kolibrios/contrib/sdk/sources/Mesa/include/CL/cl.hpp
Sergey Semyonov (Serge) 0d733fd5e8 Mesa-9.2.2
git-svn-id: svn://kolibrios.org@4358 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-12-15 08:37:16 +00:00

4012 lines
110 KiB
C++

/*******************************************************************************
* Copyright (c) 2008-2010 The Khronos Group Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and/or associated documentation files (the
* "Materials"), to deal in the Materials without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Materials, and to
* permit persons to whom the Materials are furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
******************************************************************************/
/*! \file
*
* \brief C++ bindings for OpenCL 1.0 (rev 48) and OpenCL 1.1 (rev 33)
* \author Benedict R. Gaster and Laurent Morichetti
*
* Additions and fixes from Brian Cole, March 3rd 2010.
*
* \version 1.1
* \date June 2010
*
* Optional extension support
*
* cl
* cl_ext_device_fission
* #define USE_CL_DEVICE_FISSION
*/
/*! \mainpage
* \section intro Introduction
* For many large applications C++ is the language of choice and so it seems
* reasonable to define C++ bindings for OpenCL.
*
*
* The interface is contained with a single C++ header file \em cl.hpp and all
* definitions are contained within the namespace \em cl. There is no additional
* requirement to include \em cl.h and to use either the C++ or original C
* bindings it is enough to simply include \em cl.hpp.
*
* The bindings themselves are lightweight and correspond closely to the
* underlying C API. Using the C++ bindings introduces no additional execution
* overhead.
*
* For detail documentation on the bindings see:
*
* The OpenCL C++ Wrapper API 1.1 (revision 04)
* http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.1.pdf
*
* \section example Example
*
* The following example shows a general use case for the C++
* bindings, including support for the optional exception feature and
* also the supplied vector and string classes, see following sections for
* decriptions of these features.
*
* \code
* #define __CL_ENABLE_EXCEPTIONS
*
* #if defined(__APPLE__) || defined(__MACOSX)
* #include <OpenCL/cl.hpp>
* #else
* #include <CL/cl.hpp>
* #endif
* #include <cstdio>
* #include <cstdlib>
* #include <iostream>
*
* const char * helloStr = "__kernel void "
* "hello(void) "
* "{ "
* " "
* "} ";
*
* int
* main(void)
* {
* cl_int err = CL_SUCCESS;
* try {
*
* std::vector<cl::Platform> platforms;
* cl::Platform::get(&platforms);
* if (platforms.size() == 0) {
* std::cout << "Platform size 0\n";
* return -1;
* }
*
* cl_context_properties properties[] =
* { CL_CONTEXT_PLATFORM, (cl_context_properties)(platforms[0])(), 0};
* cl::Context context(CL_DEVICE_TYPE_CPU, properties);
*
* std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
*
* cl::Program::Sources source(1,
* std::make_pair(helloStr,strlen(helloStr)));
* cl::Program program_ = cl::Program(context, source);
* program_.build(devices);
*
* cl::Kernel kernel(program_, "hello", &err);
*
* cl::Event event;
* cl::CommandQueue queue(context, devices[0], 0, &err);
* queue.enqueueNDRangeKernel(
* kernel,
* cl::NullRange,
* cl::NDRange(4,4),
* cl::NullRange,
* NULL,
* &event);
*
* event.wait();
* }
* catch (cl::Error err) {
* std::cerr
* << "ERROR: "
* << err.what()
* << "("
* << err.err()
* << ")"
* << std::endl;
* }
*
* return EXIT_SUCCESS;
* }
*
* \endcode
*
*/
#ifndef CL_HPP_
#define CL_HPP_
#ifdef _WIN32
#include <windows.h>
#include <malloc.h>
#if defined(USE_DX_INTEROP)
#include <CL/cl_d3d10.h>
#endif
#endif // _WIN32
//
#if defined(USE_CL_DEVICE_FISSION)
#include <CL/cl_ext.h>
#endif
#if defined(__APPLE__) || defined(__MACOSX)
#include <OpenGL/OpenGL.h>
#include <OpenCL/opencl.h>
#else
#include <GL/gl.h>
#include <CL/opencl.h>
#endif // !__APPLE__
#if !defined(CL_CALLBACK)
#define CL_CALLBACK
#endif //CL_CALLBACK
#include <utility>
#if !defined(__NO_STD_VECTOR)
#include <vector>
#endif
#if !defined(__NO_STD_STRING)
#include <string>
#endif
#if defined(linux) || defined(__APPLE__) || defined(__MACOSX)
# include <alloca.h>
#endif // linux
#include <cstring>
/*! \namespace cl
*
* \brief The OpenCL C++ bindings are defined within this namespace.
*
*/
namespace cl {
#define __INIT_CL_EXT_FCN_PTR(name) \
if(!pfn_##name) { \
pfn_##name = (PFN_##name) \
clGetExtensionFunctionAddress(#name); \
if(!pfn_##name) { \
} \
}
class Program;
class Device;
class Context;
class CommandQueue;
class Memory;
#if defined(__CL_ENABLE_EXCEPTIONS)
#include <exception>
/*! \class Error
* \brief Exception class
*/
class Error : public std::exception
{
private:
cl_int err_;
const char * errStr_;
public:
/*! Create a new CL error exception for a given error code
* and corresponding message.
*/
Error(cl_int err, const char * errStr = NULL) : err_(err), errStr_(errStr)
{}
~Error() throw() {}
/*! \brief Get error string associated with exception
*
* \return A memory pointer to the error message string.
*/
virtual const char * what() const throw ()
{
if (errStr_ == NULL) {
return "empty";
}
else {
return errStr_;
}
}
/*! \brief Get error code associated with exception
*
* \return The error code.
*/
const cl_int err(void) const { return err_; }
};
#define __ERR_STR(x) #x
#else
#define __ERR_STR(x) NULL
#endif // __CL_ENABLE_EXCEPTIONS
//! \cond DOXYGEN_DETAIL
#if !defined(__CL_USER_OVERRIDE_ERROR_STRINGS)
#define __GET_DEVICE_INFO_ERR __ERR_STR(clgetDeviceInfo)
#define __GET_PLATFORM_INFO_ERR __ERR_STR(clGetPlatformInfo)
#define __GET_DEVICE_IDS_ERR __ERR_STR(clGetDeviceIDs)
#define __GET_PLATFORM_IDS_ERR __ERR_STR(clGetPlatformIDs)
#define __GET_CONTEXT_INFO_ERR __ERR_STR(clGetContextInfo)
#define __GET_EVENT_INFO_ERR __ERR_STR(clGetEventInfo)
#define __GET_EVENT_PROFILE_INFO_ERR __ERR_STR(clGetEventProfileInfo)
#define __GET_MEM_OBJECT_INFO_ERR __ERR_STR(clGetMemObjectInfo)
#define __GET_IMAGE_INFO_ERR __ERR_STR(clGetImageInfo)
#define __GET_SAMPLER_INFO_ERR __ERR_STR(clGetSamplerInfo)
#define __GET_KERNEL_INFO_ERR __ERR_STR(clGetKernelInfo)
#define __GET_KERNEL_WORK_GROUP_INFO_ERR __ERR_STR(clGetKernelWorkGroupInfo)
#define __GET_PROGRAM_INFO_ERR __ERR_STR(clGetProgramInfo)
#define __GET_PROGRAM_BUILD_INFO_ERR __ERR_STR(clGetProgramBuildInfo)
#define __GET_COMMAND_QUEUE_INFO_ERR __ERR_STR(clGetCommandQueueInfo)
#define __CREATE_CONTEXT_FROM_TYPE_ERR __ERR_STR(clCreateContextFromType)
#define __GET_SUPPORTED_IMAGE_FORMATS_ERR __ERR_STR(clGetSupportedImageFormats)
#define __CREATE_BUFFER_ERR __ERR_STR(clCreateBuffer)
#define __CREATE_SUBBUFFER_ERR __ERR_STR(clCreateSubBuffer)
#define __CREATE_GL_BUFFER_ERR __ERR_STR(clCreateFromGLBuffer)
#define __GET_GL_OBJECT_INFO_ERR __ERR_STR(clGetGLObjectInfo)
#define __CREATE_IMAGE2D_ERR __ERR_STR(clCreateImage2D)
#define __CREATE_IMAGE3D_ERR __ERR_STR(clCreateImage3D)
#define __CREATE_SAMPLER_ERR __ERR_STR(clCreateSampler)
#define __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR __ERR_STR(clSetMemObjectDestructorCallback)
#define __CREATE_USER_EVENT_ERR __ERR_STR(clCreateUserEvent)
#define __SET_USER_EVENT_STATUS_ERR __ERR_STR(clSetUserEventStatus)
#define __SET_EVENT_CALLBACK_ERR __ERR_STR(clSetEventCallback)
#define __WAIT_FOR_EVENTS_ERR __ERR_STR(clWaitForEvents)
#define __CREATE_KERNEL_ERR __ERR_STR(clCreateKernel)
#define __SET_KERNEL_ARGS_ERR __ERR_STR(clSetKernelArg)
#define __CREATE_PROGRAM_WITH_SOURCE_ERR __ERR_STR(clCreateProgramWithSource)
#define __CREATE_PROGRAM_WITH_BINARY_ERR __ERR_STR(clCreateProgramWithBinary)
#define __BUILD_PROGRAM_ERR __ERR_STR(clBuildProgram)
#define __CREATE_KERNELS_IN_PROGRAM_ERR __ERR_STR(clCreateKernelsInProgram)
#define __CREATE_COMMAND_QUEUE_ERR __ERR_STR(clCreateCommandQueue)
#define __SET_COMMAND_QUEUE_PROPERTY_ERR __ERR_STR(clSetCommandQueueProperty)
#define __ENQUEUE_READ_BUFFER_ERR __ERR_STR(clEnqueueReadBuffer)
#define __ENQUEUE_READ_BUFFER_RECT_ERR __ERR_STR(clEnqueueReadBufferRect)
#define __ENQUEUE_WRITE_BUFFER_ERR __ERR_STR(clEnqueueWriteBuffer)
#define __ENQUEUE_WRITE_BUFFER_RECT_ERR __ERR_STR(clEnqueueWriteBufferRect)
#define __ENQEUE_COPY_BUFFER_ERR __ERR_STR(clEnqueueCopyBuffer)
#define __ENQEUE_COPY_BUFFER_RECT_ERR __ERR_STR(clEnqueueCopyBufferRect)
#define __ENQUEUE_READ_IMAGE_ERR __ERR_STR(clEnqueueReadImage)
#define __ENQUEUE_WRITE_IMAGE_ERR __ERR_STR(clEnqueueWriteImage)
#define __ENQUEUE_COPY_IMAGE_ERR __ERR_STR(clEnqueueCopyImage)
#define __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR __ERR_STR(clEnqueueCopyImageToBuffer)
#define __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR __ERR_STR(clEnqueueCopyBufferToImage)
#define __ENQUEUE_MAP_BUFFER_ERR __ERR_STR(clEnqueueMapBuffer)
#define __ENQUEUE_MAP_IMAGE_ERR __ERR_STR(clEnqueueMapImage)
#define __ENQUEUE_UNMAP_MEM_OBJECT_ERR __ERR_STR(clEnqueueUnMapMemObject)
#define __ENQUEUE_NDRANGE_KERNEL_ERR __ERR_STR(clEnqueueNDRangeKernel)
#define __ENQUEUE_TASK_ERR __ERR_STR(clEnqueueTask)
#define __ENQUEUE_NATIVE_KERNEL __ERR_STR(clEnqueueNativeKernel)
#define __ENQUEUE_MARKER_ERR __ERR_STR(clEnqueueMarker)
#define __ENQUEUE_WAIT_FOR_EVENTS_ERR __ERR_STR(clEnqueueWaitForEvents)
#define __ENQUEUE_BARRIER_ERR __ERR_STR(clEnqueueBarrier)
#define __ENQUEUE_ACQUIRE_GL_ERR __ERR_STR(clEnqueueAcquireGLObjects)
#define __ENQUEUE_RELEASE_GL_ERR __ERR_STR(clEnqueueReleaseGLObjects)
#define __UNLOAD_COMPILER_ERR __ERR_STR(clUnloadCompiler)
#define __FLUSH_ERR __ERR_STR(clFlush)
#define __FINISH_ERR __ERR_STR(clFinish)
#define __CREATE_SUB_DEVICES __ERR_STR(clCreateSubDevicesEXT)
#endif // __CL_USER_OVERRIDE_ERROR_STRINGS
//! \endcond
/*! \class string
* \brief Simple string class, that provides a limited subset of std::string
* functionality but avoids many of the issues that come with that class.
*/
class string
{
private:
::size_t size_;
char * str_;
public:
string(void) : size_(0), str_(NULL)
{
}
string(char * str, ::size_t size) :
size_(size),
str_(NULL)
{
str_ = new char[size_+1];
if (str_ != NULL) {
memcpy(str_, str, size_ * sizeof(char));
str_[size_] = '\0';
}
else {
size_ = 0;
}
}
string(char * str) :
str_(NULL)
{
size_= ::strlen(str);
str_ = new char[size_ + 1];
if (str_ != NULL) {
memcpy(str_, str, (size_ + 1) * sizeof(char));
}
else {
size_ = 0;
}
}
string& operator=(const string& rhs)
{
if (this == &rhs) {
return *this;
}
if (rhs.size_ == 0 || rhs.str_ == NULL) {
size_ = 0;
str_ = NULL;
}
else {
size_ = rhs.size_;
str_ = new char[size_ + 1];
if (str_ != NULL) {
memcpy(str_, rhs.str_, (size_ + 1) * sizeof(char));
}
else {
size_ = 0;
}
}
return *this;
}
string(const string& rhs)
{
*this = rhs;
}
~string()
{
if (str_ != NULL) {
delete[] str_;
}
}
::size_t size(void) const { return size_; }
::size_t length(void) const { return size(); }
const char * c_str(void) const { return (str_) ? str_ : "";}
};
#if !defined(__USE_DEV_STRING) && !defined(__NO_STD_STRING)
#include <string>
typedef std::string STRING_CLASS;
#elif !defined(__USE_DEV_STRING)
typedef cl::string STRING_CLASS;
#endif
#if !defined(__USE_DEV_VECTOR) && !defined(__NO_STD_VECTOR)
#include <vector>
#define VECTOR_CLASS std::vector
#elif !defined(__USE_DEV_VECTOR)
#define VECTOR_CLASS cl::vector
#endif
#if !defined(__MAX_DEFAULT_VECTOR_SIZE)
#define __MAX_DEFAULT_VECTOR_SIZE 10
#endif
/*! \class vector
* \brief Fixed sized vector implementation that mirroring
* std::vector functionality.
*/
template <typename T, unsigned int N = __MAX_DEFAULT_VECTOR_SIZE>
class vector
{
private:
T data_[N];
unsigned int size_;
bool empty_;
public:
vector() :
size_(-1),
empty_(true)
{}
~vector() {}
unsigned int size(void) const
{
return size_ + 1;
}
void clear()
{
size_ = -1;
empty_ = true;
}
void push_back (const T& x)
{
if (size() < N) {
size_++;
data_[size_] = x;
empty_ = false;
}
}
void pop_back(void)
{
if (!empty_) {
data_[size_].~T();
size_--;
if (size_ == -1) {
empty_ = true;
}
}
}
vector(const vector<T, N>& vec) :
size_(vec.size_),
empty_(vec.empty_)
{
if (!empty_) {
memcpy(&data_[0], &vec.data_[0], size() * sizeof(T));
}
}
vector(unsigned int size, const T& val = T()) :
size_(-1),
empty_(true)
{
for (unsigned int i = 0; i < size; i++) {
push_back(val);
}
}
vector<T, N>& operator=(const vector<T, N>& rhs)
{
if (this == &rhs) {
return *this;
}
size_ = rhs.size_;
empty_ = rhs.empty_;
if (!empty_) {
memcpy(&data_[0], &rhs.data_[0], size() * sizeof(T));
}
return *this;
}
bool operator==(vector<T,N> &vec)
{
if (empty_ && vec.empty_) {
return true;
}
if (size() != vec.size()) {
return false;
}
return memcmp(&data_[0], &vec.data_[0], size() * sizeof(T)) == 0 ? true : false;
}
operator T* () { return data_; }
operator const T* () const { return data_; }
bool empty (void) const
{
return empty_;
}
unsigned int max_size (void) const
{
return N;
}
unsigned int capacity () const
{
return sizeof(T) * N;
}
T& operator[](int index)
{
return data_[index];
}
T operator[](int index) const
{
return data_[index];
}
template<class I>
void assign(I start, I end)
{
clear();
while(start < end) {
push_back(*start);
start++;
}
}
/*! \class iterator
* \brief Iterator class for vectors
*/
class iterator
{
private:
vector<T,N> vec_;
int index_;
bool initialized_;
public:
iterator(void) :
index_(-1),
initialized_(false)
{
index_ = -1;
initialized_ = false;
}
~iterator(void) {}
static iterator begin(vector<T,N> &vec)
{
iterator i;
if (!vec.empty()) {
i.index_ = 0;
}
i.vec_ = vec;
i.initialized_ = true;
return i;
}
static iterator end(vector<T,N> &vec)
{
iterator i;
if (!vec.empty()) {
i.index_ = vec.size();
}
i.vec_ = vec;
i.initialized_ = true;
return i;
}
bool operator==(iterator i)
{
return ((vec_ == i.vec_) &&
(index_ == i.index_) &&
(initialized_ == i.initialized_));
}
bool operator!=(iterator i)
{
return (!(*this==i));
}
void operator++()
{
index_++;
}
void operator++(int x)
{
index_ += x;
}
void operator--()
{
index_--;
}
void operator--(int x)
{
index_ -= x;
}
T operator *()
{
return vec_[index_];
}
};
iterator begin(void)
{
return iterator::begin(*this);
}
iterator end(void)
{
return iterator::end(*this);
}
T& front(void)
{
return data_[0];
}
T& back(void)
{
return data_[size_];
}
const T& front(void) const
{
return data_[0];
}
const T& back(void) const
{
return data_[size_];
}
};
/*!
* \brief size_t class used to interface between C++ and
* OpenCL C calls that require arrays of size_t values, who's
* size is known statically.
*/
template <int N>
struct size_t : public cl::vector< ::size_t, N> { };
namespace detail {
// GetInfo help struct
template <typename Functor, typename T>
struct GetInfoHelper
{
static cl_int
get(Functor f, cl_uint name, T* param)
{
return f(name, sizeof(T), param, NULL);
}
};
// Specialized GetInfoHelper for VECTOR_CLASS params
template <typename Func, typename T>
struct GetInfoHelper<Func, VECTOR_CLASS<T> >
{
static cl_int get(Func f, cl_uint name, VECTOR_CLASS<T>* param)
{
::size_t required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
T* value = (T*) alloca(required);
err = f(name, required, value, NULL);
if (err != CL_SUCCESS) {
return err;
}
param->assign(&value[0], &value[required/sizeof(T)]);
return CL_SUCCESS;
}
};
// Specialized for getInfo<CL_PROGRAM_BINARIES>
template <typename Func>
struct GetInfoHelper<Func, VECTOR_CLASS<char *> >
{
static cl_int
get(Func f, cl_uint name, VECTOR_CLASS<char *>* param)
{
cl_uint err = f(name, param->size() * sizeof(char *), &(*param)[0], NULL);
if (err != CL_SUCCESS) {
return err;
}
return CL_SUCCESS;
}
};
// Specialized GetInfoHelper for STRING_CLASS params
template <typename Func>
struct GetInfoHelper<Func, STRING_CLASS>
{
static cl_int get(Func f, cl_uint name, STRING_CLASS* param)
{
::size_t required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
char* value = (char*) alloca(required);
err = f(name, required, value, NULL);
if (err != CL_SUCCESS) {
return err;
}
*param = value;
return CL_SUCCESS;
}
};
#define __GET_INFO_HELPER_WITH_RETAIN(CPP_TYPE) \
namespace detail { \
template <typename Func> \
struct GetInfoHelper<Func, CPP_TYPE> \
{ \
static cl_int get(Func f, cl_uint name, CPP_TYPE* param) \
{ \
cl_uint err = f(name, sizeof(CPP_TYPE), param, NULL); \
if (err != CL_SUCCESS) { \
return err; \
} \
\
return ReferenceHandler<CPP_TYPE::cl_type>::retain((*param)()); \
} \
}; \
}
#define __PARAM_NAME_INFO_1_0(F) \
F(cl_platform_info, CL_PLATFORM_PROFILE, STRING_CLASS) \
F(cl_platform_info, CL_PLATFORM_VERSION, STRING_CLASS) \
F(cl_platform_info, CL_PLATFORM_NAME, STRING_CLASS) \
F(cl_platform_info, CL_PLATFORM_VENDOR, STRING_CLASS) \
F(cl_platform_info, CL_PLATFORM_EXTENSIONS, STRING_CLASS) \
\
F(cl_device_info, CL_DEVICE_TYPE, cl_device_type) \
F(cl_device_info, CL_DEVICE_VENDOR_ID, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_COMPUTE_UNITS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WORK_GROUP_SIZE, ::size_t) \
F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_SIZES, VECTOR_CLASS< ::size_t>) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_CLOCK_FREQUENCY, cl_uint) \
F(cl_device_info, CL_DEVICE_ADDRESS_BITS, cl_bitfield) \
F(cl_device_info, CL_DEVICE_MAX_READ_IMAGE_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_MEM_ALLOC_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_WIDTH, ::size_t) \
F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_HEIGHT, ::size_t) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_WIDTH, ::size_t) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_HEIGHT, ::size_t) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_DEPTH, ::size_t) \
F(cl_device_info, CL_DEVICE_IMAGE_SUPPORT, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_PARAMETER_SIZE, ::size_t) \
F(cl_device_info, CL_DEVICE_MAX_SAMPLERS, cl_uint) \
F(cl_device_info, CL_DEVICE_MEM_BASE_ADDR_ALIGN, cl_uint) \
F(cl_device_info, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, cl_uint) \
F(cl_device_info, CL_DEVICE_SINGLE_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, cl_device_mem_cache_type) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, cl_uint)\
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_MAX_CONSTANT_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_LOCAL_MEM_TYPE, cl_device_local_mem_type) \
F(cl_device_info, CL_DEVICE_LOCAL_MEM_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_ERROR_CORRECTION_SUPPORT, cl_bool) \
F(cl_device_info, CL_DEVICE_PROFILING_TIMER_RESOLUTION, ::size_t) \
F(cl_device_info, CL_DEVICE_ENDIAN_LITTLE, cl_bool) \
F(cl_device_info, CL_DEVICE_AVAILABLE, cl_bool) \
F(cl_device_info, CL_DEVICE_COMPILER_AVAILABLE, cl_bool) \
F(cl_device_info, CL_DEVICE_EXECUTION_CAPABILITIES, cl_device_exec_capabilities) \
F(cl_device_info, CL_DEVICE_QUEUE_PROPERTIES, cl_command_queue_properties) \
F(cl_device_info, CL_DEVICE_PLATFORM, cl_platform_id) \
F(cl_device_info, CL_DEVICE_NAME, STRING_CLASS) \
F(cl_device_info, CL_DEVICE_VENDOR, STRING_CLASS) \
F(cl_device_info, CL_DRIVER_VERSION, STRING_CLASS) \
F(cl_device_info, CL_DEVICE_PROFILE, STRING_CLASS) \
F(cl_device_info, CL_DEVICE_VERSION, STRING_CLASS) \
F(cl_device_info, CL_DEVICE_EXTENSIONS, STRING_CLASS) \
\
F(cl_context_info, CL_CONTEXT_REFERENCE_COUNT, cl_uint) \
F(cl_context_info, CL_CONTEXT_DEVICES, VECTOR_CLASS<Device>) \
F(cl_context_info, CL_CONTEXT_PROPERTIES, VECTOR_CLASS<cl_context_properties>) \
\
F(cl_event_info, CL_EVENT_COMMAND_QUEUE, cl::CommandQueue) \
F(cl_event_info, CL_EVENT_COMMAND_TYPE, cl_command_type) \
F(cl_event_info, CL_EVENT_REFERENCE_COUNT, cl_uint) \
F(cl_event_info, CL_EVENT_COMMAND_EXECUTION_STATUS, cl_uint) \
\
F(cl_profiling_info, CL_PROFILING_COMMAND_QUEUED, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_SUBMIT, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_START, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_END, cl_ulong) \
\
F(cl_mem_info, CL_MEM_TYPE, cl_mem_object_type) \
F(cl_mem_info, CL_MEM_FLAGS, cl_mem_flags) \
F(cl_mem_info, CL_MEM_SIZE, ::size_t) \
F(cl_mem_info, CL_MEM_HOST_PTR, void*) \
F(cl_mem_info, CL_MEM_MAP_COUNT, cl_uint) \
F(cl_mem_info, CL_MEM_REFERENCE_COUNT, cl_uint) \
F(cl_mem_info, CL_MEM_CONTEXT, cl::Context) \
\
F(cl_image_info, CL_IMAGE_FORMAT, cl_image_format) \
F(cl_image_info, CL_IMAGE_ELEMENT_SIZE, ::size_t) \
F(cl_image_info, CL_IMAGE_ROW_PITCH, ::size_t) \
F(cl_image_info, CL_IMAGE_SLICE_PITCH, ::size_t) \
F(cl_image_info, CL_IMAGE_WIDTH, ::size_t) \
F(cl_image_info, CL_IMAGE_HEIGHT, ::size_t) \
F(cl_image_info, CL_IMAGE_DEPTH, ::size_t) \
\
F(cl_sampler_info, CL_SAMPLER_REFERENCE_COUNT, cl_uint) \
F(cl_sampler_info, CL_SAMPLER_CONTEXT, cl::Context) \
F(cl_sampler_info, CL_SAMPLER_NORMALIZED_COORDS, cl_addressing_mode) \
F(cl_sampler_info, CL_SAMPLER_ADDRESSING_MODE, cl_filter_mode) \
F(cl_sampler_info, CL_SAMPLER_FILTER_MODE, cl_bool) \
\
F(cl_program_info, CL_PROGRAM_REFERENCE_COUNT, cl_uint) \
F(cl_program_info, CL_PROGRAM_CONTEXT, cl::Context) \
F(cl_program_info, CL_PROGRAM_NUM_DEVICES, cl_uint) \
F(cl_program_info, CL_PROGRAM_DEVICES, VECTOR_CLASS<cl_device_id>) \
F(cl_program_info, CL_PROGRAM_SOURCE, STRING_CLASS) \
F(cl_program_info, CL_PROGRAM_BINARY_SIZES, VECTOR_CLASS< ::size_t>) \
F(cl_program_info, CL_PROGRAM_BINARIES, VECTOR_CLASS<char *>) \
\
F(cl_program_build_info, CL_PROGRAM_BUILD_STATUS, cl_build_status) \
F(cl_program_build_info, CL_PROGRAM_BUILD_OPTIONS, STRING_CLASS) \
F(cl_program_build_info, CL_PROGRAM_BUILD_LOG, STRING_CLASS) \
\
F(cl_kernel_info, CL_KERNEL_FUNCTION_NAME, STRING_CLASS) \
F(cl_kernel_info, CL_KERNEL_NUM_ARGS, cl_uint) \
F(cl_kernel_info, CL_KERNEL_REFERENCE_COUNT, cl_uint) \
F(cl_kernel_info, CL_KERNEL_CONTEXT, cl::Context) \
F(cl_kernel_info, CL_KERNEL_PROGRAM, cl::Program) \
\
F(cl_kernel_work_group_info, CL_KERNEL_WORK_GROUP_SIZE, ::size_t) \
F(cl_kernel_work_group_info, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, cl::size_t<3>) \
F(cl_kernel_work_group_info, CL_KERNEL_LOCAL_MEM_SIZE, cl_ulong) \
\
F(cl_command_queue_info, CL_QUEUE_CONTEXT, cl::Context) \
F(cl_command_queue_info, CL_QUEUE_DEVICE, cl::Device) \
F(cl_command_queue_info, CL_QUEUE_REFERENCE_COUNT, cl_uint) \
F(cl_command_queue_info, CL_QUEUE_PROPERTIES, cl_command_queue_properties)
#if defined(CL_VERSION_1_1)
#define __PARAM_NAME_INFO_1_1(F) \
F(cl_context_info, CL_CONTEXT_NUM_DEVICES, cl_uint)\
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF, cl_uint) \
F(cl_device_info, CL_DEVICE_DOUBLE_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_HALF_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_HOST_UNIFIED_MEMORY, cl_bool) \
\
F(cl_mem_info, CL_MEM_ASSOCIATED_MEMOBJECT, cl::Memory) \
F(cl_mem_info, CL_MEM_OFFSET, ::size_t) \
\
F(cl_kernel_work_group_info, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, ::size_t) \
F(cl_kernel_work_group_info, CL_KERNEL_PRIVATE_MEM_SIZE, cl_ulong) \
\
F(cl_event_info, CL_EVENT_CONTEXT, cl::Context)
#endif // CL_VERSION_1_1
#if defined(USE_CL_DEVICE_FISSION)
#define __PARAM_NAME_DEVICE_FISSION(F) \
F(cl_device_info, CL_DEVICE_PARENT_DEVICE_EXT, cl_device_id) \
F(cl_device_info, CL_DEVICE_PARTITION_TYPES_EXT, VECTOR_CLASS<cl_device_partition_property_ext>) \
F(cl_device_info, CL_DEVICE_AFFINITY_DOMAINS_EXT, VECTOR_CLASS<cl_device_partition_property_ext>) \
F(cl_device_info, CL_DEVICE_REFERENCE_COUNT_EXT , cl_uint) \
F(cl_device_info, CL_DEVICE_PARTITION_STYLE_EXT, VECTOR_CLASS<cl_device_partition_property_ext>)
#endif // USE_CL_DEVICE_FISSION
template <typename enum_type, cl_int Name>
struct param_traits {};
#define __DECLARE_PARAM_TRAITS(token, param_name, T) \
struct token; \
template<> \
struct param_traits<detail:: token,param_name> \
{ \
enum { value = param_name }; \
typedef T param_type; \
};
__PARAM_NAME_INFO_1_0(__DECLARE_PARAM_TRAITS);
#if defined(CL_VERSION_1_1)
__PARAM_NAME_INFO_1_1(__DECLARE_PARAM_TRAITS);
#endif // CL_VERSION_1_1
#if defined(USE_CL_DEVICE_FISSION)
__PARAM_NAME_DEVICE_FISSION(__DECLARE_PARAM_TRAITS);
#endif // USE_CL_DEVICE_FISSION
#undef __DECLARE_PARAM_TRAITS
// Convenience functions
template <typename Func, typename T>
inline cl_int
getInfo(Func f, cl_uint name, T* param)
{
return GetInfoHelper<Func, T>::get(f, name, param);
}
template <typename Func, typename Arg0>
struct GetInfoFunctor0
{
Func f_; const Arg0& arg0_;
cl_int operator ()(
cl_uint param, ::size_t size, void* value, ::size_t* size_ret)
{ return f_(arg0_, param, size, value, size_ret); }
};
template <typename Func, typename Arg0, typename Arg1>
struct GetInfoFunctor1
{
Func f_; const Arg0& arg0_; const Arg1& arg1_;
cl_int operator ()(
cl_uint param, ::size_t size, void* value, ::size_t* size_ret)
{ return f_(arg0_, arg1_, param, size, value, size_ret); }
};
template <typename Func, typename Arg0, typename T>
inline cl_int
getInfo(Func f, const Arg0& arg0, cl_uint name, T* param)
{
GetInfoFunctor0<Func, Arg0> f0 = { f, arg0 };
return GetInfoHelper<GetInfoFunctor0<Func, Arg0>, T>
::get(f0, name, param);
}
template <typename Func, typename Arg0, typename Arg1, typename T>
inline cl_int
getInfo(Func f, const Arg0& arg0, const Arg1& arg1, cl_uint name, T* param)
{
GetInfoFunctor1<Func, Arg0, Arg1> f0 = { f, arg0, arg1 };
return GetInfoHelper<GetInfoFunctor1<Func, Arg0, Arg1>, T>
::get(f0, name, param);
}
template<typename T>
struct ReferenceHandler
{ };
template <>
struct ReferenceHandler<cl_device_id>
{
// cl_device_id does not have retain().
static cl_int retain(cl_device_id)
{ return CL_INVALID_DEVICE; }
// cl_device_id does not have release().
static cl_int release(cl_device_id)
{ return CL_INVALID_DEVICE; }
};
template <>
struct ReferenceHandler<cl_platform_id>
{
// cl_platform_id does not have retain().
static cl_int retain(cl_platform_id)
{ return CL_INVALID_PLATFORM; }
// cl_platform_id does not have release().
static cl_int release(cl_platform_id)
{ return CL_INVALID_PLATFORM; }
};
template <>
struct ReferenceHandler<cl_context>
{
static cl_int retain(cl_context context)
{ return ::clRetainContext(context); }
static cl_int release(cl_context context)
{ return ::clReleaseContext(context); }
};
template <>
struct ReferenceHandler<cl_command_queue>
{
static cl_int retain(cl_command_queue queue)
{ return ::clRetainCommandQueue(queue); }
static cl_int release(cl_command_queue queue)
{ return ::clReleaseCommandQueue(queue); }
};
template <>
struct ReferenceHandler<cl_mem>
{
static cl_int retain(cl_mem memory)
{ return ::clRetainMemObject(memory); }
static cl_int release(cl_mem memory)
{ return ::clReleaseMemObject(memory); }
};
template <>
struct ReferenceHandler<cl_sampler>
{
static cl_int retain(cl_sampler sampler)
{ return ::clRetainSampler(sampler); }
static cl_int release(cl_sampler sampler)
{ return ::clReleaseSampler(sampler); }
};
template <>
struct ReferenceHandler<cl_program>
{
static cl_int retain(cl_program program)
{ return ::clRetainProgram(program); }
static cl_int release(cl_program program)
{ return ::clReleaseProgram(program); }
};
template <>
struct ReferenceHandler<cl_kernel>
{
static cl_int retain(cl_kernel kernel)
{ return ::clRetainKernel(kernel); }
static cl_int release(cl_kernel kernel)
{ return ::clReleaseKernel(kernel); }
};
template <>
struct ReferenceHandler<cl_event>
{
static cl_int retain(cl_event event)
{ return ::clRetainEvent(event); }
static cl_int release(cl_event event)
{ return ::clReleaseEvent(event); }
};
template <typename T>
class Wrapper
{
public:
typedef T cl_type;
protected:
cl_type object_;
public:
Wrapper() : object_(NULL) { }
~Wrapper()
{
if (object_ != NULL) { release(); }
}
Wrapper(const Wrapper<cl_type>& rhs)
{
object_ = rhs.object_;
if (object_ != NULL) { retain(); }
}
Wrapper<cl_type>& operator = (const Wrapper<cl_type>& rhs)
{
if (object_ != NULL) { release(); }
object_ = rhs.object_;
if (object_ != NULL) { retain(); }
return *this;
}
cl_type operator ()() const { return object_; }
cl_type& operator ()() { return object_; }
protected:
cl_int retain() const
{
return ReferenceHandler<cl_type>::retain(object_);
}
cl_int release() const
{
return ReferenceHandler<cl_type>::release(object_);
}
};
#if defined(__CL_ENABLE_EXCEPTIONS)
static inline cl_int errHandler (
cl_int err,
const char * errStr = NULL) throw(Error)
{
if (err != CL_SUCCESS) {
throw Error(err, errStr);
}
return err;
}
#else
static inline cl_int errHandler (cl_int err, const char * errStr = NULL)
{
return err;
}
#endif // __CL_ENABLE_EXCEPTIONS
} // namespace detail
//! \endcond
/*! \stuct ImageFormat
* \brief ImageFormat interface fro cl_image_format.
*/
struct ImageFormat : public cl_image_format
{
ImageFormat(){}
ImageFormat(cl_channel_order order, cl_channel_type type)
{
image_channel_order = order;
image_channel_data_type = type;
}
ImageFormat& operator = (const ImageFormat& rhs)
{
if (this != &rhs) {
this->image_channel_data_type = rhs.image_channel_data_type;
this->image_channel_order = rhs.image_channel_order;
}
return *this;
}
};
/*! \class Device
* \brief Device interface for cl_device_id.
*/
class Device : public detail::Wrapper<cl_device_id>
{
public:
Device(cl_device_id device) { object_ = device; }
Device() : detail::Wrapper<cl_type>() { }
Device(const Device& device) : detail::Wrapper<cl_type>(device) { }
Device& operator = (const Device& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_device_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetDeviceInfo, object_, name, param),
__GET_DEVICE_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_device_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_device_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
#if defined(USE_CL_DEVICE_FISSION)
cl_int createSubDevices(
const cl_device_partition_property_ext * properties,
VECTOR_CLASS<Device>* devices)
{
typedef CL_API_ENTRY cl_int
( CL_API_CALL * PFN_clCreateSubDevicesEXT)(
cl_device_id /*in_device*/,
const cl_device_partition_property_ext * /* properties */,
cl_uint /*num_entries*/,
cl_device_id * /*out_devices*/,
cl_uint * /*num_devices*/ ) CL_EXT_SUFFIX__VERSION_1_1;
static PFN_clCreateSubDevicesEXT pfn_clCreateSubDevicesEXT = NULL;
__INIT_CL_EXT_FCN_PTR(clCreateSubDevicesEXT);
cl_uint n = 0;
cl_int err = pfn_clCreateSubDevicesEXT(object_, properties, 0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES);
}
cl_device_id* ids = (cl_device_id*) alloca(n * sizeof(cl_device_id));
err = pfn_clCreateSubDevicesEXT(object_, properties, n, ids, NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES);
}
devices->assign(&ids[0], &ids[n]);
return CL_SUCCESS;
}
#endif
};
/*! \class Platform
* \brief Platform interface.
*/
class Platform : public detail::Wrapper<cl_platform_id>
{
public:
static const Platform null();
Platform(cl_platform_id platform) { object_ = platform; }
Platform() : detail::Wrapper<cl_type>() { }
Platform(const Platform& platform) : detail::Wrapper<cl_type>(platform) { }
Platform& operator = (const Platform& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
cl_int getInfo(cl_platform_info name, STRING_CLASS* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetPlatformInfo, object_, name, param),
__GET_PLATFORM_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_platform_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_platform_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
cl_int getDevices(
cl_device_type type,
VECTOR_CLASS<Device>* devices) const
{
cl_uint n = 0;
cl_int err = ::clGetDeviceIDs(object_, type, 0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
cl_device_id* ids = (cl_device_id*) alloca(n * sizeof(cl_device_id));
err = ::clGetDeviceIDs(object_, type, n, ids, NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
devices->assign(&ids[0], &ids[n]);
return CL_SUCCESS;
}
#if defined(USE_DX_INTEROP)
/*! \brief Get the list of available D3D10 devices.
*
* \param d3d_device_source.
*
* \param d3d_object.
*
* \param d3d_device_set.
*
* \param devices returns a vector of OpenCL D3D10 devices found. The cl::Device
* values returned in devices can be used to identify a specific OpenCL
* device. If \a devices argument is NULL, this argument is ignored.
*
* \return One of the following values:
* - CL_SUCCESS if the function is executed successfully.
*
* The application can query specific capabilities of the OpenCL device(s)
* returned by cl::getDevices. This can be used by the application to
* determine which device(s) to use.
*
* \note In the case that exceptions are enabled and a return value
* other than CL_SUCCESS is generated, then cl::Error exception is
* generated.
*/
cl_int getDevices(
cl_d3d10_device_source_khr d3d_device_source,
void * d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
VECTOR_CLASS<Device>* devices) const
{
typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clGetDeviceIDsFromD3D10KHR)(
cl_platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,
void * d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id * devices,
cl_uint* num_devices);
static PFN_clGetDeviceIDsFromD3D10KHR pfn_clGetDeviceIDsFromD3D10KHR = NULL;
__INIT_CL_EXT_FCN_PTR(clGetDeviceIDsFromD3D10KHR);
cl_uint n = 0;
cl_int err = pfn_clGetDeviceIDsFromD3D10KHR(
object_,
d3d_device_source,
d3d_object,
d3d_device_set,
0,
NULL,
&n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
cl_device_id* ids = (cl_device_id*) alloca(n * sizeof(cl_device_id));
err = pfn_clGetDeviceIDsFromD3D10KHR(
object_,
d3d_device_source,
d3d_object,
d3d_device_set,
n,
ids,
NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
devices->assign(&ids[0], &ids[n]);
return CL_SUCCESS;
}
#endif
static cl_int get(
VECTOR_CLASS<Platform>* platforms)
{
cl_uint n = 0;
cl_int err = ::clGetPlatformIDs(0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_PLATFORM_IDS_ERR);
}
cl_platform_id* ids = (cl_platform_id*) alloca(
n * sizeof(cl_platform_id));
err = ::clGetPlatformIDs(n, ids, NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_PLATFORM_IDS_ERR);
}
platforms->assign(&ids[0], &ids[n]);
return CL_SUCCESS;
}
};
static inline cl_int
UnloadCompiler()
{
return ::clUnloadCompiler();
}
class Context : public detail::Wrapper<cl_context>
{
public:
Context(
const VECTOR_CLASS<Device>& devices,
cl_context_properties* properties = NULL,
void (CL_CALLBACK * notifyFptr)(
const char *,
const void *,
::size_t,
void *) = NULL,
void* data = NULL,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateContext(
properties, (cl_uint) devices.size(),
(cl_device_id*) &devices.front(),
notifyFptr, data, &error);
detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = error;
}
}
Context(
cl_device_type type,
cl_context_properties* properties = NULL,
void (CL_CALLBACK * notifyFptr)(
const char *,
const void *,
::size_t,
void *) = NULL,
void* data = NULL,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateContextFromType(
properties, type, notifyFptr, data, &error);
detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = error;
}
}
Context() : detail::Wrapper<cl_type>() { }
Context(const Context& context) : detail::Wrapper<cl_type>(context) { }
Context& operator = (const Context& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_context_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetContextInfo, object_, name, param),
__GET_CONTEXT_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_context_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_context_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
cl_int getSupportedImageFormats(
cl_mem_flags flags,
cl_mem_object_type type,
VECTOR_CLASS<ImageFormat>* formats) const
{
cl_uint numEntries;
cl_int err = ::clGetSupportedImageFormats(
object_,
flags,
type,
0,
NULL,
&numEntries);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_SUPPORTED_IMAGE_FORMATS_ERR);
}
ImageFormat* value = (ImageFormat*)
alloca(numEntries * sizeof(ImageFormat));
err = ::clGetSupportedImageFormats(
object_,
flags,
type,
numEntries,
(cl_image_format*) value,
NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_SUPPORTED_IMAGE_FORMATS_ERR);
}
formats->assign(&value[0], &value[numEntries]);
return CL_SUCCESS;
}
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Context)
/*! \class Event
* \brief Event interface for cl_event.
*/
class Event : public detail::Wrapper<cl_event>
{
public:
Event() : detail::Wrapper<cl_type>() { }
Event(const Event& event) : detail::Wrapper<cl_type>(event) { }
Event& operator = (const Event& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_event_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetEventInfo, object_, name, param),
__GET_EVENT_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_event_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_event_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
template <typename T>
cl_int getProfilingInfo(cl_profiling_info name, T* param) const
{
return detail::errHandler(detail::getInfo(
&::clGetEventProfilingInfo, object_, name, param),
__GET_EVENT_PROFILE_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_profiling_info, name>::param_type
getProfilingInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_profiling_info, name>::param_type param;
cl_int result = getProfilingInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
cl_int wait() const
{
return detail::errHandler(
::clWaitForEvents(1, &object_),
__WAIT_FOR_EVENTS_ERR);
}
#if defined(CL_VERSION_1_1)
cl_int setCallback(
cl_int type,
void (CL_CALLBACK * pfn_notify)(cl_event, cl_int, void *),
void * user_data = NULL)
{
return detail::errHandler(
::clSetEventCallback(
object_,
type,
pfn_notify,
user_data),
__SET_EVENT_CALLBACK_ERR);
}
#endif
static cl_int
waitForEvents(const VECTOR_CLASS<Event>& events)
{
return detail::errHandler(
::clWaitForEvents(
(cl_uint) events.size(), (cl_event*)&events.front()),
__WAIT_FOR_EVENTS_ERR);
}
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Event)
#if defined(CL_VERSION_1_1)
/*! \class UserEvent
* \brief User event interface for cl_event.
*/
class UserEvent : public Event
{
public:
UserEvent(
const Context& context,
cl_int * err = NULL)
{
cl_int error;
object_ = ::clCreateUserEvent(
context(),
&error);
detail::errHandler(error, __CREATE_USER_EVENT_ERR);
if (err != NULL) {
*err = error;
}
}
UserEvent() : Event() { }
UserEvent(const UserEvent& event) : Event(event) { }
UserEvent& operator = (const UserEvent& rhs)
{
if (this != &rhs) {
Event::operator=(rhs);
}
return *this;
}
cl_int setStatus(cl_int status)
{
return detail::errHandler(
::clSetUserEventStatus(object_,status),
__SET_USER_EVENT_STATUS_ERR);
}
};
#endif
inline static cl_int
WaitForEvents(const VECTOR_CLASS<Event>& events)
{
return detail::errHandler(
::clWaitForEvents(
(cl_uint) events.size(), (cl_event*)&events.front()),
__WAIT_FOR_EVENTS_ERR);
}
/*! \class Memory
* \brief Memory interface for cl_mem.
*/
class Memory : public detail::Wrapper<cl_mem>
{
public:
Memory() : detail::Wrapper<cl_type>() { }
Memory(const Memory& memory) : detail::Wrapper<cl_type>(memory) { }
Memory& operator = (const Memory& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_mem_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetMemObjectInfo, object_, name, param),
__GET_MEM_OBJECT_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_mem_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_mem_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
#if defined(CL_VERSION_1_1)
cl_int setDestructorCallback(
void (CL_CALLBACK * pfn_notify)(cl_mem, void *),
void * user_data = NULL)
{
return detail::errHandler(
::clSetMemObjectDestructorCallback(
object_,
pfn_notify,
user_data),
__SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR);
}
#endif
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Memory)
/*! \class Buffer
* \brief Memory buffer interface.
*/
class Buffer : public Memory
{
public:
Buffer(
const Context& context,
cl_mem_flags flags,
::size_t size,
void* host_ptr = NULL,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateBuffer(context(), flags, size, host_ptr, &error);
detail::errHandler(error, __CREATE_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
Buffer() : Memory() { }
Buffer(const Buffer& buffer) : Memory(buffer) { }
Buffer& operator = (const Buffer& rhs)
{
if (this != &rhs) {
Memory::operator=(rhs);
}
return *this;
}
#if defined(CL_VERSION_1_1)
Buffer createSubBuffer(
cl_mem_flags flags,
cl_buffer_create_type buffer_create_type,
const void * buffer_create_info,
cl_int * err = NULL)
{
Buffer result;
cl_int error;
result.object_ = ::clCreateSubBuffer(
object_,
flags,
buffer_create_type,
buffer_create_info,
&error);
detail::errHandler(error, __CREATE_SUBBUFFER_ERR);
if (err != NULL) {
*err = error;
}
return result;
}
#endif
};
#if defined (USE_DX_INTEROP)
class BufferD3D10 : public Buffer
{
public:
typedef CL_API_ENTRY cl_mem (CL_API_CALL *PFN_clCreateFromD3D10BufferKHR)(
cl_context context, cl_mem_flags flags, ID3D10Buffer* buffer,
cl_int* errcode_ret);
BufferD3D10(
const Context& context,
cl_mem_flags flags,
ID3D10Buffer* bufobj,
cl_int * err = NULL)
{
static PFN_clCreateFromD3D10BufferKHR pfn_clCreateFromD3D10BufferKHR = NULL;
__INIT_CL_EXT_FCN_PTR(clCreateFromD3D10BufferKHR);
cl_int error;
object_ = pfn_clCreateFromD3D10BufferKHR(
context(),
flags,
bufobj,
&error);
detail::errHandler(error, __CREATE_GL_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
BufferD3D10() : Buffer() { }
BufferD3D10(const BufferD3D10& buffer) : Buffer(buffer) { }
BufferD3D10& operator = (const BufferD3D10& rhs)
{
if (this != &rhs) {
Buffer::operator=(rhs);
}
return *this;
}
};
#endif
/*! \class BufferGL
* \brief Memory buffer interface for GL interop.
*/
class BufferGL : public Buffer
{
public:
BufferGL(
const Context& context,
cl_mem_flags flags,
GLuint bufobj,
cl_int * err = NULL)
{
cl_int error;
object_ = ::clCreateFromGLBuffer(
context(),
flags,
bufobj,
&error);
detail::errHandler(error, __CREATE_GL_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
BufferGL() : Buffer() { }
BufferGL(const BufferGL& buffer) : Buffer(buffer) { }
BufferGL& operator = (const BufferGL& rhs)
{
if (this != &rhs) {
Buffer::operator=(rhs);
}
return *this;
}
cl_int getObjectInfo(
cl_gl_object_type *type,
GLuint * gl_object_name)
{
return detail::errHandler(
::clGetGLObjectInfo(object_,type,gl_object_name),
__GET_GL_OBJECT_INFO_ERR);
}
};
/*! \class BufferRenderGL
* \brief Memory buffer interface for GL interop with renderbuffer.
*/
class BufferRenderGL : public Buffer
{
public:
BufferRenderGL(
const Context& context,
cl_mem_flags flags,
GLuint bufobj,
cl_int * err = NULL)
{
cl_int error;
object_ = ::clCreateFromGLRenderbuffer(
context(),
flags,
bufobj,
&error);
detail::errHandler(error, __CREATE_GL_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
BufferRenderGL() : Buffer() { }
BufferRenderGL(const BufferGL& buffer) : Buffer(buffer) { }
BufferRenderGL& operator = (const BufferRenderGL& rhs)
{
if (this != &rhs) {
Buffer::operator=(rhs);
}
return *this;
}
cl_int getObjectInfo(
cl_gl_object_type *type,
GLuint * gl_object_name)
{
return detail::errHandler(
::clGetGLObjectInfo(object_,type,gl_object_name),
__GET_GL_OBJECT_INFO_ERR);
}
};
/*! \class Image
* \brief Base class interface for all images.
*/
class Image : public Memory
{
protected:
Image() : Memory() { }
Image(const Image& image) : Memory(image) { }
Image& operator = (const Image& rhs)
{
if (this != &rhs) {
Memory::operator=(rhs);
}
return *this;
}
public:
template <typename T>
cl_int getImageInfo(cl_image_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetImageInfo, object_, name, param),
__GET_IMAGE_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_image_info, name>::param_type
getImageInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_image_info, name>::param_type param;
cl_int result = getImageInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
};
/*! \class Image2D
* \brief Image interface for 2D images.
*/
class Image2D : public Image
{
public:
Image2D(
const Context& context,
cl_mem_flags flags,
ImageFormat format,
::size_t width,
::size_t height,
::size_t row_pitch = 0,
void* host_ptr = NULL,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateImage2D(
context(), flags,&format, width, height, row_pitch, host_ptr, &error);
detail::errHandler(error, __CREATE_IMAGE2D_ERR);
if (err != NULL) {
*err = error;
}
}
Image2D() { }
Image2D(const Image2D& image2D) : Image(image2D) { }
Image2D& operator = (const Image2D& rhs)
{
if (this != &rhs) {
Image::operator=(rhs);
}
return *this;
}
};
/*! \class Image2DGL
* \brief 2D image interface for GL interop.
*/
class Image2DGL : public Image2D
{
public:
Image2DGL(
const Context& context,
cl_mem_flags flags,
GLenum target,
GLint miplevel,
GLuint texobj,
cl_int * err = NULL)
{
cl_int error;
object_ = ::clCreateFromGLTexture2D(
context(),
flags,
target,
miplevel,
texobj,
&error);
detail::errHandler(error, __CREATE_GL_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
Image2DGL() : Image2D() { }
Image2DGL(const Image2DGL& image) : Image2D(image) { }
Image2DGL& operator = (const Image2DGL& rhs)
{
if (this != &rhs) {
Image2D::operator=(rhs);
}
return *this;
}
};
/*! \class Image3D
* \brief Image interface for 3D images.
*/
class Image3D : public Image
{
public:
Image3D(
const Context& context,
cl_mem_flags flags,
ImageFormat format,
::size_t width,
::size_t height,
::size_t depth,
::size_t row_pitch = 0,
::size_t slice_pitch = 0,
void* host_ptr = NULL,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateImage3D(
context(), flags, &format, width, height, depth, row_pitch,
slice_pitch, host_ptr, &error);
detail::errHandler(error, __CREATE_IMAGE3D_ERR);
if (err != NULL) {
*err = error;
}
}
Image3D() { }
Image3D(const Image3D& image3D) : Image(image3D) { }
Image3D& operator = (const Image3D& rhs)
{
if (this != &rhs) {
Image::operator=(rhs);
}
return *this;
}
};
/*! \class Image2DGL
* \brief 2D image interface for GL interop.
*/
class Image3DGL : public Image3D
{
public:
Image3DGL(
const Context& context,
cl_mem_flags flags,
GLenum target,
GLint miplevel,
GLuint texobj,
cl_int * err = NULL)
{
cl_int error;
object_ = ::clCreateFromGLTexture3D(
context(),
flags,
target,
miplevel,
texobj,
&error);
detail::errHandler(error, __CREATE_GL_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
}
Image3DGL() : Image3D() { }
Image3DGL(const Image3DGL& image) : Image3D(image) { }
Image3DGL& operator = (const Image3DGL& rhs)
{
if (this != &rhs) {
Image3D::operator=(rhs);
}
return *this;
}
};
/*! \class Sampler
* \brief Sampler interface for cl_sampler.
*/
class Sampler : public detail::Wrapper<cl_sampler>
{
public:
Sampler() { }
Sampler(
const Context& context,
cl_bool normalized_coords,
cl_addressing_mode addressing_mode,
cl_filter_mode filter_mode,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateSampler(
context(),
normalized_coords,
addressing_mode,
filter_mode,
&error);
detail::errHandler(error, __CREATE_SAMPLER_ERR);
if (err != NULL) {
*err = error;
}
}
Sampler(const Sampler& sampler) : detail::Wrapper<cl_type>(sampler) { }
Sampler& operator = (const Sampler& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_sampler_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetSamplerInfo, object_, name, param),
__GET_SAMPLER_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_sampler_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_sampler_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Sampler)
class Program;
class CommandQueue;
class Kernel;
/*! \class NDRange
* \brief NDRange interface
*/
class NDRange
{
private:
size_t<3> sizes_;
cl_uint dimensions_;
public:
NDRange()
: dimensions_(0)
{ }
NDRange(::size_t size0)
: dimensions_(1)
{
sizes_.push_back(size0);
}
NDRange(::size_t size0, ::size_t size1)
: dimensions_(2)
{
sizes_.push_back(size0);
sizes_.push_back(size1);
}
NDRange(::size_t size0, ::size_t size1, ::size_t size2)
: dimensions_(3)
{
sizes_.push_back(size0);
sizes_.push_back(size1);
sizes_.push_back(size2);
}
operator const ::size_t*() const { return (const ::size_t*) sizes_; }
::size_t dimensions() const { return dimensions_; }
};
static const NDRange NullRange;
/*!
* \struct LocalSpaceArg
* \brief Local address raper for use with Kernel::setArg
*/
struct LocalSpaceArg
{
::size_t size_;
};
namespace detail {
template <typename T>
struct KernelArgumentHandler
{
static ::size_t size(const T&) { return sizeof(T); }
static T* ptr(T& value) { return &value; }
};
template <>
struct KernelArgumentHandler<LocalSpaceArg>
{
static ::size_t size(const LocalSpaceArg& value) { return value.size_; }
static void* ptr(LocalSpaceArg&) { return NULL; }
};
}
//! \endcond
inline LocalSpaceArg
__local(::size_t size)
{
LocalSpaceArg ret = { size };
return ret;
}
class KernelFunctor;
/*! \class Kernel
* \brief Kernel interface that implements cl_kernel
*/
class Kernel : public detail::Wrapper<cl_kernel>
{
public:
inline Kernel(const Program& program, const char* name, cl_int* err = NULL);
Kernel() { }
Kernel(const Kernel& kernel) : detail::Wrapper<cl_type>(kernel) { }
Kernel& operator = (const Kernel& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_kernel_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetKernelInfo, object_, name, param),
__GET_KERNEL_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_kernel_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_kernel_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
template <typename T>
cl_int getWorkGroupInfo(
const Device& device, cl_kernel_work_group_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(
&::clGetKernelWorkGroupInfo, object_, device(), name, param),
__GET_KERNEL_WORK_GROUP_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_kernel_work_group_info, name>::param_type
getWorkGroupInfo(const Device& device, cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_kernel_work_group_info, name>::param_type param;
cl_int result = getWorkGroupInfo(device, name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
template <typename T>
cl_int setArg(cl_uint index, T value)
{
return detail::errHandler(
::clSetKernelArg(
object_,
index,
detail::KernelArgumentHandler<T>::size(value),
detail::KernelArgumentHandler<T>::ptr(value)),
__SET_KERNEL_ARGS_ERR);
}
cl_int setArg(cl_uint index, ::size_t size, void* argPtr)
{
return detail::errHandler(
::clSetKernelArg(object_, index, size, argPtr),
__SET_KERNEL_ARGS_ERR);
}
KernelFunctor bind(
const CommandQueue& queue,
const NDRange& offset,
const NDRange& global,
const NDRange& local);
KernelFunctor bind(
const CommandQueue& queue,
const NDRange& global,
const NDRange& local);
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Kernel)
/*! \class Program
* \brief Program interface that implements cl_program.
*/
class Program : public detail::Wrapper<cl_program>
{
public:
typedef VECTOR_CLASS<std::pair<const void*, ::size_t> > Binaries;
typedef VECTOR_CLASS<std::pair<const char*, ::size_t> > Sources;
Program(
const Context& context,
const Sources& sources,
cl_int* err = NULL)
{
cl_int error;
const ::size_t n = (::size_t)sources.size();
::size_t* lengths = (::size_t*) alloca(n * sizeof(::size_t));
const char** strings = (const char**) alloca(n * sizeof(const char*));
for (::size_t i = 0; i < n; ++i) {
strings[i] = sources[(int)i].first;
lengths[i] = sources[(int)i].second;
}
object_ = ::clCreateProgramWithSource(
context(), (cl_uint)n, strings, lengths, &error);
detail::errHandler(error, __CREATE_PROGRAM_WITH_SOURCE_ERR);
if (err != NULL) {
*err = error;
}
}
Program(
const Context& context,
const VECTOR_CLASS<Device>& devices,
const Binaries& binaries,
VECTOR_CLASS<cl_int>* binaryStatus = NULL,
cl_int* err = NULL)
{
cl_int error;
const ::size_t n = binaries.size();
::size_t* lengths = (::size_t*) alloca(n * sizeof(::size_t));
const unsigned char** images = (const unsigned char**) alloca(n * sizeof(const void*));
for (::size_t i = 0; i < n; ++i) {
images[i] = (const unsigned char*)binaries[(int)i].first;
lengths[i] = binaries[(int)i].second;
}
object_ = ::clCreateProgramWithBinary(
context(), (cl_uint) devices.size(),
(cl_device_id*)&devices.front(),
lengths, images, binaryStatus != NULL
? (cl_int*) &binaryStatus->front()
: NULL, &error);
detail::errHandler(error, __CREATE_PROGRAM_WITH_BINARY_ERR);
if (err != NULL) {
*err = error;
}
}
Program() { }
Program(const Program& program) : detail::Wrapper<cl_type>(program) { }
Program& operator = (const Program& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
cl_int build(
const VECTOR_CLASS<Device>& devices,
const char* options = NULL,
void (CL_CALLBACK * notifyFptr)(cl_program, void *) = NULL,
void* data = NULL) const
{
return detail::errHandler(
::clBuildProgram(
object_,
(cl_uint)
devices.size(),
(cl_device_id*)&devices.front(),
options,
notifyFptr,
data),
__BUILD_PROGRAM_ERR);
}
template <typename T>
cl_int getInfo(cl_program_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetProgramInfo, object_, name, param),
__GET_PROGRAM_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_program_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_program_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
template <typename T>
cl_int getBuildInfo(
const Device& device, cl_program_build_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(
&::clGetProgramBuildInfo, object_, device(), name, param),
__GET_PROGRAM_BUILD_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_program_build_info, name>::param_type
getBuildInfo(const Device& device, cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_program_build_info, name>::param_type param;
cl_int result = getBuildInfo(device, name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
cl_int createKernels(VECTOR_CLASS<Kernel>* kernels)
{
cl_uint numKernels;
cl_int err = ::clCreateKernelsInProgram(object_, 0, NULL, &numKernels);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_KERNELS_IN_PROGRAM_ERR);
}
Kernel* value = (Kernel*) alloca(numKernels * sizeof(Kernel));
err = ::clCreateKernelsInProgram(
object_, numKernels, (cl_kernel*) value, NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_KERNELS_IN_PROGRAM_ERR);
}
kernels->assign(&value[0], &value[numKernels]);
return CL_SUCCESS;
}
};
__GET_INFO_HELPER_WITH_RETAIN(cl::Program)
inline Kernel::Kernel(const Program& program, const char* name, cl_int* err)
{
cl_int error;
object_ = ::clCreateKernel(program(), name, &error);
detail::errHandler(error, __CREATE_KERNEL_ERR);
if (err != NULL) {
*err = error;
}
}
/*! \class CommandQueue
* \brief CommandQueue interface for cl_command_queue.
*/
class CommandQueue : public detail::Wrapper<cl_command_queue>
{
public:
CommandQueue(
const Context& context,
const Device& device,
cl_command_queue_properties properties = 0,
cl_int* err = NULL)
{
cl_int error;
object_ = ::clCreateCommandQueue(
context(), device(), properties, &error);
detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR);
if (err != NULL) {
*err = error;
}
}
CommandQueue() { }
CommandQueue(const CommandQueue& commandQueue) : detail::Wrapper<cl_type>(commandQueue) { }
CommandQueue& operator = (const CommandQueue& rhs)
{
if (this != &rhs) {
detail::Wrapper<cl_type>::operator=(rhs);
}
return *this;
}
template <typename T>
cl_int getInfo(cl_command_queue_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(
&::clGetCommandQueueInfo, object_, name, param),
__GET_COMMAND_QUEUE_INFO_ERR);
}
template <cl_int name> typename
detail::param_traits<detail::cl_command_queue_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_command_queue_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
cl_int enqueueReadBuffer(
const Buffer& buffer,
cl_bool blocking,
::size_t offset,
::size_t size,
void* ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueReadBuffer(
object_, buffer(), blocking, offset, size,
ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_READ_BUFFER_ERR);
}
cl_int enqueueWriteBuffer(
const Buffer& buffer,
cl_bool blocking,
::size_t offset,
::size_t size,
const void* ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueWriteBuffer(
object_, buffer(), blocking, offset, size,
ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_WRITE_BUFFER_ERR);
}
cl_int enqueueCopyBuffer(
const Buffer& src,
const Buffer& dst,
::size_t src_offset,
::size_t dst_offset,
::size_t size,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueCopyBuffer(
object_, src(), dst(), src_offset, dst_offset, size,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQEUE_COPY_BUFFER_ERR);
}
#if defined(CL_VERSION_1_1)
cl_int enqueueReadBufferRect(
const Buffer& buffer,
cl_bool blocking,
const size_t<3>& buffer_offset,
const size_t<3>& host_offset,
const size_t<3>& region,
::size_t buffer_row_pitch,
::size_t buffer_slice_pitch,
::size_t host_row_pitch,
::size_t host_slice_pitch,
void *ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueReadBufferRect(
object_,
buffer(),
blocking,
(const ::size_t *)buffer_offset,
(const ::size_t *)host_offset,
(const ::size_t *)region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_READ_BUFFER_RECT_ERR);
}
cl_int enqueueWriteBufferRect(
const Buffer& buffer,
cl_bool blocking,
const size_t<3>& buffer_offset,
const size_t<3>& host_offset,
const size_t<3>& region,
::size_t buffer_row_pitch,
::size_t buffer_slice_pitch,
::size_t host_row_pitch,
::size_t host_slice_pitch,
void *ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueWriteBufferRect(
object_,
buffer(),
blocking,
(const ::size_t *)buffer_offset,
(const ::size_t *)host_offset,
(const ::size_t *)region,
buffer_row_pitch,
buffer_slice_pitch,
host_row_pitch,
host_slice_pitch,
ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_WRITE_BUFFER_RECT_ERR);
}
cl_int enqueueCopyBufferRect(
const Buffer& src,
const Buffer& dst,
const size_t<3>& src_origin,
const size_t<3>& dst_origin,
const size_t<3>& region,
::size_t src_row_pitch,
::size_t src_slice_pitch,
::size_t dst_row_pitch,
::size_t dst_slice_pitch,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueCopyBufferRect(
object_,
src(),
dst(),
(const ::size_t *)src_origin,
(const ::size_t *)dst_origin,
(const ::size_t *)region,
src_row_pitch,
src_slice_pitch,
dst_row_pitch,
dst_slice_pitch,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQEUE_COPY_BUFFER_RECT_ERR);
}
#endif
cl_int enqueueReadImage(
const Image& image,
cl_bool blocking,
const size_t<3>& origin,
const size_t<3>& region,
::size_t row_pitch,
::size_t slice_pitch,
void* ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueReadImage(
object_, image(), blocking, (const ::size_t *) origin,
(const ::size_t *) region, row_pitch, slice_pitch, ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_READ_IMAGE_ERR);
}
cl_int enqueueWriteImage(
const Image& image,
cl_bool blocking,
const size_t<3>& origin,
const size_t<3>& region,
::size_t row_pitch,
::size_t slice_pitch,
void* ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueWriteImage(
object_, image(), blocking, (const ::size_t *) origin,
(const ::size_t *) region, row_pitch, slice_pitch, ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_WRITE_IMAGE_ERR);
}
cl_int enqueueCopyImage(
const Image& src,
const Image& dst,
const size_t<3>& src_origin,
const size_t<3>& dst_origin,
const size_t<3>& region,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueCopyImage(
object_, src(), dst(), (const ::size_t *) src_origin,
(const ::size_t *)dst_origin, (const ::size_t *) region,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_COPY_IMAGE_ERR);
}
cl_int enqueueCopyImageToBuffer(
const Image& src,
const Buffer& dst,
const size_t<3>& src_origin,
const size_t<3>& region,
::size_t dst_offset,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueCopyImageToBuffer(
object_, src(), dst(), (const ::size_t *) src_origin,
(const ::size_t *) region, dst_offset,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR);
}
cl_int enqueueCopyBufferToImage(
const Buffer& src,
const Image& dst,
::size_t src_offset,
const size_t<3>& dst_origin,
const size_t<3>& region,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueCopyBufferToImage(
object_, src(), dst(), src_offset,
(const ::size_t *) dst_origin, (const ::size_t *) region,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR);
}
void* enqueueMapBuffer(
const Buffer& buffer,
cl_bool blocking,
cl_map_flags flags,
::size_t offset,
::size_t size,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL,
cl_int* err = NULL) const
{
cl_int error;
void * result = ::clEnqueueMapBuffer(
object_, buffer(), blocking, flags, offset, size,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event,
&error);
detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR);
if (err != NULL) {
*err = error;
}
return result;
}
void* enqueueMapImage(
const Image& buffer,
cl_bool blocking,
cl_map_flags flags,
const size_t<3>& origin,
const size_t<3>& region,
::size_t * row_pitch,
::size_t * slice_pitch,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL,
cl_int* err = NULL) const
{
cl_int error;
void * result = ::clEnqueueMapImage(
object_, buffer(), blocking, flags,
(const ::size_t *) origin, (const ::size_t *) region,
row_pitch, slice_pitch,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event,
&error);
detail::errHandler(error, __ENQUEUE_MAP_IMAGE_ERR);
if (err != NULL) {
*err = error;
}
return result;
}
cl_int enqueueUnmapMemObject(
const Memory& memory,
void* mapped_ptr,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueUnmapMemObject(
object_, memory(), mapped_ptr,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_UNMAP_MEM_OBJECT_ERR);
}
cl_int enqueueNDRangeKernel(
const Kernel& kernel,
const NDRange& offset,
const NDRange& global,
const NDRange& local,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueNDRangeKernel(
object_, kernel(), (cl_uint) global.dimensions(),
offset.dimensions() != 0 ? (const ::size_t*) offset : NULL,
(const ::size_t*) global,
local.dimensions() != 0 ? (const ::size_t*) local : NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_NDRANGE_KERNEL_ERR);
}
cl_int enqueueTask(
const Kernel& kernel,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueTask(
object_, kernel(),
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_TASK_ERR);
}
cl_int enqueueNativeKernel(
void (*userFptr)(void *),
std::pair<void*, ::size_t> args,
const VECTOR_CLASS<Memory>* mem_objects = NULL,
const VECTOR_CLASS<const void*>* mem_locs = NULL,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
cl_mem * mems = (mem_objects != NULL && mem_objects->size() > 0)
? (cl_mem*) alloca(mem_objects->size() * sizeof(cl_mem))
: NULL;
if (mems != NULL) {
for (unsigned int i = 0; i < mem_objects->size(); i++) {
mems[i] = ((*mem_objects)[i])();
}
}
return detail::errHandler(
::clEnqueueNativeKernel(
object_, userFptr, args.first, args.second,
(mem_objects != NULL) ? (cl_uint) mem_objects->size() : 0,
mems,
(mem_locs != NULL) ? (const void **) &mem_locs->front() : NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_NATIVE_KERNEL);
}
cl_int enqueueMarker(Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueMarker(object_, (cl_event*) event),
__ENQUEUE_MARKER_ERR);
}
cl_int enqueueWaitForEvents(const VECTOR_CLASS<Event>& events) const
{
return detail::errHandler(
::clEnqueueWaitForEvents(
object_,
(cl_uint) events.size(),
(const cl_event*) &events.front()),
__ENQUEUE_WAIT_FOR_EVENTS_ERR);
}
cl_int enqueueAcquireGLObjects(
const VECTOR_CLASS<Memory>* mem_objects = NULL,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueAcquireGLObjects(
object_,
(mem_objects != NULL) ? (cl_uint) mem_objects->size() : 0,
(mem_objects != NULL) ? (const cl_mem *) &mem_objects->front(): NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_ACQUIRE_GL_ERR);
}
cl_int enqueueReleaseGLObjects(
const VECTOR_CLASS<Memory>* mem_objects = NULL,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
return detail::errHandler(
::clEnqueueReleaseGLObjects(
object_,
(mem_objects != NULL) ? (cl_uint) mem_objects->size() : 0,
(mem_objects != NULL) ? (const cl_mem *) &mem_objects->front(): NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL && events->size() > 0) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_RELEASE_GL_ERR);
}
#if defined (USE_DX_INTEROP)
typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clEnqueueAcquireD3D10ObjectsKHR)(
cl_command_queue command_queue, cl_uint num_objects,
const cl_mem* mem_objects, cl_uint num_events_in_wait_list,
const cl_event* event_wait_list, cl_event* event);
typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clEnqueueReleaseD3D10ObjectsKHR)(
cl_command_queue command_queue, cl_uint num_objects,
const cl_mem* mem_objects, cl_uint num_events_in_wait_list,
const cl_event* event_wait_list, cl_event* event);
cl_int enqueueAcquireD3D10Objects(
const VECTOR_CLASS<Memory>* mem_objects = NULL,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
static PFN_clEnqueueAcquireD3D10ObjectsKHR pfn_clEnqueueAcquireD3D10ObjectsKHR = NULL;
__INIT_CL_EXT_FCN_PTR(clEnqueueAcquireD3D10ObjectsKHR);
return detail::errHandler(
pfn_clEnqueueAcquireD3D10ObjectsKHR(
object_,
(mem_objects != NULL) ? (cl_uint) mem_objects->size() : 0,
(mem_objects != NULL) ? (const cl_mem *) &mem_objects->front(): NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_ACQUIRE_GL_ERR);
}
cl_int enqueueReleaseD3D10Objects(
const VECTOR_CLASS<Memory>* mem_objects = NULL,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL) const
{
static PFN_clEnqueueReleaseD3D10ObjectsKHR pfn_clEnqueueReleaseD3D10ObjectsKHR = NULL;
__INIT_CL_EXT_FCN_PTR(clEnqueueReleaseD3D10ObjectsKHR);
return detail::errHandler(
pfn_clEnqueueReleaseD3D10ObjectsKHR(
object_,
(mem_objects != NULL) ? (cl_uint) mem_objects->size() : 0,
(mem_objects != NULL) ? (const cl_mem *) &mem_objects->front(): NULL,
(events != NULL) ? (cl_uint) events->size() : 0,
(events != NULL) ? (cl_event*) &events->front() : NULL,
(cl_event*) event),
__ENQUEUE_RELEASE_GL_ERR);
}
#endif
cl_int enqueueBarrier() const
{
return detail::errHandler(
::clEnqueueBarrier(object_),
__ENQUEUE_BARRIER_ERR);
}
cl_int flush() const
{
return detail::errHandler(::clFlush(object_), __FLUSH_ERR);
}
cl_int finish() const
{
return detail::errHandler(::clFinish(object_), __FINISH_ERR);
}
};
__GET_INFO_HELPER_WITH_RETAIN(cl::CommandQueue)
/*! \class KernelFunctor
* \brief Kernel functor interface
*
* \note Currently only functors of zero to ten arguments are supported. It
* is straightforward to add more and a more general solution, similar to
* Boost.Lambda could be followed if required in the future.
*/
class KernelFunctor
{
private:
Kernel kernel_;
CommandQueue queue_;
NDRange offset_;
NDRange global_;
NDRange local_;
cl_int err_;
public:
KernelFunctor() { }
KernelFunctor(
const Kernel& kernel,
const CommandQueue& queue,
const NDRange& offset,
const NDRange& global,
const NDRange& local) :
kernel_(kernel),
queue_(queue),
offset_(offset),
global_(global),
local_(local),
err_(CL_SUCCESS)
{}
KernelFunctor& operator=(const KernelFunctor& rhs);
KernelFunctor(const KernelFunctor& rhs);
cl_int getError() { return err_; }
inline Event operator()(const VECTOR_CLASS<Event>* events = NULL);
template<typename A1>
inline Event operator()(
const A1& a1,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2>
inline Event operator()(
const A1& a1,
const A2& a2,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5, class A6>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4,
class A5, class A6, class A7>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13, class A14>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const A14& a14,
const VECTOR_CLASS<Event>* events = NULL);
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13, class A14, class A15>
inline Event operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const A14& a14,
const A15& a15,
const VECTOR_CLASS<Event>* events = NULL);
};
inline KernelFunctor Kernel::bind(
const CommandQueue& queue,
const NDRange& offset,
const NDRange& global,
const NDRange& local)
{
return KernelFunctor(*this,queue,offset,global,local);
}
inline KernelFunctor Kernel::bind(
const CommandQueue& queue,
const NDRange& global,
const NDRange& local)
{
return KernelFunctor(*this,queue,NullRange,global,local);
}
inline KernelFunctor& KernelFunctor::operator=(const KernelFunctor& rhs)
{
if (this == &rhs) {
return *this;
}
kernel_ = rhs.kernel_;
queue_ = rhs.queue_;
offset_ = rhs.offset_;
global_ = rhs.global_;
local_ = rhs.local_;
return *this;
}
inline KernelFunctor::KernelFunctor(const KernelFunctor& rhs) :
kernel_(rhs.kernel_),
queue_(rhs.queue_),
offset_(rhs.offset_),
global_(rhs.global_),
local_(rhs.local_)
{
}
Event KernelFunctor::operator()(const VECTOR_CLASS<Event>* events)
{
Event event;
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1>
Event KernelFunctor::operator()(
const A1& a1,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4, typename A5>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9, typename A10>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
kernel_.setArg(10,a11);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
kernel_.setArg(10,a11);
kernel_.setArg(11,a12);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
kernel_.setArg(10,a11);
kernel_.setArg(11,a12);
kernel_.setArg(12,a13);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13, class A14>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const A14& a14,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
kernel_.setArg(10,a11);
kernel_.setArg(11,a12);
kernel_.setArg(12,a13);
kernel_.setArg(13,a14);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
template<class A1, class A2, class A3, class A4, class A5,
class A6, class A7, class A8, class A9, class A10,
class A11, class A12, class A13, class A14, class A15>
Event KernelFunctor::operator()(
const A1& a1,
const A2& a2,
const A3& a3,
const A4& a4,
const A5& a5,
const A6& a6,
const A7& a7,
const A8& a8,
const A9& a9,
const A10& a10,
const A11& a11,
const A12& a12,
const A13& a13,
const A14& a14,
const A15& a15,
const VECTOR_CLASS<Event>* events)
{
Event event;
kernel_.setArg(0,a1);
kernel_.setArg(1,a2);
kernel_.setArg(2,a3);
kernel_.setArg(3,a4);
kernel_.setArg(4,a5);
kernel_.setArg(5,a6);
kernel_.setArg(6,a7);
kernel_.setArg(7,a8);
kernel_.setArg(8,a9);
kernel_.setArg(9,a10);
kernel_.setArg(10,a11);
kernel_.setArg(11,a12);
kernel_.setArg(12,a13);
kernel_.setArg(13,a14);
kernel_.setArg(14,a15);
err_ = queue_.enqueueNDRangeKernel(
kernel_,
offset_,
global_,
local_,
NULL, // bgaster_fixme - do we want to allow wait event lists?
&event);
return event;
}
#undef __ERR_STR
#if !defined(__CL_USER_OVERRIDE_ERROR_STRINGS)
#undef __GET_DEVICE_INFO_ERR
#undef __GET_PLATFORM_INFO_ERR
#undef __GET_DEVICE_IDS_ERR
#undef __GET_CONTEXT_INFO_ERR
#undef __GET_EVENT_INFO_ERR
#undef __GET_EVENT_PROFILE_INFO_ERR
#undef __GET_MEM_OBJECT_INFO_ERR
#undef __GET_IMAGE_INFO_ERR
#undef __GET_SAMPLER_INFO_ERR
#undef __GET_KERNEL_INFO_ERR
#undef __GET_KERNEL_WORK_GROUP_INFO_ERR
#undef __GET_PROGRAM_INFO_ERR
#undef __GET_PROGRAM_BUILD_INFO_ERR
#undef __GET_COMMAND_QUEUE_INFO_ERR
#undef __CREATE_CONTEXT_FROM_TYPE_ERR
#undef __GET_SUPPORTED_IMAGE_FORMATS_ERR
#undef __CREATE_BUFFER_ERR
#undef __CREATE_SUBBUFFER_ERR
#undef __CREATE_IMAGE2D_ERR
#undef __CREATE_IMAGE3D_ERR
#undef __CREATE_SAMPLER_ERR
#undef __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR
#undef __CREATE_USER_EVENT_ERR
#undef __SET_USER_EVENT_STATUS_ERR
#undef __SET_EVENT_CALLBACK_ERR
#undef __WAIT_FOR_EVENTS_ERR
#undef __CREATE_KERNEL_ERR
#undef __SET_KERNEL_ARGS_ERR
#undef __CREATE_PROGRAM_WITH_SOURCE_ERR
#undef __CREATE_PROGRAM_WITH_BINARY_ERR
#undef __BUILD_PROGRAM_ERR
#undef __CREATE_KERNELS_IN_PROGRAM_ERR
#undef __CREATE_COMMAND_QUEUE_ERR
#undef __SET_COMMAND_QUEUE_PROPERTY_ERR
#undef __ENQUEUE_READ_BUFFER_ERR
#undef __ENQUEUE_WRITE_BUFFER_ERR
#undef __ENQUEUE_READ_BUFFER_RECT_ERR
#undef __ENQUEUE_WRITE_BUFFER_RECT_ERR
#undef __ENQEUE_COPY_BUFFER_ERR
#undef __ENQEUE_COPY_BUFFER_RECT_ERR
#undef __ENQUEUE_READ_IMAGE_ERR
#undef __ENQUEUE_WRITE_IMAGE_ERR
#undef __ENQUEUE_COPY_IMAGE_ERR
#undef __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR
#undef __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR
#undef __ENQUEUE_MAP_BUFFER_ERR
#undef __ENQUEUE_MAP_IMAGE_ERR
#undef __ENQUEUE_UNMAP_MEM_OBJECT_ERR
#undef __ENQUEUE_NDRANGE_KERNEL_ERR
#undef __ENQUEUE_TASK_ERR
#undef __ENQUEUE_NATIVE_KERNEL
#undef __UNLOAD_COMPILER_ERR
#endif //__CL_USER_OVERRIDE_ERROR_STRINGS
#undef __GET_INFO_HELPER_WITH_RETAIN
// Extensions
#undef __INIT_CL_EXT_FCN_PTR
#undef __CREATE_SUB_DEVICES
#if defined(USE_CL_DEVICE_FISSION)
#undef __PARAM_NAME_DEVICE_FISSION
#endif // USE_CL_DEVICE_FISSION
} // namespace cl
#endif // CL_HPP_