
typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;
typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;
_Tp* _M_allocate_node() {
return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
}
void _M_deallocate_node(_Tp* __p) {
_Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
_Tp** _M_allocate_map(size_t __n)
{ return _Map_alloc_type::allocate(__n); }
void _M_deallocate_map(_Tp** __p, size_t __n)
{ _Map_alloc_type::deallocate(__p, __n); }
_Tp** _M_map;
size_t _M_map_size;
};
template <class _Tp, class _Alloc>
class _Deque_base
: public _Deque_alloc_base<_Tp,_Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _Deque_alloc_base<_Tp,_Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
_Deque_base(const allocator_type& __a, size_t __num_elements)
: _Base(__a), _M_start(), _M_finish()
{ _M_initialize_map(__num_elements); }
_Deque_base(const allocator_type& __a)
: _Base(__a), _M_start(), _M_finish() {}
~_Deque_base();
protected:
void _M_initialize_map(size_t);
void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
enum { _S_initial_map_size = 8 };
protected:
iterator _M_start;
iterator _M_finish;
};
// Non-inline member functions from _Deque_base.
template <class _Tp, class _Alloc>
_Deque_base<_Tp,_Alloc>::~_Deque_base() {
if (_M_map) {
_M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
_M_deallocate_map(_M_map, _M_map_size);
}
}
template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
{
size_t __num_nodes =
__num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
_M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
_M_map = _M_allocate_map(_M_map_size);
_Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
_Tp** __nfinish = __nstart + __num_nodes;
__STL_TRY {
_M_create_nodes(__nstart, __nfinish);
}
__STL_UNWIND((_M_deallocate_map(_M_map, _M_map_size),
_M_map = 0, _M_map_size = 0));
_M_start._M_set_node(__nstart);
_M_finish._M_set_node(__nfinish - 1);
_M_start._M_cur = _M_start._M_first;
_M_finish._M_cur = _M_finish._M_first +
__num_elements % __deque_buf_size(sizeof(_Tp));
}
template <class _Tp, class _Alloc>
void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
{
_Tp** __cur;
__STL_TRY {
for (__cur = __nstart; __cur < __nfinish; ++__cur)
*__cur = _M_allocate_node();
}
__STL_UNWIND(_M_destroy_nodes(__nstart, __cur));
}
template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
{
for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
_M_deallocate_node(*__n);
}
template <class _Tp, class _Alloc = allocator<_Tp> >
class deque : protected _Deque_base<_Tp, _Alloc> {
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept);
typedef _Deque_base<_Tp, _Alloc> _Base;
public: // Basic types
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
public: // Iterators
typedef typename _Base::iterator iterator;
typedef typename _Base::const_iterator const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
protected: // Internal typedefs
typedef pointer* _Map_pointer;
static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
protected:
using _Base::_M_initialize_map;
using _Base::_M_create_nodes;
using _Base::_M_destroy_nodes;
using _Base::_M_allocate_node;
using _Base::_M_deallocate_node;
using _Base::_M_allocate_map;
using _Base::_M_deallocate_map;
using _Base::_M_map;
using _Base::_M_map_size;
using _Base::_M_start;
using _Base::_M_finish;
public: // Basic accessors
iterator begin() { return _M_start; }
iterator end() { return _M_finish; }
const_iterator begin() const { return _M_start; }
const_iterator end() const { return _M_finish; }
reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
reverse_iterator rend() { return reverse_iterator(_M_start); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(_M_finish); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(_M_start); }
reference operator[](size_type __n)
{ return _M_start[difference_type(__n)]; }
const_reference operator[](size_type __n) const
{ return _M_start[difference_type(__n)]; }
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_range_error("deque");
}
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
reference front() { return *_M_start; }
reference back() {
iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
const_reference front() const { return *_M_start; }
const_reference back() const {
const_iterator __tmp = _M_finish;
--__tmp;
return *__tmp;
}
size_type size() const { return _M_finish - _M_start; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return _M_finish == _M_start; }
public: // Constructor, destructor.
explicit deque(const allocator_type& __a = allocator_type())
: _Base(__a, 0) {}
deque(const deque& __x) : _Base(__x.get_allocator(), __x.size())
{ uninitialized_copy(__x.begin(), __x.end(), _M_start); }
deque(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type()) : _Base(__a, __n)
{ _M_fill_initialize(__value); }
explicit deque(size_type __n) : _Base(allocator_type(), __n)
{ _M_fill_initialize(value_type()); }
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
deque(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize_map(__n);
_M_fill_initialize(__x);
}
template <class _InputIter>
void _M_initialize_dispatch(_InputIter __first, _InputIter __last,
__false_type) {
_M_range_initialize(__first, __last, __iterator_category(__first));
}
~deque() { destroy(_M_start, _M_finish); }
deque& operator= (const deque& __x) {
const size_type __len = size();
if (&__x != this) {
if (__len >= __x.size())
erase(copy(__x.begin(), __x.end(), _M_start), _M_finish);
else {
const_iterator __mid = __x.begin() + difference_type(__len);
copy(__x.begin(), __mid, _M_start);
insert(_M_finish, __mid, __x.end());
}
}
return *this;
}
void swap(deque& __x) {
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_map, __x._M_map);
std::swap(_M_map_size, __x._M_map_size);
}
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void _M_fill_assign(size_type __n, const _Tp& __val) {
if (__n > size()) {
fill(begin(), end(), __val);
insert(end(), __n - size(), __val);
}
else {
erase(begin() + __n, end());
fill(begin(), end(), __val);
}
}
void assign(size_type __n, const _Tp& __val) {
_M_fill_assign(__n, __val);
}
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
private: // helper functions for assign()
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_assign_aux(__first, __last, __iterator_category(__first));
}
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len > size()) {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
else
erase(copy(__first, __last, begin()), end());
}
public: // push_* and pop_*
void push_back(const value_type& __t) {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur, __t);
++_M_finish._M_cur;
}
else
_M_push_back_aux(__t);
}
void push_back() {
if (_M_finish._M_cur != _M_finish._M_last - 1) {
construct(_M_finish._M_cur);
++_M_finish._M_cur;
}
else
_M_push_back_aux();
}
void push_front(const value_type& __t) {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1, __t);
--_M_start._M_cur;
}
else
_M_push_front_aux(__t);
}
void push_front() {
if (_M_start._M_cur != _M_start._M_first) {
construct(_M_start._M_cur - 1);
--_M_start._M_cur;
}
else
_M_push_front_aux();
}
void pop_back() {
if (_M_finish._M_cur != _M_finish._M_first) {
--_M_finish._M_cur;
destroy(_M_finish._M_cur);
}
else
_M_pop_back_aux();
}
void pop_front() {
if (_M_start._M_cur != _M_start._M_last - 1) {
destroy(_M_start._M_cur);
++_M_start._M_cur;
}
else
_M_pop_front_aux();
}
public: // Insert
iterator insert(iterator position, const value_type& __x) {
if (position._M_cur == _M_start._M_cur) {
push_front(__x);
return _M_start;
}
else if (position._M_cur == _M_finish._M_cur) {
push_back(__x);
iterator __tmp = _M_finish;
--__tmp;
return __tmp;
}
else {
return _M_insert_aux(position, __x);
}
}
iterator insert(iterator __position)
{ return insert(__position, value_type()); }
void insert(iterator __pos, size_type __n, const value_type& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, (size_type) __n, (value_type) __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
insert(__pos, __first, __last, __iterator_category(__first));
}
void resize(size_type __new_size, const value_type& __x) {
const size_type __len = size();
if (__new_size < __len)
erase(_M_start + __new_size, _M_finish);
else
insert(_M_finish, __new_size - __len, __x);
}
void resize(size_type new_size) { resize(new_size, value_type()); }
public: // Erase
iterator erase(iterator __pos) {
iterator __next = __pos;
++__next;
size_type __index = __pos - _M_start;
if (__index < (size() >> 1)) {
copy_backward(_M_start, __pos, __next);
pop_front();
}
else {
copy(__next, _M_finish, __pos);
pop_back();
}
return _M_start + __index;
}
iterator erase(iterator __first, iterator __last);
void clear();
protected: // Internal construction/destruction
void _M_fill_initialize(const value_type& __value);
template <class _InputIterator>
void _M_range_initialize(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
protected: // Internal push_* and pop_*
void _M_push_back_aux(const value_type&);
void _M_push_back_aux();
void _M_push_front_aux(const value_type&);
void _M_push_front_aux();
void _M_pop_back_aux();
void _M_pop_front_aux();
protected: // Internal insert functions
template <class _InputIterator>
void insert(iterator __pos, _InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void insert(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
iterator _M_insert_aux(iterator __pos, const value_type& __x);
iterator _M_insert_aux(iterator __pos);
void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
template <class _ForwardIterator>
void _M_insert_aux(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
size_type __n);
iterator _M_reserve_elements_at_front(size_type __n) {
size_type __vacancies = _M_start._M_cur - _M_start._M_first;
if (__n > __vacancies)
_M_new_elements_at_front(__n - __vacancies);
return _M_start - difference_type(__n);
}
iterator _M_reserve_elements_at_back(size_type __n) {
size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
if (__n > __vacancies)
_M_new_elements_at_back(__n - __vacancies);
return _M_finish + difference_type(__n);
}
void _M_new_elements_at_front(size_type __new_elements);
void _M_new_elements_at_back(size_type __new_elements);
protected: // Allocation of _M_map and nodes
// Makes sure the _M_map has space for new nodes. Does not actually
// add the nodes. Can invalidate _M_map pointers. (And consequently,
// deque iterators.)
void _M_reserve_map_at_back (size_type __nodes_to_add = 1) {
if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
_M_reallocate_map(__nodes_to_add, false);
}
void _M_reserve_map_at_front (size_type __nodes_to_add = 1) {
if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
_M_reallocate_map(__nodes_to_add, true);
}
void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
};
// Non-inline member functions
template <class _Tp, class _Alloc>
template <class _InputIter>
void deque<_Tp, _Alloc>
::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
{
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _Tp, class _Alloc>
void deque<_Tp, _Alloc>::_M_fill_insert(iterator __pos,
size_type __n, const value_type& __x)
{
if (__pos._M_cur == _M_start._M_cur) {
iterator __new_start = _M_reserve_elements_at_front(__n);
__STL_TRY {
uninitialized_fill(__new_start, _M_start, __x);
_M_start = __new_start;
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else if (__pos._M_cur == _M_finish._M_cur) {
iterator __new_finish = _M_reserve_elements_at_back(__n);
__STL_TRY {
uninitialized_fill(_M_finish, __new_finish, __x);
_M_finish = __new_finish;
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1,
__new_finish._M_node + 1));
}
else
_M_insert_aux(__pos, __n, __x);
}
template <class _Tp, class _Alloc>
typename deque<_Tp,_Alloc>::iterator
deque<_Tp,_Alloc>::erase(iterator __first, iterator __last)
{
if (__first == _M_start && __last == _M_finish) {
clear();
return _M_finish;
}
else {
difference_type __n = __last - __first;
difference_type __elems_before = __first - _M_start;
if (static_cast<size_type>(__elems_before) < (size() - __n) / 2) {
copy_backward(_M_start, __first, __last);
iterator __new_start = _M_start + __n;
destroy(_M_start, __new_start);
_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
_M_start = __new_start;
}
else {
copy(__last, _M_finish, __first);
iterator __new_finish = _M_finish - __n;
destroy(__new_finish, _M_finish);
_M_destroy_nodes(__new_finish._M_node + 1, _M_finish._M_node + 1);
_M_finish = __new_finish;
}
return _M_start + __elems_before;
}
}
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::clear()
{
for (_Map_pointer __node = _M_start._M_node + 1;
__node < _M_finish._M_node;
++__node) {
destroy(*__node, *__node + _S_buffer_size());
_M_deallocate_node(*__node);
}
if (_M_start._M_node != _M_finish._M_node) {
destroy(_M_start._M_cur, _M_start._M_last);
destroy(_M_finish._M_first, _M_finish._M_cur);
_M_deallocate_node(_M_finish._M_first);
}
else
destroy(_M_start._M_cur, _M_finish._M_cur);
_M_finish = _M_start;
}
// Precondition: _M_start and _M_finish have already been initialized,
// but none of the deque's elements have yet been constructed.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_fill_initialize(const value_type& __value) {
_Map_pointer __cur;
__STL_TRY {
for (__cur = _M_start._M_node; __cur < _M_finish._M_node; ++__cur)
uninitialized_fill(*__cur, *__cur + _S_buffer_size(), __value);
uninitialized_fill(_M_finish._M_first, _M_finish._M_cur, __value);
}
__STL_UNWIND(destroy(_M_start, iterator(*__cur, __cur)));
}
template <class _Tp, class _Alloc> template <class _InputIterator>
void deque<_Tp,_Alloc>::_M_range_initialize(_InputIterator __first,
_InputIterator __last,
input_iterator_tag)
{
_M_initialize_map(0);
__STL_TRY {
for ( ; __first != __last; ++__first)
push_back(*__first);
}
__STL_UNWIND(clear());
}
template <class _Tp, class _Alloc> template <class _ForwardIterator>
void deque<_Tp,_Alloc>::_M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last,
forward_iterator_tag)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize_map(__n);
_Map_pointer __cur_node;
__STL_TRY {
for (__cur_node = _M_start._M_node;
__cur_node < _M_finish._M_node;
++__cur_node) {
_ForwardIterator __mid = __first;
advance(__mid, _S_buffer_size());
uninitialized_copy(__first, __mid, *__cur_node);
__first = __mid;
}
uninitialized_copy(__first, __last, _M_finish._M_first);
}
__STL_UNWIND(destroy(_M_start, iterator(*__cur_node, __cur_node)));
}
// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_push_back_aux(const value_type& __t)
{
value_type __t_copy = __t;
_M_reserve_map_at_back();
*(_M_finish._M_node + 1) = _M_allocate_node();
__STL_TRY {
construct(_M_finish._M_cur, __t_copy);
_M_finish._M_set_node(_M_finish._M_node + 1);
_M_finish._M_cur = _M_finish._M_first;
}
__STL_UNWIND(_M_deallocate_node(*(_M_finish._M_node + 1)));
}
// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_push_back_aux()
{
_M_reserve_map_at_back();
*(_M_finish._M_node + 1) = _M_allocate_node();
__STL_TRY {
construct(_M_finish._M_cur);
_M_finish._M_set_node(_M_finish._M_node + 1);
_M_finish._M_cur = _M_finish._M_first;
}
__STL_UNWIND(_M_deallocate_node(*(_M_finish._M_node + 1)));
}
// Called only if _M_start._M_cur == _M_start._M_first.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_push_front_aux(const value_type& __t)
{
value_type __t_copy = __t;
_M_reserve_map_at_front();
*(_M_start._M_node - 1) = _M_allocate_node();
__STL_TRY {
_M_start._M_set_node(_M_start._M_node - 1);
_M_start._M_cur = _M_start._M_last - 1;
construct(_M_start._M_cur, __t_copy);
}
__STL_UNWIND((++_M_start, _M_deallocate_node(*(_M_start._M_node - 1))));
}
// Called only if _M_start._M_cur == _M_start._M_first.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_push_front_aux()
{
_M_reserve_map_at_front();
*(_M_start._M_node - 1) = _M_allocate_node();
__STL_TRY {
_M_start._M_set_node(_M_start._M_node - 1);
_M_start._M_cur = _M_start._M_last - 1;
construct(_M_start._M_cur);
}
__STL_UNWIND((++_M_start, _M_deallocate_node(*(_M_start._M_node - 1))));
}
// Called only if _M_finish._M_cur == _M_finish._M_first.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_pop_back_aux()
{
_M_deallocate_node(_M_finish._M_first);
_M_finish._M_set_node(_M_finish._M_node - 1);
_M_finish._M_cur = _M_finish._M_last - 1;
destroy(_M_finish._M_cur);
}
// Called only if _M_start._M_cur == _M_start._M_last - 1. Note that
// if the deque has at least one element (a precondition for this member
// function), and if _M_start._M_cur == _M_start._M_last, then the deque
// must have at least two nodes.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_pop_front_aux()
{
destroy(_M_start._M_cur);
_M_deallocate_node(_M_start._M_first);
_M_start._M_set_node(_M_start._M_node + 1);
_M_start._M_cur = _M_start._M_first;
}
template <class _Tp, class _Alloc> template <class _InputIterator>
void deque<_Tp,_Alloc>::insert(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
copy(__first, __last, inserter(*this, __pos));
}
template <class _Tp, class _Alloc> template <class _ForwardIterator>
void
deque<_Tp,_Alloc>::insert(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __n = 0;
distance(__first, __last, __n);
if (__pos._M_cur == _M_start._M_cur) {
iterator __new_start = _M_reserve_elements_at_front(__n);
__STL_TRY {
uninitialized_copy(__first, __last, __new_start);
_M_start = __new_start;
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else if (__pos._M_cur == _M_finish._M_cur) {
iterator __new_finish = _M_reserve_elements_at_back(__n);
__STL_TRY {
uninitialized_copy(__first, __last, _M_finish);
_M_finish = __new_finish;
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1,
__new_finish._M_node + 1));
}
else
_M_insert_aux(__pos, __first, __last, __n);
}
template <class _Tp, class _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, const value_type& __x)
{
difference_type __index = __pos - _M_start;
value_type __x_copy = __x;
if (static_cast<size_type>(__index) < size() / 2) {
push_front(front());
iterator __front1 = _M_start;
++__front1;
iterator __front2 = __front1;
++__front2;
__pos = _M_start + __index;
iterator __pos1 = __pos;
++__pos1;
copy(__front2, __pos1, __front1);
}
else {
push_back(back());
iterator __back1 = _M_finish;
--__back1;
iterator __back2 = __back1;
--__back2;
__pos = _M_start + __index;
copy_backward(__pos, __back2, __back1);
}
*__pos = __x_copy;
return __pos;
}
template <class _Tp, class _Alloc>
typename deque<_Tp,_Alloc>::iterator
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos)
{
difference_type __index = __pos - _M_start;
if (static_cast<size_type>(__index) < size() / 2) {
push_front(front());
iterator __front1 = _M_start;
++__front1;
iterator __front2 = __front1;
++__front2;
__pos = _M_start + __index;
iterator __pos1 = __pos;
++__pos1;
copy(__front2, __pos1, __front1);
}
else {
push_back(back());
iterator __back1 = _M_finish;
--__back1;
iterator __back2 = __back1;
--__back2;
__pos = _M_start + __index;
copy_backward(__pos, __back2, __back1);
}
*__pos = value_type();
return __pos;
}
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
size_type __n,
const value_type& __x)
{
const difference_type __elems_before = __pos - _M_start;
size_type __length = this->size();
value_type __x_copy = __x;
if (__elems_before < difference_type(__length / 2)) {
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = _M_start;
__pos = _M_start + __elems_before;
__STL_TRY {
if (__elems_before >= difference_type(__n)) {
iterator __start_n = _M_start + difference_type(__n);
uninitialized_copy(_M_start, __start_n, __new_start);
_M_start = __new_start;
copy(__start_n, __pos, __old_start);
fill(__pos - difference_type(__n), __pos, __x_copy);
}
else {
__uninitialized_copy_fill(_M_start, __pos, __new_start,
_M_start, __x_copy);
_M_start = __new_start;
fill(__old_start, __pos, __x_copy);
}
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else {
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = _M_finish;
const difference_type __elems_after =
difference_type(__length) - __elems_before;
__pos = _M_finish - __elems_after;
__STL_TRY {
if (__elems_after > difference_type(__n)) {
iterator __finish_n = _M_finish - difference_type(__n);
uninitialized_copy(__finish_n, _M_finish, _M_finish);
_M_finish = __new_finish;
copy_backward(__pos, __finish_n, __old_finish);
fill(__pos, __pos + difference_type(__n), __x_copy);
}
else {
__uninitialized_fill_copy(_M_finish, __pos + difference_type(__n),
__x_copy, __pos, _M_finish);
_M_finish = __new_finish;
fill(__pos, __old_finish, __x_copy);
}
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1,
__new_finish._M_node + 1));
}
}
template <class _Tp, class _Alloc> template <class _ForwardIterator>
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
_ForwardIterator __first,
_ForwardIterator __last,
size_type __n)
{
const difference_type __elemsbefore = __pos - _M_start;
size_type __length = size();
if (static_cast<size_type>(__elemsbefore) < __length / 2) {
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = _M_start;
__pos = _M_start + __elemsbefore;
__STL_TRY {
if (__elemsbefore >= difference_type(__n)) {
iterator __start_n = _M_start + difference_type(__n);
uninitialized_copy(_M_start, __start_n, __new_start);
_M_start = __new_start;
copy(__start_n, __pos, __old_start);
copy(__first, __last, __pos - difference_type(__n));
}
else {
_ForwardIterator __mid = __first;
advance(__mid, difference_type(__n) - __elemsbefore);
__uninitialized_copy_copy(_M_start, __pos, __first, __mid,
__new_start);
_M_start = __new_start;
copy(__mid, __last, __old_start);
}
}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node, _M_start._M_node));
}
else {
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = _M_finish;
const difference_type __elemsafter =
difference_type(__length) - __elemsbefore;
__pos = _M_finish - __elemsafter;
__STL_TRY {
if (__elemsafter > difference_type(__n)) {
iterator __finish_n = _M_finish - difference_type(__n);
uninitialized_copy(__finish_n, _M_finish, _M_finish);
_M_finish = __new_finish;
copy_backward(__pos, __finish_n, __old_finish);
copy(__first, __last, __pos);
}
else {
_ForwardIterator __mid = __first;
advance(__mid, __elemsafter);
__uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish);
_M_finish = __new_finish;
copy(__first, __mid, __pos);
}
}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1,
__new_finish._M_node + 1));
}
}
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_new_elements_at_front(size_type __new_elems)
{
size_type __new_nodes
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
_M_reserve_map_at_front(__new_nodes);
size_type __i;
__STL_TRY {
for (__i = 1; __i <= __new_nodes; ++__i)
*(_M_start._M_node - __i) = _M_allocate_node();
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
for (size_type __j = 1; __j < __i; ++__j)
_M_deallocate_node(*(_M_start._M_node - __j));
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_new_elements_at_back(size_type __new_elems)
{
size_type __new_nodes
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
_M_reserve_map_at_back(__new_nodes);
size_type __i;
__STL_TRY {
for (__i = 1; __i <= __new_nodes; ++__i)
*(_M_finish._M_node + __i) = _M_allocate_node();
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
for (size_type __j = 1; __j < __i; ++__j)
_M_deallocate_node(*(_M_finish._M_node + __j));
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_reallocate_map(size_type __nodes_to_add,
bool __add_at_front)
{
size_type __old_num_nodes = _M_finish._M_node - _M_start._M_node + 1;
size_type __new_num_nodes = __old_num_nodes + __nodes_to_add;
_Map_pointer __new_nstart;
if (_M_map_size > 2 * __new_num_nodes) {
__new_nstart = _M_map + (_M_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
if (__new_nstart < _M_start._M_node)
copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
else
copy_backward(_M_start._M_node, _M_finish._M_node + 1,
__new_nstart + __old_num_nodes);
}
else {
size_type __new_map_size =
_M_map_size + max(_M_map_size, __nodes_to_add) + 2;
_Map_pointer __new_map = _M_allocate_map(__new_map_size);
__new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
_M_deallocate_map(_M_map, _M_map_size);
_M_map = __new_map;
_M_map_size = __new_map_size;
}
_M_start._M_set_node(__new_nstart);
_M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);
}
// Nonmember functions.
template <class _Tp, class _Alloc>
inline bool operator==(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Tp, class _Alloc>
inline bool operator<(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
template <class _Tp, class _Alloc>
inline bool operator!=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
template <class _Tp, class _Alloc>
inline bool operator>(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return __y < __x;
}
template <class _Tp, class _Alloc>
inline bool operator<=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool operator>=(const deque<_Tp, _Alloc>& __x,
const deque<_Tp, _Alloc>& __y) {
return !(__x < __y);
}
template <class _Tp, class _Alloc>
inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) {
__x.swap(__y);
}
} // namespace std
#endif /* __SGI_STL_INTERNAL_DEQUE_H */
// Local Variables:
// mode:C++
// End: