#include #include #include #include #include "vmwgfx_drv.h" #include #include #include #include #include "bitmap.h" struct pci_device { uint16_t domain; uint8_t bus; uint8_t dev; uint8_t func; uint16_t vendor_id; uint16_t device_id; uint16_t subvendor_id; uint16_t subdevice_id; uint32_t device_class; uint8_t revision; }; struct drm_device *main_device; struct drm_file *drm_file_handlers[256]; int vmw_init(void); int kms_init(struct drm_device *dev); void kms_update(); void cpu_detect(); void parse_cmdline(char *cmdline, char *log); int _stdcall display_handler(ioctl_t *io); int srv_blit_bitmap(u32 hbitmap, int dst_x, int dst_y, int src_x, int src_y, u32 w, u32 h); int blit_textured(u32 hbitmap, int dst_x, int dst_y, int src_x, int src_y, u32 w, u32 h); int blit_tex(u32 hbitmap, int dst_x, int dst_y, int src_x, int src_y, u32 w, u32 h); void get_pci_info(struct pci_device *dev); int gem_getparam(struct drm_device *dev, void *data); int i915_mask_update(struct drm_device *dev, void *data, struct drm_file *file); static char log[256]; struct workqueue_struct *system_wq; int driver_wq_state; int x86_clflush_size; unsigned int tsc_khz; int kms_modeset = 1; void vmw_driver_thread() { dbgprintf("%s\n",__FUNCTION__); // run_workqueue(dev_priv->wq); while(driver_wq_state) { kms_update(); delay(1); }; __asm__ __volatile__ ( "int $0x40" ::"a"(-1)); } u32_t __attribute__((externally_visible)) drvEntry(int action, char *cmdline) { int err = 0; if(action != 1) { driver_wq_state = 0; return 0; }; if( GetService("DISPLAY") != 0 ) return 0; if( cmdline && *cmdline ) parse_cmdline(cmdline, log); if( *log && !dbg_open(log)) { printf("Can't open %s\nExit\n", log); return 0; } dbgprintf(" vmw v3.14-rc1\n cmdline: %s\n", cmdline); cpu_detect(); dbgprintf("\ncache line size %d\n", x86_clflush_size); enum_pci_devices(); err = vmw_init(); if(err) { dbgprintf("Epic Fail :(\n"); return 0; }; kms_init(main_device); err = RegService("DISPLAY", display_handler); if( err != 0) dbgprintf("Set DISPLAY handler\n"); driver_wq_state = 1; CreateKernelThread(vmw_driver_thread); return err; }; #define CURRENT_API 0x0200 /* 2.00 */ #define COMPATIBLE_API 0x0100 /* 1.00 */ #define API_VERSION (COMPATIBLE_API << 16) | CURRENT_API #define DISPLAY_VERSION API_VERSION #define SRV_GETVERSION 0 #define SRV_ENUM_MODES 1 #define SRV_SET_MODE 2 #define SRV_GET_CAPS 3 #define SRV_CREATE_SURFACE 10 #define SRV_DESTROY_SURFACE 11 #define SRV_LOCK_SURFACE 12 #define SRV_UNLOCK_SURFACE 13 #define SRV_RESIZE_SURFACE 14 #define SRV_BLIT_BITMAP 15 #define SRV_BLIT_TEXTURE 16 #define SRV_BLIT_VIDEO 17 #define SRV_GET_PCI_INFO 20 #define SRV_GET_PARAM 21 #define SRV_I915_GEM_CREATE 22 #define SRV_DRM_GEM_CLOSE 23 #define SRV_I915_GEM_PIN 24 #define SRV_I915_GEM_SET_CACHEING 25 #define SRV_I915_GEM_GET_APERTURE 26 #define SRV_I915_GEM_PWRITE 27 #define SRV_I915_GEM_BUSY 28 #define SRV_I915_GEM_SET_DOMAIN 29 #define SRV_I915_GEM_MMAP 30 #define SRV_I915_GEM_MMAP_GTT 31 #define SRV_I915_GEM_THROTTLE 32 #define SRV_FBINFO 33 #define SRV_I915_GEM_EXECBUFFER2 34 #define SRV_MASK_UPDATE 35 #define check_input(size) \ if( unlikely((inp==NULL)||(io->inp_size != (size))) ) \ break; #define check_output(size) \ if( unlikely((outp==NULL)||(io->out_size != (size))) ) \ break; int _stdcall display_handler(ioctl_t *io) { struct drm_file *file; int retval = -1; u32_t *inp; u32_t *outp; inp = io->input; outp = io->output; file = drm_file_handlers[0]; switch(io->io_code) { case SRV_GETVERSION: check_output(4); *outp = DISPLAY_VERSION; retval = 0; break; case SRV_ENUM_MODES: dbgprintf("SRV_ENUM_MODES inp %x inp_size %x out_size %x\n", inp, io->inp_size, io->out_size ); check_output(4); // check_input(*outp * sizeof(videomode_t)); if( kms_modeset) retval = get_videomodes((videomode_t*)inp, outp); break; case SRV_SET_MODE: dbgprintf("SRV_SET_MODE inp %x inp_size %x\n", inp, io->inp_size); check_input(sizeof(videomode_t)); if( kms_modeset ) retval = set_user_mode((videomode_t*)inp); break; #if 0 case SRV_GET_CAPS: retval = get_driver_caps((hwcaps_t*)inp); break; case SRV_CREATE_SURFACE: // check_input(8); // retval = create_surface(main_device, (struct io_call_10*)inp); break; case SRV_LOCK_SURFACE: // retval = lock_surface((struct io_call_12*)inp); break; case SRV_RESIZE_SURFACE: // retval = resize_surface((struct io_call_14*)inp); break; case SRV_BLIT_BITMAP: // srv_blit_bitmap( inp[0], inp[1], inp[2], // inp[3], inp[4], inp[5], inp[6]); // blit_tex( inp[0], inp[1], inp[2], // inp[3], inp[4], inp[5], inp[6]); break; case SRV_GET_PCI_INFO: get_pci_info((struct pci_device *)inp); retval = 0; break; case SRV_GET_PARAM: retval = gem_getparam(main_device, inp); break; case SRV_I915_GEM_CREATE: retval = i915_gem_create_ioctl(main_device, inp, file); break; case SRV_DRM_GEM_CLOSE: retval = drm_gem_close_ioctl(main_device, inp, file); break; case SRV_I915_GEM_PIN: retval = i915_gem_pin_ioctl(main_device, inp, file); break; case SRV_I915_GEM_SET_CACHEING: retval = i915_gem_set_caching_ioctl(main_device, inp, file); break; case SRV_I915_GEM_GET_APERTURE: retval = i915_gem_get_aperture_ioctl(main_device, inp, file); break; case SRV_I915_GEM_PWRITE: retval = i915_gem_pwrite_ioctl(main_device, inp, file); break; case SRV_I915_GEM_BUSY: retval = i915_gem_busy_ioctl(main_device, inp, file); break; case SRV_I915_GEM_SET_DOMAIN: retval = i915_gem_set_domain_ioctl(main_device, inp, file); break; case SRV_I915_GEM_THROTTLE: retval = i915_gem_throttle_ioctl(main_device, inp, file); break; case SRV_I915_GEM_MMAP: retval = i915_gem_mmap_ioctl(main_device, inp, file); break; case SRV_I915_GEM_MMAP_GTT: retval = i915_gem_mmap_gtt_ioctl(main_device, inp, file); break; case SRV_FBINFO: retval = i915_fbinfo(inp); break; case SRV_I915_GEM_EXECBUFFER2: retval = i915_gem_execbuffer2(main_device, inp, file); break; case SRV_MASK_UPDATE: retval = i915_mask_update(main_device, inp, file); break; #endif }; return retval; } #define PCI_CLASS_REVISION 0x08 #define PCI_CLASS_DISPLAY_VGA 0x0300 #define PCI_CLASS_BRIDGE_HOST 0x0600 #define PCI_CLASS_BRIDGE_ISA 0x0601 int pci_scan_filter(u32_t id, u32_t busnr, u32_t devfn) { u16_t vendor, device; u32_t class; int ret = 0; vendor = id & 0xffff; device = (id >> 16) & 0xffff; if(vendor == 0x15AD ) { class = PciRead32(busnr, devfn, PCI_CLASS_REVISION); class >>= 16; if( class == PCI_CLASS_DISPLAY_VGA ) ret = 1; } return ret; }; static char* parse_path(char *p, char *log) { char c; while( (c = *p++) == ' '); p--; while( (c = *log++ = *p++) && (c != ' ')); *log = 0; return p; }; void parse_cmdline(char *cmdline, char *log) { char *p = cmdline; char c = *p++; while( c ) { if( c == '-') { switch(*p++) { case 'l': p = parse_path(p, log); break; }; }; c = *p++; }; }; static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } void cpu_detect() { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); if (cap0 & (1<<19)) { x86_clflush_size = ((misc >> 8) & 0xff) * 8; } tsc_khz = (unsigned int)(GetCpuFreq()/1000); } /* int get_driver_caps(hwcaps_t *caps) { int ret = 0; switch(caps->idx) { case 0: caps->opt[0] = 0; caps->opt[1] = 0; break; case 1: caps->cap1.max_tex_width = 4096; caps->cap1.max_tex_height = 4096; break; default: ret = 1; }; caps->idx = 1; return ret; } void get_pci_info(struct pci_device *dev) { struct pci_dev *pdev = main_device->pdev; memset(dev, sizeof(*dev), 0); dev->domain = 0; dev->bus = pdev->busnr; dev->dev = pdev->devfn >> 3; dev->func = pdev->devfn & 7; dev->vendor_id = pdev->vendor; dev->device_id = pdev->device; dev->revision = pdev->revision; }; */ #include #include #include #include static void *check_bytes8(const u8 *start, u8 value, unsigned int bytes) { while (bytes) { if (*start != value) return (void *)start; start++; bytes--; } return NULL; } /** * memchr_inv - Find an unmatching character in an area of memory. * @start: The memory area * @c: Find a character other than c * @bytes: The size of the area. * * returns the address of the first character other than @c, or %NULL * if the whole buffer contains just @c. */ void *memchr_inv(const void *start, int c, size_t bytes) { u8 value = c; u64 value64; unsigned int words, prefix; if (bytes <= 16) return check_bytes8(start, value, bytes); value64 = value; #if defined(ARCH_HAS_FAST_MULTIPLIER) && BITS_PER_LONG == 64 value64 *= 0x0101010101010101; #elif defined(ARCH_HAS_FAST_MULTIPLIER) value64 *= 0x01010101; value64 |= value64 << 32; #else value64 |= value64 << 8; value64 |= value64 << 16; value64 |= value64 << 32; #endif prefix = (unsigned long)start % 8; if (prefix) { u8 *r; prefix = 8 - prefix; r = check_bytes8(start, value, prefix); if (r) return r; start += prefix; bytes -= prefix; } words = bytes / 8; while (words) { if (*(u64 *)start != value64) return check_bytes8(start, value, 8); start += 8; words--; } return check_bytes8(start, value, bytes % 8); } int vscnprintf(char *buf, size_t size, const char *fmt, va_list args) { int i; i = vsnprintf(buf, size, fmt, args); if (likely(i < size)) return i; if (size != 0) return size - 1; return 0; } int scnprintf(char *buf, size_t size, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vscnprintf(buf, size, fmt, args); va_end(args); return i; } #define _U 0x01 /* upper */ #define _L 0x02 /* lower */ #define _D 0x04 /* digit */ #define _C 0x08 /* cntrl */ #define _P 0x10 /* punct */ #define _S 0x20 /* white space (space/lf/tab) */ #define _X 0x40 /* hex digit */ #define _SP 0x80 /* hard space (0x20) */ extern const unsigned char _ctype[]; #define __ismask(x) (_ctype[(int)(unsigned char)(x)]) #define isalnum(c) ((__ismask(c)&(_U|_L|_D)) != 0) #define isalpha(c) ((__ismask(c)&(_U|_L)) != 0) #define iscntrl(c) ((__ismask(c)&(_C)) != 0) #define isdigit(c) ((__ismask(c)&(_D)) != 0) #define isgraph(c) ((__ismask(c)&(_P|_U|_L|_D)) != 0) #define islower(c) ((__ismask(c)&(_L)) != 0) #define isprint(c) ((__ismask(c)&(_P|_U|_L|_D|_SP)) != 0) #define ispunct(c) ((__ismask(c)&(_P)) != 0) /* Note: isspace() must return false for %NUL-terminator */ #define isspace(c) ((__ismask(c)&(_S)) != 0) #define isupper(c) ((__ismask(c)&(_U)) != 0) #define isxdigit(c) ((__ismask(c)&(_D|_X)) != 0) #define isascii(c) (((unsigned char)(c))<=0x7f) #define toascii(c) (((unsigned char)(c))&0x7f) //const char hex_asc[] = "0123456789abcdef"; /** * hex_to_bin - convert a hex digit to its real value * @ch: ascii character represents hex digit * * hex_to_bin() converts one hex digit to its actual value or -1 in case of bad * input. */ int hex_to_bin(char ch) { if ((ch >= '0') && (ch <= '9')) return ch - '0'; ch = tolower(ch); if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10; return -1; } EXPORT_SYMBOL(hex_to_bin); /** * hex2bin - convert an ascii hexadecimal string to its binary representation * @dst: binary result * @src: ascii hexadecimal string * @count: result length * * Return 0 on success, -1 in case of bad input. */ int hex2bin(u8 *dst, const char *src, size_t count) { while (count--) { int hi = hex_to_bin(*src++); int lo = hex_to_bin(*src++); if ((hi < 0) || (lo < 0)) return -1; *dst++ = (hi << 4) | lo; } return 0; } EXPORT_SYMBOL(hex2bin); /** * hex_dump_to_buffer - convert a blob of data to "hex ASCII" in memory * @buf: data blob to dump * @len: number of bytes in the @buf * @rowsize: number of bytes to print per line; must be 16 or 32 * @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1) * @linebuf: where to put the converted data * @linebuflen: total size of @linebuf, including space for terminating NUL * @ascii: include ASCII after the hex output * * hex_dump_to_buffer() works on one "line" of output at a time, i.e., * 16 or 32 bytes of input data converted to hex + ASCII output. * * Given a buffer of u8 data, hex_dump_to_buffer() converts the input data * to a hex + ASCII dump at the supplied memory location. * The converted output is always NUL-terminated. * * E.g.: * hex_dump_to_buffer(frame->data, frame->len, 16, 1, * linebuf, sizeof(linebuf), true); * * example output buffer: * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO */ void hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii) { const u8 *ptr = buf; u8 ch; int j, lx = 0; int ascii_column; if (rowsize != 16 && rowsize != 32) rowsize = 16; if (!len) goto nil; if (len > rowsize) /* limit to one line at a time */ len = rowsize; if ((len % groupsize) != 0) /* no mixed size output */ groupsize = 1; switch (groupsize) { case 8: { const u64 *ptr8 = buf; int ngroups = len / groupsize; for (j = 0; j < ngroups; j++) lx += scnprintf(linebuf + lx, linebuflen - lx, "%s%16.16llx", j ? " " : "", (unsigned long long)*(ptr8 + j)); ascii_column = 17 * ngroups + 2; break; } case 4: { const u32 *ptr4 = buf; int ngroups = len / groupsize; for (j = 0; j < ngroups; j++) lx += scnprintf(linebuf + lx, linebuflen - lx, "%s%8.8x", j ? " " : "", *(ptr4 + j)); ascii_column = 9 * ngroups + 2; break; } case 2: { const u16 *ptr2 = buf; int ngroups = len / groupsize; for (j = 0; j < ngroups; j++) lx += scnprintf(linebuf + lx, linebuflen - lx, "%s%4.4x", j ? " " : "", *(ptr2 + j)); ascii_column = 5 * ngroups + 2; break; } default: for (j = 0; (j < len) && (lx + 3) <= linebuflen; j++) { ch = ptr[j]; linebuf[lx++] = hex_asc_hi(ch); linebuf[lx++] = hex_asc_lo(ch); linebuf[lx++] = ' '; } if (j) lx--; ascii_column = 3 * rowsize + 2; break; } if (!ascii) goto nil; while (lx < (linebuflen - 1) && lx < (ascii_column - 1)) linebuf[lx++] = ' '; for (j = 0; (j < len) && (lx + 2) < linebuflen; j++) { ch = ptr[j]; linebuf[lx++] = (isascii(ch) && isprint(ch)) ? ch : '.'; } nil: linebuf[lx++] = '\0'; } /** * print_hex_dump - print a text hex dump to syslog for a binary blob of data * @level: kernel log level (e.g. KERN_DEBUG) * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @rowsize: number of bytes to print per line; must be 16 or 32 * @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1) * @buf: data blob to dump * @len: number of bytes in the @buf * @ascii: include ASCII after the hex output * * Given a buffer of u8 data, print_hex_dump() prints a hex + ASCII dump * to the kernel log at the specified kernel log level, with an optional * leading prefix. * * print_hex_dump() works on one "line" of output at a time, i.e., * 16 or 32 bytes of input data converted to hex + ASCII output. * print_hex_dump() iterates over the entire input @buf, breaking it into * "line size" chunks to format and print. * * E.g.: * print_hex_dump(KERN_DEBUG, "raw data: ", DUMP_PREFIX_ADDRESS, * 16, 1, frame->data, frame->len, true); * * Example output using %DUMP_PREFIX_OFFSET and 1-byte mode: * 0009ab42: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO * Example output using %DUMP_PREFIX_ADDRESS and 4-byte mode: * ffffffff88089af0: 73727170 77767574 7b7a7978 7f7e7d7c pqrstuvwxyz{|}~. */ void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { const u8 *ptr = buf; int i, linelen, remaining = len; unsigned char linebuf[32 * 3 + 2 + 32 + 1]; if (rowsize != 16 && rowsize != 32) rowsize = 16; for (i = 0; i < len; i += rowsize) { linelen = min(remaining, rowsize); remaining -= rowsize; hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, linebuf, sizeof(linebuf), ascii); switch (prefix_type) { case DUMP_PREFIX_ADDRESS: printk("%s%s%p: %s\n", level, prefix_str, ptr + i, linebuf); break; case DUMP_PREFIX_OFFSET: printk("%s%s%.8x: %s\n", level, prefix_str, i, linebuf); break; default: printk("%s%s%s\n", level, prefix_str, linebuf); break; } } } void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, 16, 1, buf, len, true); } #include "vmwgfx_kms.h" void kms_update(); extern struct drm_device *main_device; typedef struct { kobj_t header; uint32_t *data; uint32_t hot_x; uint32_t hot_y; struct list_head list; }cursor_t; #define CURSOR_WIDTH 64 #define CURSOR_HEIGHT 64 struct tag_display { int x; int y; int width; int height; int bpp; int vrefresh; int pitch; int lfb; int supported_modes; struct drm_device *ddev; struct drm_connector *connector; struct drm_crtc *crtc; struct list_head cursors; cursor_t *cursor; int (*init_cursor)(cursor_t*); cursor_t* (__stdcall *select_cursor)(cursor_t*); void (*show_cursor)(int show); void (__stdcall *move_cursor)(cursor_t *cursor, int x, int y); void (__stdcall *restore_cursor)(int x, int y); void (*disable_mouse)(void); u32 mask_seqno; u32 check_mouse; u32 check_m_pixel; }; static display_t *os_display; static int count_connector_modes(struct drm_connector* connector) { struct drm_display_mode *mode; int count = 0; list_for_each_entry(mode, &connector->modes, head) { count++; }; return count; }; static void __stdcall restore_cursor(int x, int y){}; static void disable_mouse(void) {}; static void __stdcall move_cursor_kms(cursor_t *cursor, int x, int y) { struct drm_crtc *crtc = os_display->crtc; struct vmw_private *dev_priv = vmw_priv(crtc->dev); struct vmw_display_unit *du = vmw_crtc_to_du(crtc); vmw_cursor_update_position(dev_priv, true, x,y); }; static cursor_t* __stdcall select_cursor_kms(cursor_t *cursor) { struct vmw_private *dev_priv = vmw_priv(os_display->ddev); cursor_t *old; old = os_display->cursor; os_display->cursor = cursor; vmw_cursor_update_image(dev_priv, cursor->data, 64, 64, cursor->hot_x, cursor->hot_y); // vmw_cursor_update_position(dev_priv, true, // du->cursor_x + du->hotspot_x, // du->cursor_y + du->hotspot_y); return old; }; int kms_init(struct drm_device *dev) { struct drm_connector *connector; struct drm_connector_helper_funcs *connector_funcs; struct drm_encoder *encoder; struct drm_crtc *crtc = NULL; struct drm_framebuffer *fb; cursor_t *cursor; int mode_count; u32_t ifl; int err; ENTER(); crtc = list_entry(dev->mode_config.crtc_list.next, typeof(*crtc), head); encoder = list_entry(dev->mode_config.encoder_list.next, typeof(*encoder), head); connector = list_entry(dev->mode_config.connector_list.next, typeof(*connector), head); connector->encoder = encoder; mode_count = count_connector_modes(connector); if(mode_count == 0) { struct drm_display_mode *mode; connector->funcs->fill_modes(connector, dev->mode_config.max_width, dev->mode_config.max_height); list_for_each_entry(mode, &connector->modes, head) mode_count++; }; printf("%s %d\n",__FUNCTION__, mode_count); DRM_DEBUG_KMS("CONNECTOR %x ID:%d status:%d ENCODER %x CRTC %x ID:%d\n", connector, connector->base.id, connector->status, connector->encoder, crtc, crtc->base.id ); DRM_DEBUG_KMS("[Select CRTC:%d]\n", crtc->base.id); os_display = GetDisplay(); ifl = safe_cli(); { os_display->ddev = dev; os_display->connector = connector; os_display->crtc = crtc; os_display->supported_modes = mode_count; os_display->restore_cursor(0,0); os_display->select_cursor = select_cursor_kms; os_display->show_cursor = NULL; os_display->move_cursor = move_cursor_kms; os_display->restore_cursor = restore_cursor; os_display->disable_mouse = disable_mouse; select_cursor_kms(os_display->cursor); }; safe_sti(ifl); #ifdef __HWA__ err = init_bitmaps(); #endif LEAVE(); return 0; }; void kms_update() { struct vmw_private *dev_priv = vmw_priv(main_device); size_t fifo_size; int i; struct { uint32_t header; SVGAFifoCmdUpdate body; } *cmd; fifo_size = sizeof(*cmd); cmd = vmw_fifo_reserve(dev_priv, fifo_size); if (unlikely(cmd == NULL)) { DRM_ERROR("Fifo reserve failed.\n"); return; } cmd->header = cpu_to_le32(SVGA_CMD_UPDATE); cmd->body.x = 0; cmd->body.y = 0; cmd->body.width = os_display->width; //cpu_to_le32(clips->x2 - clips->x1); cmd->body.height = os_display->height; //cpu_to_le32(clips->y2 - clips->y1); vmw_fifo_commit(dev_priv, fifo_size); } int get_videomodes(videomode_t *mode, int *count) { int err = -1; dbgprintf("mode %x count %d\n", mode, *count); if( *count == 0 ) { *count = os_display->supported_modes; err = 0; } else if( mode != NULL ) { struct drm_display_mode *drmmode; int i = 0; if( *count > os_display->supported_modes) *count = os_display->supported_modes; list_for_each_entry(drmmode, &os_display->connector->modes, head) { if( i < *count) { mode->width = drm_mode_width(drmmode); mode->height = drm_mode_height(drmmode); mode->bpp = 32; mode->freq = drm_mode_vrefresh(drmmode); i++; mode++; } else break; }; *count = i; err = 0; }; return err; }; bool set_mode(struct drm_device *dev, struct drm_connector *connector, videomode_t *reqmode, bool strict); int set_user_mode(videomode_t *mode) { int err = -1; dbgprintf("width %d height %d vrefresh %d\n", mode->width, mode->height, mode->freq); if( (mode->width != 0) && (mode->height != 0) && (mode->freq != 0 ) && ( (mode->width != os_display->width) || (mode->height != os_display->height) || (mode->freq != os_display->vrefresh) ) ) { if( set_mode(os_display->ddev, os_display->connector, mode, true) ) err = 0; }; return err; }; struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) { struct file *filep; int count; filep = malloc(sizeof(*filep)); if(unlikely(filep == NULL)) return ERR_PTR(-ENOMEM); count = size / PAGE_SIZE; filep->pages = kzalloc(sizeof(struct page *) * count, 0); if(unlikely(filep->pages == NULL)) { kfree(filep); return ERR_PTR(-ENOMEM); }; filep->count = count; filep->allocated = 0; filep->vma = NULL; // printf("%s file %p pages %p count %d\n", // __FUNCTION__,filep, filep->pages, count); return filep; } struct page *shmem_read_mapping_page_gfp(struct file *filep, pgoff_t index, gfp_t gfp) { struct page *page; // dbgprintf("%s, file %p index %d\n", __FUNCTION__, filep, index); if(unlikely(index >= filep->count)) return ERR_PTR(-EINVAL); page = filep->pages[index]; if(unlikely(page == NULL)) { page = (struct page *)AllocPage(); if(unlikely(page == NULL)) return ERR_PTR(-ENOMEM); filep->pages[index] = page; }; return page; };