/* * DMA Pool allocator * * Copyright 2001 David Brownell * Copyright 2007 Intel Corporation * Author: Matthew Wilcox * * This software may be redistributed and/or modified under the terms of * the GNU General Public License ("GPL") version 2 as published by the * Free Software Foundation. * * This allocator returns small blocks of a given size which are DMA-able by * the given device. It uses the dma_alloc_coherent page allocator to get * new pages, then splits them up into blocks of the required size. * Many older drivers still have their own code to do this. * * The current design of this allocator is fairly simple. The pool is * represented by the 'struct dma_pool' which keeps a doubly-linked list of * allocated pages. Each page in the page_list is split into blocks of at * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked * list of free blocks within the page. Used blocks aren't tracked, but we * keep a count of how many are currently allocated from each page. */ #include #include #include #include #include struct dma_pool { /* the pool */ struct list_head page_list; struct mutex lock; size_t size; size_t allocation; size_t boundary; struct list_head pools; }; struct dma_page { /* cacheable header for 'allocation' bytes */ struct list_head page_list; void *vaddr; dma_addr_t dma; unsigned int in_use; unsigned int offset; }; static DEFINE_MUTEX(pools_lock); /** * dma_pool_create - Creates a pool of consistent memory blocks, for dma. * @name: name of pool, for diagnostics * @dev: device that will be doing the DMA * @size: size of the blocks in this pool. * @align: alignment requirement for blocks; must be a power of two * @boundary: returned blocks won't cross this power of two boundary * Context: !in_interrupt() * * Returns a dma allocation pool with the requested characteristics, or * null if one can't be created. Given one of these pools, dma_pool_alloc() * may be used to allocate memory. Such memory will all have "consistent" * DMA mappings, accessible by the device and its driver without using * cache flushing primitives. The actual size of blocks allocated may be * larger than requested because of alignment. * * If @boundary is nonzero, objects returned from dma_pool_alloc() won't * cross that size boundary. This is useful for devices which have * addressing restrictions on individual DMA transfers, such as not crossing * boundaries of 4KBytes. */ struct dma_pool *dma_pool_create(const char *name, struct device *dev, size_t size, size_t align, size_t boundary) { struct dma_pool *retval; size_t allocation; if (align == 0) { align = 1; } else if (align & (align - 1)) { return NULL; } if (size == 0) { return NULL; } else if (size < 4) { size = 4; } if ((size % align) != 0) size = ALIGN(size, align); allocation = max_t(size_t, size, PAGE_SIZE); allocation = (allocation+0x7FFF) & ~0x7FFF; if (!boundary) { boundary = allocation; } else if ((boundary < size) || (boundary & (boundary - 1))) { return NULL; } retval = kmalloc(sizeof(*retval), GFP_KERNEL); if (!retval) return retval; INIT_LIST_HEAD(&retval->page_list); // spin_lock_init(&retval->lock); retval->size = size; retval->boundary = boundary; retval->allocation = allocation; INIT_LIST_HEAD(&retval->pools); return retval; } static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) { unsigned int offset = 0; unsigned int next_boundary = pool->boundary; do { unsigned int next = offset + pool->size; if (unlikely((next + pool->size) >= next_boundary)) { next = next_boundary; next_boundary += pool->boundary; } *(int *)(page->vaddr + offset) = next; offset = next; } while (offset < pool->allocation); } static struct dma_page *pool_alloc_page(struct dma_pool *pool) { struct dma_page *page; page = malloc(sizeof(*page)); if (!page) return NULL; page->vaddr = (void*)KernelAlloc(pool->allocation); dbgprintf("%s 0x%0x ",__FUNCTION__, page->vaddr); if (page->vaddr) { page->dma = GetPgAddr(page->vaddr); dbgprintf("dma 0x%0x\n", page->dma); pool_initialise_page(pool, page); list_add(&page->page_list, &pool->page_list); page->in_use = 0; page->offset = 0; } else { free(page); page = NULL; } return page; } static inline int is_page_busy(struct dma_page *page) { return page->in_use != 0; } static void pool_free_page(struct dma_pool *pool, struct dma_page *page) { dma_addr_t dma = page->dma; KernelFree(page->vaddr); list_del(&page->page_list); free(page); } /** * dma_pool_destroy - destroys a pool of dma memory blocks. * @pool: dma pool that will be destroyed * Context: !in_interrupt() * * Caller guarantees that no more memory from the pool is in use, * and that nothing will try to use the pool after this call. */ void dma_pool_destroy(struct dma_pool *pool) { mutex_lock(&pools_lock); list_del(&pool->pools); mutex_unlock(&pools_lock); while (!list_empty(&pool->page_list)) { struct dma_page *page; page = list_entry(pool->page_list.next, struct dma_page, page_list); if (is_page_busy(page)) { printk(KERN_ERR "dma_pool_destroy %p busy\n", page->vaddr); /* leak the still-in-use consistent memory */ list_del(&page->page_list); kfree(page); } else pool_free_page(pool, page); } kfree(pool); } /** * dma_pool_alloc - get a block of consistent memory * @pool: dma pool that will produce the block * @mem_flags: GFP_* bitmask * @handle: pointer to dma address of block * * This returns the kernel virtual address of a currently unused block, * and reports its dma address through the handle. * If such a memory block can't be allocated, %NULL is returned. */ void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle) { u32_t efl; struct dma_page *page; size_t offset; void *retval; efl = safe_cli(); restart: list_for_each_entry(page, &pool->page_list, page_list) { if (page->offset < pool->allocation) goto ready; } page = pool_alloc_page(pool); if (!page) { retval = NULL; goto done; } ready: page->in_use++; offset = page->offset; page->offset = *(int *)(page->vaddr + offset); retval = offset + page->vaddr; *handle = offset + page->dma; done: safe_sti(efl); return retval; } static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) { struct dma_page *page; u32_t efl; efl = safe_cli(); list_for_each_entry(page, &pool->page_list, page_list) { if (dma < page->dma) continue; if (dma < (page->dma + pool->allocation)) goto done; } page = NULL; done: safe_sti(efl); return page; } /** * dma_pool_free - put block back into dma pool * @pool: the dma pool holding the block * @vaddr: virtual address of block * @dma: dma address of block * * Caller promises neither device nor driver will again touch this block * unless it is first re-allocated. */ void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) { struct dma_page *page; unsigned long flags; unsigned int offset; u32_t efl; page = pool_find_page(pool, dma); if (!page) { printk(KERN_ERR "dma_pool_free %p/%lx (bad dma)\n", vaddr, (unsigned long)dma); return; } offset = vaddr - page->vaddr; efl = safe_cli(); { page->in_use--; *(int *)vaddr = page->offset; page->offset = offset; /* * Resist a temptation to do * if (!is_page_busy(page)) pool_free_page(pool, page); * Better have a few empty pages hang around. */ }safe_sti(efl); }